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Abstract

Zika virus (ZIKV) was first described in 1947, and became a health emergency problem in 2016 

when its association with fetal microcephaly cases was confirmed by Centers for Disease Control 

and Prevention (CDC) in the United States. To date, ZIKV infection has been documented in 66 

countries. ZIKV is recognized as a neurotropic virus and numerous diseases manifested in 

multiple neurological disorders have been described, mainly in countries that have been exposed to 

ZIKV after the 2007 outbreak in the Federated States of Micronesia. The most dramatic 

consequence of ZIKV infection documented is the abrupt increase in fetal microcephaly cases in 

Brazil. Here, we present an update of the published research progress in the past few months.
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INTRODUCTION

Although Zika virus (ZIKV) was described 70 years ago, it only became a public health 

problem at the end of 2015 when an outbreak in Brazil was associated with a significant 

increase of microcephaly cases in fetus and newborns. Since then, scientists all over the 

world are rushing to study the pathogenesis of ZIKV infection and understand the 

differences of infection between the first described strain African MR766, which only 

caused some mild symptoms, and the one identified in Asia at the Yap Island of the 

Federated States of Micronesia in 2007 and later in French Polynesia in 2013, which 

resembles the one in Brazil. New scientific information about ZIKV is available almost 

daily. Although a few great reviews have been recently published, important information has 

been described since then. Here we present an update review with the latest available 

information. Detailed reviews may be found elsewhere [Lazear and Diamond, 2016; Musso 

and Gubler, 2016; Petersen et al., 2016; Weaver et al., 2016].
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ZIKV INFECTION IN DIFFERENT GEOGRAPHIC AREAS

ZIKV was first isolated from a monkey in 1947 and then from an Aedes africanus in 1948 at 

the Zika Forest in Uganda [Dick, 1952, 1953; Dick et al., 1952]. The virus was subsequently 

detected in humans in other areas of Africa, and South and Southeast Asia in the following 

years [Smithburn, 1952, 1954; Macnamara, 1954; Smithburn et al., 1954a,b]. From 2007 to 

2015, the outbreaks of ZIKV infection have been associated with different consequences in 

each region. In an outbreak in 2007, most of the population of Yap Island were infected by 

ZIKV but only mild symptoms including fever, headache, and skin rash previously described 

[Macnamara, 1954] were observed [Duffy et al., 2009]. When the virus reached French 

Polynesia in 2013 [Cao-Lormeau et al., 2014], there was an increase in cases of Guillain–

Barré syndrome, an auto-immune disease that might cause temporary paralysis [Willison et 

al., 2016]. ZIKV was first detected in Brazil in early 2015. By the end of the year, a dramatic 

increase in cases of microcephaly in fetus and newborns were reported [Campos et al., 2015; 

Cardoso et al., 2015; Schuler-Faccini et al., 2016]. In February 2016, the World Health 

Organization (WHO) declared ZIKV infection as a Public Health Emergency of 

International Concern [Heymann et al., 2016], and in April 2016, the association between 

ZIKV infection and microcephaly was confirmed by the United States Centers for Disease 

Control and Prevention (CDC) [Rasmussen et al., 2016].

Neurological Diseases Associated With ZIKV Infection: Microcephaly

ZIKV has mainly been associated with a number of neurological disorders including 

Guillain–Barré syndrome [Oehler et al., 2014; Araujo et al., 2016; Cao-Lormeau et al., 

2016; Malkki, 2016; Roze et al., 2016; Watrin et al., 2016] and acute disseminated 

encephalomyelitis (ADEM) [Ferreira, 2016] in adults, and with a drastic increase of 

microcephaly cases in fetus and newborns [Broutet et al., 2016; Cauchemez et al., 2016; 

Schuler-Faccini et al., 2016]. Microcephaly is characterized by a decrease in the head 

circumference of the fetus or baby. In Brazil, the cut off for term newborns is set at 32 cm 

after December 2015 [Victora et al., 2016]. Before the ZIKV epidemic in Brazil, numerous 

well-known infectious agents including toxoplasmosis, Treponema pallidum, varicella-

zoster, parvovirus B19, rubella, cytomegalovirus (CMV), and herpes simplex virus (HSV) 

infections have been associated with cases of microcephaly [Neu et al., 2015]. ZIKV has 

now been suggested as a new cause for the outbreak of microcephaly cases in Brazil since 

October 2015 [Rasmussen et al., 2016]. The raw numbers for microcephaly that are indeed 

caused by ZIKV but not by aforementioned other etiologies are still controversial. Clinical 

re-evaluation of the early diagnosed cases and the molecular detection of ZIKV have 

expressively cut down the initial numbers of cases [Victora et al., 2016] though it remained 

possible that some of these cases were false negative. However, the number of cases 

confirmed as microcephaly between the end of 2015 and the beginning of 2016 remains at 

least five times higher than the number of annual cases reported before 2015 [Victora et al., 

2016].

ZIKV was specifically detected in the brain tissue of a fetus with microcephaly, whose 

mother was probably infected around gestational week 13th in Brazil [Mlakar et al., 2016]. 

The virus was also identified in the amniotic fluid collected at gestational week 28th in two 
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other patients, whose babies were diagnosed with microcephaly [Calvet et al., 2016a]. No 

correlation has been found between the gestational time of infection and the severity of the 

microcephaly [Brasil et al., 2016]. Besides Brazil, a few other countries have detected ZIKV 

in fetus/newborn with microcephaly or central nervous system anomalies [Driggers et al., 

2016; WHO, 2016]. ZIKV has also been associated with the death of a few patients but none 

was related to microcephaly [Arzuza-Ortega et al., 2016; Sarmiento-Ospina et al., 2016].

One of the first studies showing ZIKV infection of neurons and astrocytes in mice was 

published in 1971 [Bell et al., 1971]. ZIKV productive infection of human neural progenitor 

cells (hNPC) has recently been shown [Tang et al., 2016]. ZIKV-infected hNPC had reduced 

cellular proliferation as a result of activated caspase-3 and cell cycle arrest [Tang et al., 

2016]. In a separate study, it was also reported that ZIKV infection induced cell death in 

human neural stem cells (hNSC) derived from human induced pluripotent stem cells (hiPSC) 

[Garcez et al., 2016]. ZIKV-infected hNSCs generated abnormal neurospheres compared 

with the non-infected hNSCs; and that apoptotic nuclei were detected in the ZIKV-infected 

neurospheres [Garcez et al., 2016]. Additionally, hiPSC-derived brain organoids exposed to 

ZIKV had a 40% reduction in the growth area compared with non-exposed ones. These 

cytopathic effects were not observed with DENV-2 infection [Garcez et al., 2016].

In an elegant study, forebrain organoids from hiPSCs mimicking human cortical 

development were generated in 3D cell culture using a mini-bioreactor spinΩ [Qian et al., 

2016]. Following exposure to ZIKV, there was a decrease in the size of the organoid with a 

thinner ventricular zone-like layer. An increase in cell death, decrease of neural progenitor 

cells proliferation, and increase of the lumen size in the ventricular structures were also 

observed. These observed phenotypes resembled the characteristics of microcephaly [Qian 

et al., 2016]. A tropism of ZIKV for neural progenitor cells was also observed when 

different stages of hiPSCs mimicking first and second gestational trimesters were tested. 

There was an increase in the infected cells indicating productive infection and spread of the 

virus in the culture. Interestingly, no difference of phenotype between ZIKV strains from 

African or Asian lineages was observed [Qian et al., 2016]. It is unclear whether the Brazil 

strain would behave the same as the other lineages. This important model should be valuable 

for exploring ZIKV infection with close biological relevance, and useful for drug screening 

[Qian et al., 2016].

It remains unclear how ZIKV is able to cross the placenta barriers. In one study, it was 

shown that primary human trophoblast (PHT) cells from full-term placentas were resistant to 

infection of ZIKV when the African and Asian lineage were used. Since PHT cells 

constitutively release interferon (IFN)-III/IFNλ1, this might avoid ZIKV infection. 

Although the mechanism is still unknown, it has been suggested that ZIKV evasion of IFN-

III signaling and the placenta barrier bypass might depend on the gestational stage [Bayer et 

al., 2016]. On the other hand, IgM against ZIKV has been detected in 97% of the 

cerebrospinal fluid (CSF) samples, and in 90% of the serum from 31 evaluated newborns 

with microcephaly, indicating that the fetus/newborn might be infected in the central nervous 

system [Cordeiro et al., 2016].
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Structural Characteristics for ZIKV Lineages

Two ZIKV lineages have been described so far, African and Asian. The strains isolated from 

samples in Brazil between 2015 and 2016 resembled those of Asian strains, particularly the 

French Polynesia strain [Baronti et al., 2014; Brasil et al., 2016; Faria et al., 2016; 

Giovanetti et al., 2016]. ZIKV is an arbovirus of the Flaviviridae family, Flavivirus genus, 

which also includes Dengue virus (DENV-1 to DENV-4), West Nile virus (WNV), Japanese 

encephalitis virus (JEV), and Yellow fever virus (YFV) [Musso and Gubler, 2016].

The ZIKV genome consists of one complete open reading frame (ORF) of less than 11 kb, 

and, as other flaviviruses, encodes three structural proteins: capsid, envelope glycoprotein 

(E) and membrane (M) or pre-membrane (prM), and seven non-structures proteins: NS1, 

NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [Lindenbach and Rice, 2003]. Its recently 

described 3.8 Å structure has revealed an important difference from those of other 

flaviviruses in the amino acids around Asn154 in the E protein [Sirohi et al., 2016]. Within 

this glycoprotein, ZIKV has a glycosylation site at Asn154 [Sirohi et al., 2016] while DENV 

has two glycosylation sites at Asn67 and Asn153, which influence viral assembly and exit, 

and infectivity, respectively [Johnson et al., 1994; Mondotte et al., 2007], and WNV has an 

glycosylation site at Asn154, which has been associated with neurotropism [Beasley et al., 

2005]. It is possible that modifications at the glycosylation sites might be associated with the 

differences of tropism, infectivity, fitness, and pathogenicity among different strains of 

ZIKV. Some glycosylation sites were absent in a few African strains; however, passage of 

the virus might have caused the alterations, making it difficult to track when the 

modifications had occurred in the earlier isolated strains [Wang et al., 2016]. A detailed 

analysis comparing the available ZIKV isolates showed a 59 amino acid variation between 

the Asian and African lineages, where around 10% of the variations are located in the prM 

region [Wang et al., 2016].

Among the NS proteins, NS1, which also contains N-glycosylation sites, is essential for the 

replication and late infection of flaviviruses [Muller and Young, 2013]. Structural 

differences in the ZIKV NS1 has been discovered recently revealing different electrostatic 

potentials among ZIKV, DENV, and WNV, which might help clarify the differences in the 

pathogenesis among these viruses, as well as among different ZIKV strains [Song et al., 

2016]. A mutation region in NS1 was observed in some isolates from Brazil compared with 

other Asian strains but the biological implication was unclear [Wang et al., 2016]. Another 

unique characteristic of the ZIKV structure is its stability in a wide range of temperatures 

ranging from 4 to 40°C [Kostyuchenko et al., 2016].

ZIKV TRANSMISSION

The main route for ZIKV transmission to a human is through a mosquito bite with Aedes 
aegypti and Aedes albopictus as the most common vectors. Two different cycles have been 

described: the first transmission cycle is restricted to non-human primates designated 

sylvatic; and the second transmission cycle is through the human-mosquito-human cycle-

(urban cycle) [Petersen et al., 2016; Weaver et al., 2016]. Recently, ZIKV has been detected 

in marmosets and capuchin-monkeys, most of which have been kept as pets, in Brazil 

[Favoretto et al., 2016].
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Additional transmission routes have recently been described. Following the ZIKV outbreak 

in South America, autochthonous transmission not facilitated by mosquito has been 

described in Brazil and Colombia [Zanluca et al., 2015; Camacho et al., 2016] including a 

person with HIV [Calvet et al., 2016b]. Sexual transmission of ZIKV through vaginal, oral, 

and anal sex has also been reported and the virus was detected in saliva, urine, and semen 

samples [D’Ortenzio et al., 2016; Hills et al., 2016; McCarthy, 2016]. In Italy, import of 

ZIKV from Thailand through sexual transmission was described in a case [Venturi et al., 

2016]. Additionally, blood transfusion transmission from an asymptomatic donor was 

reported in Brazil [Cunha et al., 2016]. Thus, extreme cautions should be taken for women 

who plan for a pregnancy.

ZIKV RECEPTORS

AXL, a receptor tyrosine kinase, which is also known as ARK, JTK11, or Tyro7, has been 

described as a main possible receptor for ZIKV entry in hNSCs [Nowakowski et al., 2016]. 

AXL is highly expressed in human radial glia cells, astrocytes, and endothelial cells 

[Nowakowski et al., 2016]. ZIKV entry of cells is also mediated by DC-SIGN and Tyro3 

[Hamel et al., 2015]. Some cell types such as dermal fibroblasts, epidermal keratinocytes, 

and dendritic cells were described as permissive to ZIKV infection though the infection 

might be inhibited by types I and II IFNs [Hamel et al., 2015]. ZIKV infection triggers the 

innate antiviral response in skin fibroblasts with upregulation of Toll-like receptor 3 (TLR3) 

transcription but no change of interferon 3 (IRF3) gene expression [Hamel et al., 2015]. 

Other upregulated genes included retinoic acid-inducible gene 1 (RIG-I), Melanoma 

Differentiation-Associated protein 5 (MDA5), and Chemokine (C-C Motif) Ligand 5 

(CCL5) [Hamel et al., 2015]. Interesting, ZIKV infection also induced an autophagy 

program, which might promote viral replication in permissive cells [Hamel et al., 2015].

ANIMAL MODELS

A mouse model for ZIKV has recently been reported [Lazear et al., 2016]. In this model, 

mice lacking IFN-α and -β signaling developed neurological disease and died as a 

consequence of ZIKV infection. High viral loads in the brain, spinal cord, and testes were 

detected compared to the wild-type mice. The lethal ZIKV infection was detected in adult 

mice lacking the capacity to either respond to or induce IFN-α/β (Ifnar1−/−, Irf3−/− Irf5−/− 

Ift7−/− triple knockout), and in AG129 mice (Ifnar1 and Ifngr1 deficient) [Lazear et al., 

2016]. Although, AG129 mice are deficient in IFN-α, -β, and -γ receptors, the humoral and 

cellular T cell responses are intact. A separate study also showed a deadly ZIKV infection in 

young and adult AG129 mice. It was noted that the cytopathic effect was observed in the 

brain but not in other organs [Aliota et al., 2016].

The importance of developing a valid animal model cannot be denied; however, the results 

from an animal model may not always be extrapolated to humans, and the correlations of 

infection in the model and in humans should be carefully analyzed. This is particularly true 

for ZIKV because the natural reservoirs for the ZIKV are humans, non-human primates and 

mosquitoes, which makes precise modeling of natural transmission and infection difficult. 

Furthermore, the anatomy of mouse is quite different from that of human. For example, the 
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mouse placenta structure is distinct from that of human, thus, limiting the use of a mouse 

model for studying the infection and transmission of ZIKV across the placenta barriers in 

human.

PERSPECTIVES AND FUTURE DIRECTIONS

In the early studies with ZIKV following its initial discovery, most of the mice and even 

some monkeys infected by ZIKV had only mild symptoms. For almost 70 years, ZIKV was 

not associated with serious health problems in humans until it reached the Pacific Islands 

and South America. Even in this scenario, Brazil is the only country that is presenting a 

dramatic number of microcephaly cases despite ZIKV infection has been detected in 66 

countries up to this day [WHO, 2016]. While there are differences between the African and 

Asian lineages, countries impacted by the Asian lineage also have had different outcomes 

ranging from low fever, Guillain–Barré syndrome to microcephaly. The development of the 

3D model mimicking different stages of the central nervous system should help clarify the 

pathological features manifested in different geographic regions [Qian et al., 2016].

The dramatic differences could be related with the geographic areas affected, which present 

different climate, temperature, and population. Even inside Brazil, the distribution is also not 

clear-cut with most of the cases restricted to a limited area in the Northeast region [Faria et 

al., 2016]. A study showed that both Aedes aegypti and Aedes albopictus were susceptible to 

ZIKV infection but they also depended on the mosquito population in each region or country 

[Chouin-Carneiro et al., 2016]. Importantly, the study indicated that both mosquitoes were 

not competent vectors as expected. It was pointed out that there was no data available on 

ZIKV isolated from any Aedes mosquitoes from Brazil since the focus had been on humans 

so far [Chouin-Carneiro et al., 2016].

Another fact that cannot be ignored is the presence of other flaviviruses in the affected 

regions. Co-infections with DENV and CHIKV have been described in Brazil and New 

Caledonia [Dupont-Rouzeyrol et al., 2015; Pessoa et al., 2016] but synergetic effect has not 

been noticed in the patients. However, the idea that a pre-infection with another flavivirus 

might cause a worsen scenario for ZIKV infection should not be ruled out. A better 

understanding of the diseases associated with ZIKV will become possible when all the 

information about the distribution of Aedes mosquitoes, the differences in climate and 

season in the affected regions, geographic distribution [Messina et al., 2016; Rodriguez-

Morales et al., 2016], precise mechanism of transmission, functional consequences of 

genetic variations among different strains, and the gestational stage(s) affected by infection 

become available.
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