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Abstract

The three most important metrics in optical coherence tomography (OCT) are resolution, speed, 

and sensitivity. Because there is a complex interplay between these metrics, no previous work has 

obtained the best performance in all three metrics simultaneously. We demonstrate that a high-

power supercontinuum (SC) source, in combination with parallel SD-OCT, achieves an 

unparalleled combination of resolution, speed, and sensitivity. This system captures cross-sectional 

images spanning 4×0.5 mm2 at 1,024,000 lines/s with 2×14 μm resolution (axial×transverse) at a 

sensitivity of 113 dB. Imaging using the proposed system is demonstrated on highly differentiated 

human bronchial epithelial (hBE) cells to capture and spatially localize ciliary dynamics.

Optical coherence tomography (OCT) has become one of the most effective imaging 

modalities for performing noninvasive, real-time biological imaging. The three most 

important metrics for OCT are resolution, speed, and sensitivity. However, all three cannot 

be limitlessly improved because they are subject to tradeoffs. High speed is necessary for 

capturing rapid dynamics of biological processes and transient responses to external 

perturbations. The highest speed system reported to date is a swept-source OCT (SS-OCT) 

system with a linerate of 40 MHz [1]. But, to our knowledge, no SS-OCT system has been 

reported that combines MHz A-line rates with the bandwidth necessary for ultrahigh 

resolution (< 3 axial μm). Spectral domain OCT (SD-OCT) systems use broad-bandwidth 

sources to achieve axial resolutions as low as 1 μm [2]. The highest speed SD-OCT system 

has a linerate of 1 million A-lines/sec, but offers only a modest sensitivity of 72 dB [3].
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Importantly, all high speed OCT systems are subject to a tradeoff between sensitivity and 

speed because of limited exposure time in order to scan rapidly. Ultimately, the illumination 

power determines the sensitivity of an OCT system for a given framerate. At the same time, 

power is limited by the maximum intensity that can safely illuminate the sample. In 

conventional, flying-spot OCT, a focused light beam is scanned, and the maximum power 

that can safely be used is determined by the focal spot size. In contrast, in parallel OCT, a 

line focus is applied to the sample, and all A-lines are simultaneously recorded. Distributing 

the illumination across a line allows for higher total power while maintaining a lower peak 

intensity than that of flying-spot OCT. The higher power enables higher sensitivity at a given 

frame rate. However, parallel OCT systems have not yet demonstrated this improved 

sensitivity due to lack of appropriate high-power, high-bandwidth sources.

After its invention in 1999 [4], parallel OCT has seen notable improvements in speed, 

sensitivity and resolution. To the authors’ knowledge, the fastest speed in a parallel SD-OCT 

system was achieved by Grajciar et al. at 512,000 A-scans/sec with a sensitivity of 74 dB 

and an axial resolution of 18 μm [5]. The highest axial resolution of a parallel SD-OCT 

system is 1.22 μm with a sensitivity of 89 dB [6]. Zhang et al. [7] reported the highest 

sensitivity with a parallel OCT configuration (94 dB), with an axial resolution of 3 μm and a 

speed of 265,000 A-lines/sec. Recent advances in commercially available SC sources to 

minimize relative-intensity noise (RIN) have allowed them to be operated in the shot-noise 

limit for OCT [8,9], while offering an order-of-magnitude increase in power as compared to 

traditional OCT light sources. With higher power we can achieve higher sensitivity. Such a 

SC source has been recently used for endoscopic OCT with a sensitivity of 107 dB [9], and 

for molecular contrast OCT imaging [10].

In this Letter, we show that the use of a SC light source in combination with a parallel SD-

OCT configuration offers higher sensitivity and higher frame rate than any parallel SD-OCT 

system reported to date, while maintaining ultrahigh resolution. We demonstrate the utility 

of the system by capturing the rapidly beating cilia of human bronchial-epithelial (hBE) 

cells in vitro.

Fig. 1 shows the optical setup of the parallel SD-OCT system consisting of a 2D 

spectrometer, a free-space Michelson interferometer, and a cylindrical lens (CL). The optical 

paths for the two orthogonal planes of the parallel SD-OCT system after the CL, which is 

setup in an afocal configuration, are shown in Ref [11]. The SC source (SuperK Extreme 

EXR-15, NKT Photonics) has a repetition rate of 310 MHz and a wavelength range spanning 

400–2400 nm. The combination of a lowpass and highpass filter is used to narrow the 

spectrum, achieving a center wavelength and bandwidth of 775 nm and 159 nm, 

respectively, at the sensor. The power from the filtered SC source is 1.1 W at the input of the 

interferometer. The collimated light is expanded from 0.7 mm to 6 mm by the use of a 

telescope composed of lenses L0 (fL0 = 35 mm) and L1 (fL1 = 300 mm). The beam then 

passes through the CL (fCL = 100 mm) before entering the 4f interferometer with achromatic 

lenses L2, L3, and L4 (fL2 = fL3 = fL4 = 100 mm). Because the system operates in an afocal 

mode, the beam after L4 is focused into a vertical line with a beam diameter of 6 mm in the 

vertical direction and a focused spot size of 17 μm in the horizontal direction at the sample 

position. The total power at the sample is 492 mW, with a power per A-line of 0.48 mW. 
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Note that an NDF inserted into the reference arm is used to adjust the power such that the 

recorded interferogram is close to the saturation level of the sensor. At the same time, a 

matched NDF in the sample arm balances interferometer dispersion; it is normally set to no 

attenuation except when imaging a mirror to characterize resolution and SNR.

The back-scattered light from both arms are recombined at the exit of the interferometer and 

detected by the spectrometer. The beam is reduced to the size of the sensor by L5 (fL5 = 200 

mm) and L6 (fL6 = 50 mm). The spectrometer is composed of a diffraction grating DG (600 

lp/mm, Wasatch Photonics) set at its Littrow angle, an achromatic lens (fL7 = 100 mm) and a 

high-speed, 2D CMOS camera (FastCam SA3, Photron) placed at the back-focal plane of 

L7. The sample and camera planes are conjugated so that each row of the 2D CMOS array is 

associated with a different transverse position of the sample. The transverse field of view 

(FOV) imaged by our system is 4.15 mm. The camera (1024 × 1024 pixels, 17 μm × 17 μm 

each), converts the optical signals into 12-bit numerical values at a maximum frame rate of 

1kHz with a continuous acquisition time of 1.36 s. This corresponds to an imaging speed of 

1,024,000 A-scan/s used for all images in this study, which is, to our knowledge, higher than 

that of any previously reported parallel SD-OCT systems. We note that in this demonstration 

we are oversampling in the transverse direction, whereas flying-spot OCT systems can 

readily adjust the rate of transverse sampling. B-mode OCT images are reconstructed by 

subtracting the reference spectrum, digitally compensating for dispersion mismatches 

between the sample and reference arms using parameters pre-determined from an iterative 

method [12], and computing the Fourier transform along the spectral dimension of the 

recorded 2D interferogram.

The SNR is measured versus depth by recording spectral interferograms of a silver mirror at 

different axial positions (top right panel of Fig. 2). SNR is determined from the B-mode 

image by the ratio between the maximum value within the center A-line and the standard 

deviation of the noise immediately surrounding the peak. The optical attenuation of a double 

pass through the NDF in the sample arm (73 dB) is then added back. Operating in the shot-

noise limit as characterized by Ref [9], the maximum SNR is thus found to be 113 ± 2 dB at 

a depth of 100 μm, rolling off to 90 dB at a depth of 350 μm. This roll-off is consistent with 

a spectral resolution of 67 μm, is associated with the limited f-number of the imaging lens in 

our spectrometer [13], and could be improved with redesign. To estimate the theoretical 

SNR, we use the same expression as in flying-spot SD-OCT [14]; however we use the 

average power per A-line and then add back the 3 dB difference between the average power 

and the maximum power at the center A-line. In this way, the theoretical SNR is found to be 

122 dB for an exposure time of 1 ms. Considering optical losses of 8 dB between the sample 

and detector planes, these theoretical and experimental sensitivities are in good agreement. 

To our knowledge, our experimental SNR of 113 dB is higher than that of the previously 

fastest parallel SD-OCT system (0.5 million lines/s, SNR of 78 dB) [5], and of the fastest 

flying-spot SD-OCT system (1 million lines/s, sensitivity of 71 dB) [3]. We also note that a 

parallel SS-OCT system was recently reported at 1 MHz line rate offering 90 dB [15].

As in flying-spot SD-OCT, the axial resolution (Δz) is determined by the spectral bandwidth 

and the center wavelength. Given the spectrum of our system, the theoretical axial resolution 

is 1.8 μm in air. Experimentally, Δz is measured as a function of depth from the full-width at 
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half maximum (FWHM) of a silver mirror (top left panel of Fig. 2). We obtain Δz = 2.0 

± 0.2 μm, which is in agreement with the theoretical resolution. It is interesting to note that 

in parallel SD-OCT, the in-plane lateral resolution (Δx) is dictated by the limiting aperture 

within the collection optics (L4-L7 and DG), while the out-of-plane lateral resolution (Δy) is 

given by the illumination line width on the sample, (after verifying that the beam width 

reflected from the sample is not clipped by the collection optics). This corresponds to Δy 
equal to the line focus width of 17 μm, while Δx is expected to be ≤ 17 μm. To measure Δx, 

we image a transparent silicone sample containing a sparse distribution of point-like 

scatterers comprised of TiO2 powder (mean diameter <5 μm, Part No. 224227, Sigma 

Aldrich), as shown in Fig. 2. Twenty intense, point-like scatterers were selected at various 

depths, for which the FWHM of the transverse and axial profiles were determined. By 

averaging the results, we find Δx = 14 ± 3 μm, and Δz = 1.8 ± 0.4 μm, both of which are 

consistent with theory.

The advantages of the combination high-speed and high-sensitivity of SC-based parallel 

OCT is demonstrated by imaging an hBE culture to capture the rapid motion of cilia. Mucus 

provides a first line of defense against infection by trapping inhaled pathogens in our 

airways. Beating cilia propel mucus to the esophagus which expels pathogens from the 

airway. Airway diseases such as COPD are characterized by a breakdown of mucociliary 

clearance resulting in chronic lung infections. It is therefore beneficial to be able to assess 

ciliary activity at the respiratory epithelium. Previously, the beating of a single cilium tip has 

been tracked using a μOCT system with 1 μm axial resolution to make a direct measure of 

CBF [2]. Although our parallel SD-OCT is not capable of spatially resolving individual 

cilia, it is fast enough to detect the rapid speckle fluctuations of beating cilia, which were 

previously described in Ref. [16]. Importantly, the quantitative measures of ciliary activity in 

[2,16] were limited to individual A-lines in time (M-mode), while the use of parallel OCT in 

this study enables assessment of ciliary dynamics over the entire B-mode frame.

In this study, well-differentiated cultures of hBE cells demonstrating mucociliary transport 

are prepared as previously described [17,18]. Briefly, primary human airway epithelial cells 

are isolated from excess tissue by the University of North Carolina (UNC) Tissue 

Procurement and Cell Culture Core under protocols approved by the UNC Institutional 

Review Board. Then, cells are plated on collagen-coated membranes (MilliCell, Millipore, 

PICM03050, 0.4 μm, 30-mm diameter) and cultured at the air/liquid interface (ALI) using 

established protocols [17,18]. The cells form a pseudostratified mucociliary epithelium with 

abundant cilia at an ALI. Note that, in these studies, the culture insert is modified to create a 

circular track allowing mucus to be transported in a continuous circular path [19](Fig. 3(a)). 

Cultures are examined by conventional wide-field microscopy and those that have fully 

developed cilia and show continuous mucus transport are imaged.

We first compare a static B-mode image (Fig. 3(b)) with the known structure of the hBE cell 

culture (Fig. 3(a)). From the static image, only the membrane, air, and media regions are 

clearly distinguishable; it is not possible to distinguish the hBE cells, the periciliary layer 

(PCL) or the mucus. However, regions of rapid ciliary activity become apparent in video 

generated from successive B-mode frames (see Visualization 1). To quantify the dynamic 

information, we analyzed the speckle fluctuation spectrum at each pixel. Example 
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fluctuation spectra are displayed for a single column of data from an M-mode image (Fig. 

3(c)). In this data, the PCL is attributed to a rapidly fluctuating layer with high frequency 

components (yellow arrow and bracket), the membrane is attributed to a highly scattering, 

stationary layer (purple bracket), and the hBE cells are in between (green bracket). These 

layers are also apparent in the full cross-sectional view in Visualization 1.

Respiratory epithelial cilia are known to beat in a time-harmonic way with a distinct ciliary 

beat frequency (CBF). However, the power spectrum of the resulting OCT signal amplitude 

is expected to contain frequency components much larger than CBF because 1) the ciliary 

motion is not generally sinusoidal, and 2) amplitude and phase modulation results in further 

nonlinearity in the OCT signal amplitude. It was previously shown that the median 

frequency (fm) of the speckle fluctuation spectrum, which is posited to be directly 

proportional to the CBF, is correlated with changes in ciliary activity under isoflurane 

treatment [16]. Here we measured fm from the fluctuation spectrum at each pixel in the B-

mode image by omitting the DC term, and subtracting white noise (which was estimated as 

the average over the 300 – 500 Hz band). Because fm in regions of low scattering can be 

large, a method for automatically segmenting the fm map was developed to select only 

features with significant fluctuation amplitude. This method involves thresholding based 

upon the area under the curve of the fluctuation spectrum (after omitting DC and subtracting 

white noise). Since this value is, on average, two orders of magnitude lower in regions 

outside the cell culture than inside the culture, by setting a threshold on this value, the fm 

map is automatically segmented.

Fig. 4(a) shows the fm map overlaid in rainbow hue on the same B-mode image from Fig. 

3(b) of the in vitro hBE cell culture. Importantly, from this fm map one can now distinguish 

between the PCL and the hBE cells, where fm is a semi-quantitative measure of ciliary 

activity. In fact, the PCL shows up distinctly as a thin layer on the upper border of the hBE 

cells. Note that this image does not show a mucus layer because the hBE culture has been 

washed to remove any thick, turbid mucus. Next, dynamic imaging of hBE cells with 

endogenous mucus is performed (see Visualization 2). Rather than a mono-layer of cells (as 

in Fig. 4(a)), the area of the culture imaged in Fig. 4(b) has a more complex structure. 

However, the fm analysis still produces images that selectively contrast ciliary activity and 

enables identification of the PCL, as indicated by the yellow arrow. For both cultures of Fig. 

4, the ciliary activity is characterized by fm of ~ 50–80 Hz. This is larger than the actual 

CBF but is known to change proportionally with changes in CBF [16]

In summary, a broadband SC source has been implemented in a parallel SD-OCT system. 

The main advantages of this source are its wide spectral bandwidth providing ultrahigh-

resolution images (axial resolution of 2 μm), and its high optical power which results in 

high-sensitivity images (maximum SNR of 113 dB). Importantly, the parallel SD-OCT 

geometry takes advantage of this increase of optical power by distributing it across a line 

focus. We have not observed any change in fm by potential photothermal heating after >2 

min of continuous exposure, however, further investigation into heating in the line-focus 

geometry is needed before use in vivo. The combination of this SC source with a high-speed 

camera in a parallel OCT configuration now enables kHz frame rates (with effective MHz 

line rates) with a competitive imaging performance compared with commercial SD-OCT 
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systems. This will enable new applications in studying dynamics of highly transient effects 

such as chemical reactions and biological motility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding. DoD (BAA-AFOSR-2013-0001; Lohmann, PI); NIH (R21HL111968; Oldenburg, PI, P30 DK065988; 
Boucher, PI, and T32 EB007507; Markey, PI), Cystic Fibrosis Foundation (RDP BOUCHE 15R0 and KESIME 
14XX0).

We thank Dr. Husain Imam from NKT Photonics and members of the Coherence Imaging Laboratory at UNC-CH, 
particularly, Dr. Rich Blackmon, Dr. Xiao Yu and Eric Boyers. The authors acknowledge the members of the UNC 
Tissue Procurement and Cell Culture core for providing the hBE cells.

Complete References

1. Huo T, Wang C, Zhang X, Chen T, Liao W, Zhang W, Ai S, Hsieh JC, Xue P. Ultrahigh-speed 
optical coherence tomography utilizing all-optical 40 MHz swept-source. J Biomed Opt. 2015; 
20:30503.

2. Liu L, Chu KK, Houser GH, Diephuis BJ, Li Y, Wilsterman EJ, Shastry S, Dierksen G, Birket SE, 
Mazur M, Byan-Parker S, Grizzle WE, Sorscher EJ, Rowe SM, Tearney GJ. Method for 
Quantitative Study of Airway Functional Microanatomy Using Micro-Optical Coherence 
Tomography. PLoS One. 2013; 8:1–8.

3. Kocaoglu OP, Turner TL, Liu Z, Miller DT. Adaptive optics optical coherence tomography at 1 
MHz. Biomed Opt Express. 2014; 5:4186–200. [PubMed: 25574431] 

4. Zuluaga AF, Richards-Kortum R. Spatially resolved spectral interferometry for determination of 
subsurface structure. Opt Lett. 1999; 24:519–521. [PubMed: 18071558] 

5. Grajciar B, Lehareinger Y, Fercher AF, Leitgeb RA. High sensitivity phase mapping with parallel 
Fourier domain optical coherence tomography at 512 000 A-scan/s. Opt Express. 2010; 18:21841–
21850. [PubMed: 20941084] 

6. Graf RN, Brown WJ, Wax A. Parallel frequency-domain optical coherence tomography scatter-
mode imaging of the hamster cheek pouch using a thermal light source. Opt Lett. 2008; 33:1285. 
[PubMed: 18552933] 

7. Zhang Y, Rha J, Jonnal RS, Miller DT. Adaptive optics parallel spectral domain optical coherence 
tomography for imaging the living retina. Opt Express. 2005; 13:4792. [PubMed: 19495398] 

8. Brown WJ, Kim S, Wax A. Noise characterization of supercontinuum sources for low-coherence 
interferometry applications. J Opt Soc Am A Opt Image Sci Vis. 2014; 31:2703–10. [PubMed: 
25606759] 

9. Yuan W, Mavadia-Shukla J, Xi J, Liang W, Yu X, Yu S, Li X. Optimal operational conditions for 
supercontinuum-based ultrahigh-resolution endoscopic OCT imaging. Opt Lett. 2016; 41:250. 
[PubMed: 26766686] 

10. Robles FE, Wilson C, Grant G, Wax A. Molecular imaging true-colour spectroscopic optical 
coherence tomography. Nat Photonics. 2011; 5:744–747. [PubMed: 23144652] 

11. Grajciar B, Pircher M, Fercher A, Leitgeb R. Parallel Fourier domain optical coherence 
tomography for in vivo measurement of the human eye. Opt Express. 2005; 13:1131–1137. 
[PubMed: 19494981] 

12. Marks DL, Oldenburg AL, Reynolds JJ, Boppart SA. Autofocus Algorithm for Dispersion 
Correction in Optical Coherence Tomography. Appl Opt. 2003; 42:3038. [PubMed: 12790455] 

13. Hu Z, Pan Y, Rollins AM. Analytical model of spectrometer-based two-beam spectral 
interferometry. Appl Opt. 2007; 46:8499–8505. [PubMed: 18071382] 

BARRICK et al. Page 6

Opt Lett. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio 
in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003; 
28:2067–2069. [PubMed: 14587817] 

15. Fechtig DJ, Schmoll T, Grajciar B, Drexler W, Leitgeb RA. Line-field parallel swept source 
interferometric imaging at up to 1 MHz. Opt Lett. 2014; 39:5333–5336. [PubMed: 26466264] 

16. Oldenburg AL, Chhetri RK, Hill DB, Button B. Monitoring airway mucus flow and ciliary activity 
with optical coherence tomography. Biomed Opt Express. 2012; 3:1978–92. [PubMed: 23024894] 

17. Fulcher ML, Gabriel S, Burns Ka, Yankaskas JR, Randell SH. Well-differentiated human airway 
epithelial cell cultures. Methods Mol Med. 2005; 107:183–206. [PubMed: 15492373] 

18. Fulcher ML, Randell SH. Human nasal and tracheo-bronchial respiratory epithelial cell culture. 
Methods Mol Biol. 2013; 945:109–121. [PubMed: 23097104] 

19. Sears PR, Yin WN, Ostrowski LE. Continuous mucociliary transport by primary human airway 
epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol. 2015; 309:L99–L108. [PubMed: 
25979076] 

BARRICK et al. Page 7

Opt Lett. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Illustration of the parallel SD-OCT system (Horizontal plane shown; see Ref. [11] for the 

vertical plane). M, mirror; NDF, neutral density filter; L, lens; BS, beam splitter. Panels (a) 

and (b) plot the spectrum and the transverse intensity distribution of the beam, respectively, 

both at the sensor plane with the sample arm blocked.
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Fig. 2. 
Experimental evaluation of the parallel SD-OCT system. Top panels plot the measured axial 

response and SNR of a mirror at different depths. Bottom panel shows the reconstructed B-

mode image of point-like scatterers. The insets show two point-like scatterers and their 

experimentally-determined lateral and axial resolutions.
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Fig. 3. 
Parallel SD-OCT of an in vitro ALI hBE culture. (a) Cartoon of an hBE culture cross-

section (top) and diagram of imaging geometry (bottom). (b) B-mode OCT image of a single 

frame (see Visualization 1 for video at 0.4× real time). Arrows indicate features color-

matched to those in panel (a). (c) M-mode image reconstructed from one A-line of the B-

mode stack and its corresponding Fourier spectrum. The depth of the M-mode and spectrum 

image spans from 103 μm to 247 μm.
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Fig. 4. 
Dynamic OCT imaging using themedian-frequency map (fm) for two hBE cultures (a) 

without mucus and (b) with mucus (Visualization 2 for video of B-mode OCT images at 

0.4× real time). Colored arrows indicate the different layers of the culture.
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