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Abstract

Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and 

mineralization, has been detected in mice of a number of laboratory inbred strains, most 

commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC 

susceptible and the DCC resistant strain C57BL/6J, 4 genetic loci harboring genes involved in 

DCC inheritance were identified and subsequently termed Dyscal loci 1 through 4. Here we report 

susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to 

natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with 

highest frequency and severity in the moribund mice. Using genotype and phenotype information 

of the 28 investigated strains we performed genome-wide association studies (GWAS) and 

identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) 

(P < 10−13) and Chr 4 at 122 Mb (P < 10−11) and 134 Mb (P < 10−7). At the Chr 15 locus Col22a1 
and Kcnk9 were identified. Both have been reported to be morphologically and functionally 

important in the heart muscle. The strongest Chr 4 associations were located approximate 6 Mb 

away from the Dyscal 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in 

close proximity to the Trim63 and Cap1 genes. In addition, a single nucleotide polymorphism 

association was found on chromosome 11. This study provides evidence for more than the 

previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights 

the power of GWAS in the mouse for dissecting complex genetic traits.
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Introduction

Dystrophic cardiac calcinosis (DCC), also known as epicardial and myocardial fibrosis and 

mineralization, has been reported for several inbred strains of mice, including C3H and DBA 

substrains, but not others, such as the most commonly used C57BL/6J mouse strain (Eaton 

et al. 1978; Firth and Ward 1988; Le Corre et al. 2012; Sundberg et al. 2014; Van Vleet and 

Ferrans 1987). This lesion has a variable presentation across many inbred strains in terms of 

severity, frequency, distribution, and ratio of fibrosis to mineralization. The most common 

presentation involves mineralization and fibrosis of the outermost layer of the right 

ventricular free wall of the heart, extending from the epicardium. The left ventricular free 

wall may also be involved but usually less severely. Focal lesions of various sizes may or 

may not occur throughout the myocardium. Crosses between C3H/HeJ and C57BL/6J mice 

identified 4 quantitative trait loci (QTL), designated as Dystrophic cardiac calcinosis 1 

through 4 (Dyscalc1-4) (Ivandic et al. 2001). Similar studies were performed with DBA/2J 

and C57BL/6J crosses which identified similar genetic loci (Brunnert et al. 1999).

Mapping to mouse chromosome (Chr) 7 (Ivandic et al. 1996), Dyscalc1 was associated with 

the ATP-binding cassette, sub-family C (CFTR/MRP), member 6 (Abcc6) gene (Aherrahrou 

et al. 2008; Meng et al. 2007). Mutations in this gene in humans and targeted genetic lesions 

in laboratory mice produce pseudoxanthoma elasticum (PXE), a multi-system disease 

manifesting with mineralization in the skin and vascular connective tissues (Li et al. 2016; 

Uitto et al. 2010). This observation in C3H substrains was extended to include the KK/HlJ 

and 129S1/SvImJ inbred strains in mouse aging studies, strains that have the same Abcc6 
allelic mutation (Berndt et al. 2013). Severe lesions in the KK/HlJ strain, closely resembling 

those seen in Abcc6tm1Jfk and Abcc6tm1Aabb genetically engineered null mice (Gorgels et al. 

2005; Klement et al. 2005), suggest that KK/HlJ mice may be an alternative spontaneous 

mouse model for studying PXE (Li et al. 2012). By contrast, another inbred mouse strain, 

129S1/SvImJ, carries the same Abcc6 allelic polymorphism but does not exhibit most of the 

PXE-like lesions seen in KK/HlJ (Berndt et al. 2013), which raises the question of the 

percent of penetrance of the associated polymorphisms. Finally, additional modifier genes 

may be responsible for these phenotypic differences between strains.

As DCC has been considered a characteristic lesion for PXE in C3H and DBA substrains 

(strains with the same allelic mutations in their Abcc6 gene) (Le Corre et al. 2012), 

examining heart lesions across 28 inbred strains provides an alternative approach to 

identification of modifier genes, such as those included within the Dyscalc2-4 QTLs. 

Furthermore, while QTLs provide a genetic location in which to search for modifier genes, 

large scale, targeted mutant studies (knockout mice), in which the mutant mice have been 

carefully phenotyped histologically, provide additional candidates, especially when the 

mutant mice show features of mineralization similar to various degrees to that seen in the 

Abcc6 null mice (phenotypic mimics). Such genes in mice include: family with sequence 
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similarity 20, member A and C (Fam20a and Fam20c) (Vogel et al. 2012), extracellular 

calcium-sensing receptor (Casr) (Hough et al. 2004), ectonucleotide pyrophosphatase/

phosphodiesterase1 (Enpp1) (Li et al. 2014a; Li et al. 2013; Li et al. 2014b), klotho (Kl) (Hu 

et al. 2011), tripartite motif-containing 24 (Trim24; formerly transcription 1 alpha, Tif1a) 

(Ignat et al. 2008), and others (Kornak 2011; Li and Uitto 2013). These may be primary 

genes responsible for the phenotype or they may be integrated into one or more molecular 

pathways. Finally, single nucleotide polymorphisms (SNP) analyses, combined with 

literature review, can be an effective way to identify and begin to validate candidate genes.

While there is currently no single genetic approach to identify all the genes that induce, 

regulate progression, and ultimately cause lesions in various diseases, each method provides 

pieces of this complicated puzzle. Routine QTL mapping of F2 progeny for all traits of a 

disease generally results in large genetic intervals but identification of specific genes is often 

not successful, as was shown for various models of inflammatory bowel disease (Beckwith 

et al. 2005; Birkenmeier et al. 1995; Bristol et al. 2000; Farmer et al. 2001; Mahler et al. 

1998; Mahler et al. 1999). However, combining QTL mapping with analysis of sub-congenic 

mouse lines for lymphatic changes in inflammatory bowel disease resulted in the 

identification and validation of the specific genes responsible for that trait (Jurisic et al. 

2010). An alternative approach to those described above is to use the genetic and phenotypic 

diversity among a large number of inbred strains in genome-wide association studies 

(GWAS). These unbiased population studies have been useful to identify genome variations 

responsible for airway hyper-responsiveness and pulmonary adenomas (Berndt et al. 2011a; 

Berndt et al. 2011b; Leme et al. 2010).

Here we performed population analysis for cardiac fibrosis in aged mice of 28 strains and 

identified novel candidate genes using a plethora of bioinformatics technologies, including 

GWAS. Genes identified are involved in initiation of disease to its ultimate outcome and 

severity indicating that these combined approaches can refine the molecular pathogenesis of 

cardiac fibrosis and serve as a template to similar investigations of other diseases.

Materials and methods

Mice

Aging study—Mice were obtained from a large-scale aging study performed at the 

Jackson Aging Center that has been described in detail elsewhere (Sundberg et al. 2011). 

The following 31 strains were examined in this present study: 129S1/SvImJ, A/J, AKR/J, 

BALB/cByJ, BTBRT+tf/J, BUB/BnJ, C3H/HeJ, C57BL/10J, C57BL/6J, C57BLKS/J, 

C57BR/cdJ, C57L/J, CAST/EiJ, CBA/J, DBA/2J, FVB/NJ, KK/HIJ, LP/J, MRL/MpJ, 

NOD.B10Sn-H2b/J (a congenic strain with the NOD genetic background but with a 

histocompatibility locus from a diabetes-resistant strain), NON/ShiLtJ, NZO/HlLtJ, NZW/

LacJ, P/J, PL/J, PWD/PhJ, RIIIS/J, SJL/J, SM/J, SWR/J, and WSB/J. Three of the strains 

were not evaluated because of lymphoma development (AKR/J), lack of enough mice for 

analysis (CAST/EiJ), and self-mutilations resulting in euthanasia for humane purposes 

(SJL/J) (Sundberg et al. 2011). Therefore, analyses were performed in 28 strains of mice. 

Mice from several cross-sectional cohorts (at 12 and 20 months) and a longitudinal (close to 

natural death) cohort were evaluated for heart lesions. Fifteen females and 15 males for each 
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strain entered the cross-sectional cohorts and 65 females and 35 males entered the 

longitudinal study group. Cross-sectional and longitudinal groups were set-up in parallel. 

Those mice that survived were euthanized by CO2 asphyxiation, weighed, and underwent 

complete necropsies at the defined ages (Silva and Sundberg 2012).

Retired breeders—Ten female and 10 male mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME) as retired breeders (i.e., 5–10 months of age depending on the 

rotation time for the colony)(Flurky et al. 2009) from the following 16 inbred strains: A/J, 

BALB/cByJ, BALB/cJ, C3H/HeJ, C57BL/6J, C57BL/10J, C57BR/cdJ, C57L/J, DBA/2J, 

FVB/NJ, KK/HlJ, LP/J, PWD/PhJ, SWR/J, MRL/MpJ-Faslpr/J, and SJL/J. Mice were 

euthanized by CO2 asphyxiation, weighed, and the hearts were removed and processed for 

histologic evaluation.

All protocols were reviewed and approved by The Jackson Laboratory Animal Care and Use 

Committee. Mouse handling and care were followed according to the Public Health Service 

animal welfare policies using IACUC approved methods.

Tissue fixation and preparation

Hearts in the aging study and retired breeder study were removed and fixed in Fekete’s acid-

alcohol-formalin solution for 12 hours then transferred to 70% ethanol, trimmed (in the four 

chamber longitudinal orientation), and processed routinely for histology. One and sometimes 

two serial sections were stained with hematoxylin and eosin (H&E). For the retired breeder 

study at least two hearts were sectioned in the four chamber longitudinal orientation 

(bisected, two sections per heart, two sets per slide) whereas the remainder were sectioned 

transversely at the equator, base, and apex (3 sections per heart, two sets per slide) (Chase et 

al. 2009). A third slide was stained with Masson’s Trichrome only for hearts obtained from 

retired breeders.

Quantification of lesion severity

Histology slides were reviewed by an experienced, board-certified veterinary pathologist 

(John P. Sundberg). Histological diagnosis of cardiac fibrosis was evaluated per strain and 

gender. The frequency and degree of epicardial mineralization and fibrosis, ventricular free 

wall atrophy, and ventricular fibrosis of the left and right heart were evaluated separately. 

The inter-ventricular septum and myocardium was also reviewed for lesions. The severity is 

based on a subjective measure of the size of the lesion (scores: 0 - normal; 1 - mild; 2 - 

moderate; 3 - severe; 4 - extreme). Selected cases were photographed to document the range 

in severity and are available on Pathbase (http://www.pathbase.net/). Cardiac fibrosis was 

also defined by frequency (percentage of mice diagnosed with cardiac fibrosis per total 

number of mice per strain and gender). Data were recorded and coded using the Mouse 

Disease Information System (MoDis) (Sundberg et al. 2008).

Histology

Diagnosis of heart lesions, while evident at the time of necropsy, was confirmed by 

histopathology and graded based on extent and distribution. A number of the commonly 

used inbred strains, notably DBA/2J, C3H/HeJ, BALB/cJ, and BALB/cByJ, had various 
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combinations of epicardial mineralization and fibrosis (primarily but not exclusively on the 

right ventricular free wall), which can also be scattered through the myocardium, a disease 

commonly referred to as DCC (Frith and Ward 1988). Whether the mineralization was the 

initiating event or a sequela to the fibrosis was not determined. However, ectopic 

mineralization, which can involve multiple other organs (Berndt et al. 2012), appears to be 

controlled by a number of other genes that complicate genetic interpretation of the 

mechanisms. As such, these processes were separated and fibrosis, independent of 

mineralization, was the focus of this investigation.

Genome-wide association mapping and variant identification

Phenotype-genotype association analysis was performed using the expedited efficient 

mixed-model association (EMMAX) algorithm (Kang et al. 2010). Frequencies and mean 

severities of the fibrosis phenotype in 28 strains of mice were used as input phenotype data. 

Four million SNPs (available at http://mouse.cs.ucla.edu/mousehapmap/full.html) were used 

as input genotype data. Each SNP was evaluated individually and recorded as −log(P-values) 

as the strength of the genotype-phenotype associations and graphically displayed in 

Manhattan plots. SNP effects were determined using the Variant Effect Predictor tool by 

Ensembl (http://useast.ensembl.org/info/docs/tools/vep/index.html). Coding region SNPs 

known to change the amino acid sequence (i.e., non-synonymous SNPs) were tested for 

functional importance using the PolyPhen-2 algorithm (http://genetics.bwh.harvard.edu/

pph2/) (Adzhubei et al. 2010).

Statistical analysis

Frequencies and strain means ± SEM of phenotype severities were calculated separately for 

each age group by genders using JMP8 statistical analysis software (https://www.jmp.com/

software/jmp8/). Fisher’s exact test was used to determine the difference in frequencies and 

the two-sided Kruskal-Wallis nonparametric test was used to determine the differences in 

severity between males and females for each strain. The Kruskal-Wallis test is comparable to 

one-way analysis of variance, but without the parametric assumptions. All statistical 

computations were completed using SPSS version 15.0 software (SPSS Inc., Chicago, IL).

Results and discussion

Cardiac fibrosis datasets - aging survey and retired breeders

We had two independent datasets for age-related cardiac fibrosis phenotype in different 

strains of mice. The first was an aging study which was divided into a longitudinal or life 

span investigation (65 females and 35 males each strain) and a cross-sectional study (15 

females and 15 males each strain), to evaluate onset and diversity of diseases at 12 and 20 

months of age on 28 inbred strains of mice. Mice in the longitudinal study were allowed to 

become moribund at which point they were euthanized by CO2 asphyxiation. All 

investigated strains were part of a large-scale aging study by the Jackson Aging Center 

which has been described in detail elsewhere (Sundberg et al. 2011). The second study was 

performed on mice of 16 inbred strains as retired breeders from the production facilities of 

The Jackson Laboratory. They are the retired mice at 5–10 months of age (10 females and 10 

males each strain) depending on the rotation time for the colony. Cardiac tissues were 

Li et al. Page 5

Mamm Genome. Author manuscript; available in PMC 2017 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mouse.cs.ucla.edu/mousehapmap/full.html
http://useast.ensembl.org/info/docs/tools/vep/index.html
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
https://www.jmp.com/software/jmp8/
https://www.jmp.com/software/jmp8/


collected and prepared from all the mice described above for histopathology for cardiac 

lesions. For detailed description of these two datasets, see Materials and methods section 

under “Mice”.

Histology

Cardiac fibrosis varied in severity and distribution between individuals and between strains 

with increasing fibrosis frequency and severity in older mice (Fig. 1). In general, cardiac 

fibrosis was diagnosed in the left and right ventricular wall, inter-ventricular septum, and 

myocardium to various degrees in inbred mouse strains (Frith and Ward 1988). These 

lesions are described in detail in mouse pathology textbooks (Frith and Ward 1988; Mohr et 

al. 1996) and many additional images from this study can be found online (http://

www.pathbase.net/) (Schofield et al. 2010).

The C57BL/10J strain has rarely been associated with heart lesions in the literature (Neu et 

al. 1987), yet these mice had severe fibrosis of the right ventricular free wall usually, but not 

exclusively, without mineralization associated with severe atrophy of the cardiac muscle. 

Masson’s Trichrome staining illustrated increased collagen deposition in hearts from 

C57BL/10J at 10 months of age compared to C57BL/6J at 8 months of age, which had little 

except around vessels as would be expected (Fig. 2). Retrospective review of our 

computerized medical records of disease surveillance in all strains since 1987 revealed that 

these heart changes, particularly the severe right ventricular fibrosis and atrophy, have been a 

feature of C57BL/10J since the time these records were collected.

Frequency and severity of cardiac fibrosis

Among the 28 mouse strains of the aging study, 8 strains (A/J, BALB/cByJ, C3H/HeJ, 

C57BL/10J, DBA/2J, KK/HlJ, NZO/H1LtJ and PL/J) developed cardiac fibrosis at different 

stages of the entire aging process (Table S1). While five strains (A/J, BALB/cByJ, C57BL/

10J, DBA/2J and KK/HlJ) were affected in the 12 month group, 7 strains were affected in 

the 20 month group and in moribund mice. Most frequently, lesions were observed in 

moribund mice that were close to natural death of all strains (Table 1). Similarly, the severity 

of the lesions was strongest in the moribund mice of all strains (Table 2).

Mice from the 16 retired breeder strains were obtained at 5 to 10 months of age. Mice of 7 

strains (A/J, BALB/cByJ, BALB/cJ, C3H/HeJ, C57BL/10J, DBA/2J and KK/HlJ) developed 

cardiac fibrosis (Table S2). C57BL/10J and DBA/2J mice had the highest severity scores 

among 16 retired breeder strains (Table 3). BALB/cByJ had a higher frequency of heart 

lesions than its closely related substrain, BALB/cJ.

Genome-wide association mapping for cardiac fibrosis frequency and severity

GWAS has been proven successful to identify causative genomic loci for a number of 

disease phenotypes. GWAS analysis excels traditional QTL studies because it utilizes denser 

SNP panels for identification of smaller genomic regions, which leads to fewer candidate 

genes for subsequent experimental verification. As part of the large-scale ageing study at the 

Jackson Ageing Center, 28 inbred mouse strains at 12 and 20 months of age develop various 

degrees of fibrosis in the heart, with respect to both frequency and severity. The large scale 
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phenotype dataset and various degrees of phenotype allow us to identify genes associated 

with cardiac fibrosis frequency and severity by GWAS analysis.

Phenotype-genotype association analysis was performed using the expedited efficient 

mixed-model association (EMMAX) algorithm (Kang et al. 2010). Frequencies (for affected 

strains: Table 1) and mean severities (for affected strains: Table 2) of the fibrosis phenotype 

in 28 strains of mice were used as input phenotype data. Phenotypes from males and females 

were combined to increase the power for the genetic analysis. Four million SNPs were used 

as input genotype data.

For the 12 month age group, strong associations with frequency (P = 1.1 × 10−11) and 

severity (P = 1.5 × 10−10) of cardiac fibrosis were found on Chr 4 at 122,602,996 base pairs 

(bp) (Fig. 3A, frequency; Fig. 3B, severity). There were also strong associations on Chr 11 

at 3,614,390 bp (frequency: P = 8.6 × 10−9; severity: P = 8.6 × 10−11) and 46,911,030 bp 

(frequency: P = 1.2 × 10−8; severity: P = 1.3 × 10−10). While the region on Chr 4 was 

supported by 4 adjacent SNP associations, each locus on Chr 11 was a single SNP 

association.

For the 20 month age group, left ventricular fibrosis was associated most significantly with 

frequency (P = 9.9 × 10−11) and severity (P = 5.5 × 10−13) on Chr 15 at 72,274,700 bp (Fig. 

3C, frequency; Fig. 3D, severity). The Chrs 4 and 11 associations shown for the 12 month 

age group could also be detected in this 20 month age group; however, they were less 

significant. For frequency, the Chr 4 association had a P-value of 1.2 × 10−5 and the Chr 11 

association at 3,614,390 bp showed a P-value of 5.5 × 10−6. For severity, the strongest Chr 4 

association was no longer located at about 122.6 million base pairs (Mb) but at 134.4 Mb 

with as many as 12 SNPs in close proximity (P = 8.6 × 10−7). The Chr 11 associations at 

about 3.6 and 46.9 Mb showed P-values of 9.2 × 10−6 and 9.8 × 10−6, respectively.

Identification of candidate genes

GWAS identified several new genome locations that potentially point to novel biomarkers 

determining the phenotypic variations in cardiac fibrosis. The phenotype-genotype 

association on Chr 4 at about 122.6 Mb was located about 5 Mb proximal of the Dyscalc 2 

QTL peak at 127.8 Mb. Cyclase-associated protein 1 (Cap1) is located 250 Kb downstream 

of this SNP association. Interestingly, a recent investigation showed that the lack of Cap1’s 

isoform Cap2 leads to dilated cardiomyopathy (Peche et al. 2013). The Chr 4 association at 

about 134.4 Mb was located within close proximity of the Dyscalc 2 QTL peak. The SNP 

association was found to be located within the boundaries of the gene exostoses (multiple)-

like 1 (Extl1). Some rare variants of multiple exostoses are associated with cardiomyopathy 

in humans (Atiq and Aziz 1997; Hamouda et al. 2011).

Two other genes, solute carrier family 30 (zinc transporter), member 2 (Slc30a2) and 

tripartite motif-containing 63 (Trim63), are located approximately at 20 kb and 45 kb, 

respectively, upstream of the SNP associations and the gene platelet-activating factor 

acetylhydrolase 2 (Pafah2) is located about 21 kb downstream. Interestingly, Trim63 has 

been associated with several human heart conditions, such as hypertrophic cardiomyopathy, 
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chronic heart failure and aging metabolism, and cardiac ischemia/reperfusion injury (Chen 

et al. 2012).

The phenotype-genotype association on Chr 15 at about 72.3 Mb is located about 400 kb 

upstream of collagen, type XXII, alpha 1 (Col22a1) and about 240 kb downstream of 

potassium channel, subfamily K, member 9 (Kcnk9, formerly Task3). Col22a1 is a part of 

tissue junctions and commonly found in skeletal and heart muscles (Koch et al. 2004). In 

addition, this was a noted candidate gene for isoproterenol induced cardiac fibrosis in a 

young mouse model (Rau et al. 2015). Immununofluorescence screening revealed that 

COL22A1 protein was expressed at the chordae tendineae insertion sites into the muscle of 

the right ventricle in adult C57BL/6J mice (data not shown), consistent with the tissue 

junction expression of this protein in postnatal mouse tissues, as previously reported (Koch 

et al. 2004). Kcnk9 is differentially expressed in developing hearts where it contributes to 

the potassium conductance that is responsible for cardiac excitability (Kim et al. 2000).

In a massive histopathological screening of all organ systems in 28 inbred strains of mice of 

both genders (Sundberg et al. 2011), dystrophic cardiac calcinosis was diagnosed in 8 

strains. Within the affected mice, a subgroup had areas of fibrosis without mineralization. 

Lesions varied in severity and location within the hearts between the strains. Genome-wide 

association mapping of cardiac fibrosis determined that none of the QTLs previously 

identified for DCC, in which mineralization is a major feature, corresponded to any 

identified loci. The same was true for fibro-osseous lesions, another pathological process 

found in strains that exhibit mineralization and fibrotic lesions in bones and other organs 

(e.g., skin) including C3H/HeJ (Berndt et al. 2016).

While it is relatively easy to see clinical correlations between seemingly unrelated diseases 

with small numbers of mice undergoing experimental manipulation, it is critically important 

to understand strain-specific background lesions before drawing conclusions. The 

mineralization phenomena among inbred strains are very complicated. Some of the 

phenotypic observations are related to each other due to shared genetic predispositions. 

However, the underlying genetic basis can be modified by genes involved in other diseases 

which add to the complexity of the predisposition. Such appears to be the case for Abcc6 
and ectopic mineralization (Berndt et al. 2013). There have been correlations to a specific 

SNP in the Abcc6 gene in C3H/HeJ, DBA/2J, and KK/HlJ mice that get ectopic 

mineralization and DCC and in 129S1/SvImJ, which gets ectopic mineralization but not the 

heart lesions (Berndt et al. 2013). However, BALB/cJ, BALB/cByJ, C57BL/10J and A/J also 

develop these heart lesions, but do not exhibit this genomic variation in Abcc6. Therefore, 

these results suggest that Abcc6 is rather a modifier gene for the complex PXE phenotype 

and not the primary cause of heart lesions. Evaluation of the Sanger mouse SNP database 

(http://www.sanger.ac.uk/cgi-bin/modelorgs/mousegenomes/snps.pl) reveals that A/J and 

BALB/cByJ have three non-synonymous coding SNPs in Abcc6, which are not found in the 

other strains (positions at 53,232,273 bp, 53,232,660 bp, and 53,274,055 bp). These SNPs 

presumably could have an effect on the phenotype thereby suggesting that these mice are 

additional models for PXE. The organ specificity observed for the mineralization/fibrosis 

syndrome may potentially represent individual diseases altogether due to the complex 

genetic background of each trait as shown here.
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In a mouse cardiac ischemia-reperfusion model, investigators found that genetically 

engineered C57BL/6 mice with a null mutation in Abcc6 had larger infarcts than wild type 

controls. Conversely, transgenic mice expressing wildtype Abcc6 in C3H/HeJ, which are 

naturally hypomorphic for Abcc6, had reduced infarct size compared to C3H/HeJ mice 

without the transgene suggesting that ABCC6 was a novel modulator of cardiac myocyte 

survival after injury (Mungrue et al. 2011). A study using 23 inbred mouse strains using 

beta-adrenergic cardiac blockade or stimulation found a great deal of variability between the 

strains (Berthonneche et al. 2009). Another study utilized over 100 inbred and recombinant 

inbred strains, including 25 of the 28 studied here. Female mice, 8–10 weeks of age were 

treated with isoproterenol (ISO) for 21 days (total age 11–13 weeks) and hearts evaluated for 

cardiac fibrosis and mineralization. Mice in this induced model had GWAS performed and 

while they found over 24 candidate loci, each containing an average of 14 genes, they 

focused on Abcc6. Using targeted Abcc6 mutant and KK/HlJ mice they concluded that “the 

age-associated calcification phenotype observed in Abcc6 KO is distinct from the ISO-

induced cardiac fibrosis phenotype” (Rau et al. 2015). These findings confirm that Abcc6 is 

involved with some aspects of myocardial health and response to injury and aging, but it is 

one of many genes and not likely, in and of itself, to be the primary cause of DCC. They also 

note Col22a1 as a highlighted gene, one of 6 in the ISO treated fibrosis intervals on Chr 15 

(Rau et al. 2015). Col22a1 was a major candidate gene in the study reported here for age 

associated cardiac fibrosis suggesting this protein may play an important role in myocardial 

fibrosis induced by a variety of different types of insults to the heart.

Non-synonymous SNPs in the Abcc6 gene are considered to account for the Dyscalc1 QTL 

(Aherrahrou et al. 2008; Meng et al. 2007). Although 5 Mb distal, Dyscalc2 may involve 

identified variants in Cap1, Extl1, Slc20a2, Pafah2, but especially Trim63 as this gene is 

associated with some types of heart disease (Chen et al. 2012). No candidate genes were 

identified in this GWAS to account for the Dyscalc3 or 4 QTLs. However, Col22a1 and 

Kcnk9 on Chr 15 appear to be important and demonstrate that when many strains are 

evaluated it is possible to find new genes (or at least genomic regions) while losing 

significance for others presumably because of dilution of the signal through the broader 

genomic variety when performing strain surveys compared to two strain QTL crosses. This 

and many other complex genetic traits have to be evaluated by many approaches, such as 

crosses between inbred strains in the earliest studies (Brunnert et al. 1999; Ivandic et al. 

2001), GWAS analyses for as many strains as possible (as in the current studies), to large 

scale targeted mutagenesis of genes for which little is currently known, as was done by the 

Lexicon phenotyping program (Hough et al. 2004; Schofield et al. 2012; Vogel et al. 2012) 

or as is currently being done in the KOMP2 project (Brown et al. 2007; DiTommaso et al. 

2015). There is no single approach to address all aspects of a complex genetic disease. 

Furthermore, comparing and contrasting similar diseases between species, as with humans 

and mice in this case, combined with new discoveries on the genetics and pathophysiology 

will continue to unravel the complexities of many common diseases that affect all 

mammalian species.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abcc6 ATP-binding cassette, sub-family C(CRTR/MRP), member 

6 gene

Cap1 cyclase-associated protein 1 gene

Cap2 CAP, adenylate cyclase-associated protein 2 (yeast)

Col22a1 collagen, type XXII, alpha1

DCC dystrophic cardiac calcinosis

Dyscalc1-4 dystrophic cardiac calcinosis 1–4 quantitative trait loci

EMMAX expedited efficient mixed-model association

Extl1 exostoses (multiple)-like 1 gene

Fam20a/Fam20c family with sequence similarity 20 member A and C genes

GWAS genome-wide association studies

ISO isoproterenol

Kcnk9 potassium channel, sub-family K, member 9 gene

Kl klotho gene

MoDis Mouse Disease Information System (MoDis)

Pafah2 platelet-activating factor acetylhydrolase 2 gene

PXE pseudoxanthoma elasticum

QTL quantitative trait locus

Slc30a2 solute carrier family 30 (zinc transporter), member 2 gene

Trim24 tripartite motif-containing 24 (formerly Tif1a)

Trim63 tripartite motif-containing 63
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Figure 1. Heart lesions among inbred strains of mice
Focal myocardial fibrosis and mineralization (A–D, C3H/HeJ), right ventricular wall 

epicardial mineralization and fibrosis (E–H, BALB/cByJ; I–L, KK/HlJ), and right and left 

ventricular wall atrophy and fibrosis (M–P, C57BL/10J) represent the variety of changes 

observed in the heart. Arrows indicate areas of mineralization. The top two rows have hearts 

are stained with hematoxylin and eosin (H&E). The second row is a series of enlargements 

of the boxed areas in image above it. The bottom two rows are stained with Masson’s 

Trichrome to label collagen deposition (blue stained areas).
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Figure 2. Comparison of hearts in female C57BL6/J and C57BL/10J mice 8 and 10 months of 
age, respectively
The top panel (C57BL/6J; A, H&E; B, Masson’s Trichrome) is a normal heart with a small 

focus of mineralization in the left ventricle in the Masson’s stained section. Boxed areas are 

enlarged as indicated with arrows for detail. The lower panel (C57BL/10J; C, H&E; D, 

Masson’s Trichrome) reveals severe cardiac fibrosis primarily in the right ventricular wall 

but also throughout the left ventricle. Trichrome staining shows increased collagen 

deposition (blue stained areas). The right ventricular wall is completely replaced by fibrous 

connective tissue in multiple areas.
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Figure 3. Genome-wide association scan for frequency (A) and severity (B) of cardiac fibrosis in 
12 month old mice, and for frequency (C) and severity (D) of cardiac fibrosis in 20 month old 
mice
The SNPs with the highest Lod scores in chromosomes 4, 11 and 15 are indicated by 

circling.
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Table 3

Frequency and severity of cardiac fibrosis phenotype in 7 affected retired breeder strains of mice

Affected strains Frequency Severity

F M F M

A/J 6/10 (60.0) 2/10 (20.0) 1.20±0.36 0.20±0.13*

BALB/cByJ 8/10 (80.0) 8/10 (80.0) 1.40±0.31 1.80±0.39

BALB/cJ 5/10 (50.0) 3/10 (30.0) 0.50±0.17 0.30±0.15

C3H/HeJ 10/10 (100.0) 6/10 (60.0) 1.50±0.22 1.20±0.39

C57BL/10J 10/10 (100.0) 10/10 (100.0) 2.90±0.18 2.60±0.22

DBA/2J 10/10 (100.0) 8/10 (80.0) 3.00±0.33 2.00±0.39

KK/HlJ 10/10 (100.0) 8/10 (80.0) 2.50±0.34 1.40±0.34*

The frequency of cardiac fibrosis was expressed as the number of affected mice by the total number of mice and percent of affected animals. The 
scoring of cardiac fibrosis was based on a subjective measure of the size of the lesion by an experienced, board-certified veterinary pathologist 
(JPS). Severity of scores were expressed as mean score ± SEM. 0, normal; 1, mild; 2, moderate; 3, severe; 4, extreme. F, female; M, male.

*
P < 0.05 vs. females for the same strain.
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