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Abstract

The claim that Ward’s linkage algorithm in hierarchical clustering is limited to use with

Euclidean distances is investigated. In this paper, Ward’s clustering algorithm is generalised

to use with l1 norm or Manhattan distances. We argue that the generalisation of Ward’s link-

age method to incorporate Manhattan distances is theoretically sound and provide an exam-

ple of where this method outperforms the method using Euclidean distances. As an

application, we perform statistical analyses on languages using methods normally applied

to biology and genetic classification. We aim to quantify differences in character traits

between languages and use a statistical language signature based on relative bi-gram

(sequence of two letters) frequencies to calculate a distance matrix between 32 Indo-Euro-

pean languages. We then use Ward’s method of hierarchical clustering to classify the lan-

guages, using the Euclidean distance and the Manhattan distance. Results obtained from

using the different distance metrics are compared to show that the Ward’s algorithm charac-

teristic of minimising intra-cluster variation and maximising inter-cluster variation is not vio-

lated when using the Manhattan metric.

Introduction

The question arises whether Ward’s linkage algorithm, in hierarchical clustering, can be used

in combination with Manhattan distances. Authors like [1, 2] and [3] argue that Ward’s link-

age algorithm is limited to use with Euclidean distances, and [4] claim that Ward’s linkage

method is “based on the Euclidean distance” (see p. 2 of [4]). This is also echoed in the manu-

als of some software packages, such as [5] and the fastclusterpackage for R [6].

Regardless of this definition of Ward’s linkage algorithm, there have been cases where

Ward’s linkage algorithm was used with Manhattan distances. [7–10] provide examples of

where Ward’s linkage is used with Manhattan distances.

This paper aims to validate that it is indeed possible to use Manhattan distances in Ward’s

linkage, in two ways. Firstly, we aim to show theoretically that using the Manhattan metric

with Ward’s linkage does not violate the criteria determining the suitability of clustering algo-

rithms and secondly, in the application, we provide an example of where the method using

Manhattan distances outperforms a method using Euclidean distances. In Section 1 a
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background of the study is presented. An overview is given of distance measures and hierarchi-

cal clustering methods, focussing on Ward’s method, as well as the views on the use of some

non-Euclidean distances with Ward’s linkage. Section 2 discusses the generalisation of Ward’s

linkage by using an objective function that accommodates Manhattan distances. In Section 3

an application is introduced where languages are clustered hierarchically with Ward’s linkage

and Manhattan distances. Results from this clustering method are compared to results from

using the Euclidean distances.

1 Background

1.1 Distance Measures

Let a and b be defined as two vectors, each with length p. We consider the Minkowski distance

suggested on p. 453 in [2] defined in vector space Rp:

DMinkowskiða; bÞ ¼
Xp

i¼1

jai � bij
r

" #1

r ð1Þ

where ai represents the ith element of the observation vector a. The Minkowski distance is the

Euclidean distance when r = 2 in and the Manhattan or City-block distance when r = 1.

If we have a set of n vectors, the constructed distance matrix measures the difference

between all vector pairs and has the structure n rows × n columns with zeroes along the diago-

nal. We are then able to perform cluster analysis using the distance matrix to construct tree

diagrams or dendrograms.

1.2 Hierarchical Clustering

In cluster analysis observations are grouped into clusters. The optimal grouping is found

where similar observations are grouped together as clusters, but the different clusters are sepa-

rate from one another. [2] explains the agglomerative hierarchical clustering process on p. 455.

In this process each observation vector is a seperate cluster initially. We then measure the simi-

larity or distance between the observation vectors by making use of the distance matrix. At

each step of the agglomerative hierarchical clustering process the two clusters with the smallest

distance between them are merged into a new cluster. An alternative method of hierarchical

clustering is the divisive approach, where initially all observations form one cluster that parti-

tions into two clusters at each step of the clustering process. In this paper we consider only the

agglomerative approach. The distance between the new cluster and the rest of the clusters is

determined by the linkage method. [2] summarises and explains six linkage methods, but for

the purposes of this paper, only Ward’s linkage method is considered. Ward [11] suggested

that the decision on which pair of clusters to be joined should be based on the optimal value of

an objective function. [11] then used the example of least squared error, or minimum variance,

as an objective function. Ward’s method, also referred to as the incremental sum of squares

method on p. 466 in [2] or Ward’s minimum variance method [12], takes into consideration

not only between-cluster distances when forming clusters, but also within-cluster distances.

Ward’s method states that, not only should the between-cluster distances be maximised, but

the within-cluster distances should also be minimised. The method combines these two prop-

erties into one criterion [11].

Ward’s Method for Manhattan Distances
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1.3 Ward’s Minimum Variance Method

Ward’s minimum variance method joins the two clusters A and B that minimise the increase

in the sum of squared errors (SSE):

IAB ¼ SSEAB � ðSSEA þ SSEBÞ ð2Þ

We define the SSE within and between clusters as follows:

SSEA ¼
XnA

i¼1

ðai � �aÞ0ðai � �aÞ

SSEB ¼
XnB

i¼1

ðbi �
�bÞ0ðbi �

�bÞ

SSEAB ¼
XnAB

i¼1

ðyi � �yABÞ
0
ðyi � �yABÞ

ð3Þ

where:

• ai represents the ith observation vector in cluster A, and �a the centroid of cluster A.

• bi represents the ith observation vector in cluster B, and �b the centroid of cluster B.

• yi represents the ith observation vector in cluster AB, and �yAB the centroid of newly formed

cluster AB.

In other words, Ward’s minimum variance method calculates the distance between cluster

members and the centroid. The centroid of a cluster is defined as the point at which the sum of

squared Euclidean distances between the point itself and each other point in the cluster is min-

imised. [2] also refers to the centroids of the clusters as their mean vectors on p. 463. The cen-

troid of cluster A is defined as the sum of all points in A divided by the number of points in A.

[2] states that the objective function to minimise when using Ward’s minimum variance

method can also be written as,

IAB ¼
nAnB

nA þ nB
ð�a � �bÞ0ð�a � �bÞ ð4Þ

where �a and �b represent the centroids of clusters A and B, respectively.

Because the objective function is based on the distances between the centroids of the clus-

ters [2, 13] it is necessary to use the squared Euclidean distance as the metric to calculate dis-

tances between objects. If the objective function is minimum variance, Ward’s linkage method

can only be applied to distance matrices using the squared Euclidean distance metric.

1.4 Properties of Ward’s Linkage Method

Three properties are taken into consideration when considering the suitability of a specific

clustering algorithm suggested on pp. 471-475 in [2]. These properties are discussed briefly: (i)

Lance-Williams Form, (ii) Monotonicity, and (iii) Space Distortion.

Lance-Williams Algorithm. [13] suggested an algorithm for updating distances between

clusters when new clusters have been formed. The two elements A and B in a dissimilarity

matrix, with the smallest measure of dissimilarity between them, will be clustered together. To

find the distance between cluster AB and the rest of the elements, [13] suggest the following

formula where dAB, dAC and dBC are the pairwise distances between clusters A, B and C. If A
and B were to form a new cluster AB, the distance between cluster C and the new cluster AB is

Ward’s Method for Manhattan Distances
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denoted as dC(AB). A clustering algorithm belongs to the Lance-Williams family if dC(AB) can be

computed recursively by the following formula:

dCðABÞ ¼ aAdCA þ aBdCB þ bdAB þ gjdAC � dBCj ð5Þ

where αA, αB, β and γ are the parameters that together with the distance function dij determine

the clustering algorithm [12].[14] explains the importance of an algorithm satisfying such a

recurrence relation from a computational point of view on p. 331. Should a clustering proce-

dure not satisfy such a recurrence relation, the initial data, as well as the interim data when

updating cluster distances, should be retained throughout the entire process. On p. 344 of [15]

the author shows that Ward’s method fits the Lance-Williams algorithm, and suggests appro-

priate parameters. Ward’s minimum variance method satisfies this recurrence relation pro-

posed by [13]. [14, 15] and p. 470 in [2] also provide the values for αA, αB, β and γ when using

Ward’s method of minimum variance:

aA ¼
nA þ nC

nA þ nB þ nC

aB ¼
nB þ nC

nA þ nB þ nC

b ¼
� nC

nA þ nB þ nC
g ¼ 0

ð6Þ

where ni refers to the number of items in cluster i, i 2 {A, B}.

Monotonicity. [16] explain on p. 461 that when the monotonicity property of a clustering

method holds, each cluster is formed at a “higher dissimilarity level than any one of its compo-

nents”. Thus, the monotonicity property implies that a cluster cannot join another cluster at a

distance that is less than the distance between previously joined clusters before merging. If a

clustering method is not monotonic, it is possible that reversals can be encountered in the den-

drograms; i.e. the resulting graphical interpretations of the clustering could contain crossovers.

Monotonic clustering methods are also referred to as “ultrametric” on p. 471 in [2].

[15] provides conditions for the Lance-Williams parameters, which imply the monotonicity

property of a certain clustering algorithm:

aA þ aB þ b � 1

minðaA; aBÞ � 0

g � 0

ð7Þ

[15] shows on p. 344 that Ward’s method has the monotonicity property. This is also clear

from the Lance-Williams parameters defined for Ward’s linkage method.

Space Distortion. When new clusters are formed, the properties of the distances between

the original points before clustering do not always stay intact. Clustering algorithms that pre-

serve the characteristics of the distances between the original points are referred to as space-

conserving. In contrast, when clustering algorithm changes the properties of distances, the

clustering algorithm is space-distorting [13]. A space-distorting clustering algorithm can either

be space-contracting or space-dilating.

If the spatial relationship of the distance between original points becomes smaller, i.e. obser-

vations join existing clusters rather than form new clusters by joining with individual observa-

tions, then the system is said to ‘chain’ [13]. In this case, clusters tend to move closer to each

other and the clustering algorithm is space-contracting. A space-dilating clustering algorithm

Ward’s Method for Manhattan Distances
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is the opposite; an observation joins another individual observation rather than join an

already-existing cluster. This means that the spatial relationship becomes larger as clusters

form and clusters move further away from each other. [12] mention that either a space-con-

serving or a space-dilating method is desirable in most applications.

[17] explain that the Lance Williams parameters of a clustering algorithm can be used to

determine whether an algorithm is space-conserving, space-dilating, or space-contracting. For

an algorithm to be space-conserving, the following conditions regarding the Lance-Williams

parameters should hold [17]:

aA þ aB ¼ 1

b ¼ 0

jgj < aA

ð8Þ

[1] show that Ward’s clustering algorithm is space-conserving.

1.5 Ward’s Linkage and non-Euclidean Distances

The use of Ward’s linkage has typically been limited to the squared Euclidean distance metric

as the measure of original distances between observations [2, 3]. This is because the objective

function is usually chosen to be the minimum variance, or minimum squared error. The

Euclidean distance is related to the measurement of the sum of squared errors; hence the use

of this metric when using Ward’s linkage method [1].

The use of Manhattan distances in Ward’s clustering algorithm, however, is rather common.

[7], measure the phonetic distance between different dialects in the Dutch language. The

authors compare the Euclidean distance measure, the Manhattan distance measure and a mea-

sure corresponding to Pearson’s correlation coefficient. Each of these distance measures are

used with Ward’s linkage to construct dendrograms, which are compared with a set of gold

standard dendrograms, created by expert dialectologists. The Manhattan distance narrowly out-

performs the correlation measure and the Euclidean distance measure in their experiments. [7].

[8] investigate the co-occurrance of search terms submitted to the Excite search engine. Co-

occurring terms were clustered using Ward’s algorithm. Like [7] the authors also use the Man-

hattan distance measure and Pearson’s correlation coefficient and find that these two measures

provide similar results.

[9] explain that with use of the Manhattan distance, outliers are only slightly emphasised,

and use this distance measure with Ward’s linkage method. They confirm that the results from

these methods produce better results than other clustering methods for their particular data

set. [10] also use Ward’s linkage with Manhattan distances to cluster mine-waste materials.

[18] stated that the Manhattan metric is preferred to the Euclidean distance metric in

numeric cladistic studies. The Manhattan distance metric is also preferred for high dimen-

sional and categorical data.

In the next section we provide a mathematical verification for the use of Manhattan dis-

tances in Ward’s linkage clustering method.

2 A Variation on Ward’s Minimum Variance Method

Authors such as [2] on p. 499, [14] and [15] refer to Ward’s linkage method as the minimum

variance method. [11] suggested that the decision on which pair of clusters is to be joined

should be based on the optimal value of an objective function. [11] then used the example of

least squared error, or minimum variance, as an objective function. It is this example that has

become famous as Ward’s method or Ward’s method of minimum variance. Ward’s method is

Ward’s Method for Manhattan Distances
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therefore most commonly used with the objective function of minimum variance. If we, how-

ever, decide to use the Manhattan distance, we propose using an objective function of mini-

mum absolute deviation.

In the Backround Section 1.3 we discuss the objective function for Ward’s minimum vari-

ance method. Below we discuss the objective function used by [12]. We then propose our own

objective function. After we have identified an objective function, it is important to know how

the distance measure will be updated after each step of clustering. For this, we also discuss the

Lance-Williams algorithm for each of the three objective functions.

2.1 Previous Extension of Ward’s Method

[12] extend the use of Ward’s method by showing that the same Lance-Williams parameters

are applicable even if the objective function is not minimum variance (i.e. when the distance

metric is not squared Euclidean). They still use the Euclidean metric, but show that these

parameters are also applicable to any power θ of Euclidean distance where 0< θ< 2, by gener-

alising the objective function. Thus, [12] propose an objective function using the Euclidean

distances between all the observations within a cluster and all the observations between clus-

ters. They define a distance, the e-distance, between clusters A = {a1. . .anA} and B = {b1. . .bnB}

with each vector in A and B consisting of p different values:

eðA;BÞ ¼
nAnB

nA þ nB

2

nAnB

XnA

i¼1

XnB

j¼1

dðai; bjÞ �
1

n2
A

XnA

i¼1

XnA

j¼1

dðai; ajÞ �
1

n2
B

XnB

i¼1

XnB

j¼1

dðbi; bjÞ

 !

ð9Þ

If the objective function is minimum variance, then dE2(ai, bj) denotes the squared Euclid-

ean distance:

dE2ðai; bjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

l¼1

ðail � bjlÞ
2

s !2

ð10Þ

where ail represents the lth value in observation vector ai in cluster A and 1

n2
A

PnA
i¼1

PnA
j¼1

dðai; ajÞ

represents the mean squared error within cluster A.

If the objective function is not minimum variance, but rather the function defined in [12],

then dEθ(ai, bj) denotes the Euclidean distance to the power θ:

dEyðai; bjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

l¼1

ðail � bjlÞ
2

s !y

ð11Þ

and 1

n2
A

PnA
i¼1

PnA
j¼1

dðai; ajÞ now represents the mean error to the power θ within cluster A.

[12] show that the Lance-Williams parameters for their objective function, Eq (9) are the

same as the parameters for the minimum variance method.

2.2 Least Absolute Deviation

[12] define their objective function using the distance between all elements in a cluster and are

no longer restricted to the use of the sum of squared errors as objective function. They can,

therefore, generalise Ward’s method for the use of any power of Euclidean distance. Since [12]

show that using the distance between every single observation is also acceptable in Ward’s

clustering algorithm, we generalise the method of [12] further. We now use a l1 norm distance,

the Manhattan metric, to calculate the distances between single observations. Our objective

function will be least absolute error. With this objective function, Ward’s method should join

Ward’s Method for Manhattan Distances
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the two clusters A and B that minimise the increase in absolute deviation or absolute error

(AE):

IAB ¼ AEAB � AEA � AEB ð12Þ

We define the within-cluster and between-cluster absolute error as follows:

AEA ¼
XnA

i¼1

XnA

j¼1

Xp

l¼1

jail � ajlj

AEA ¼
XnB

i¼1

XnB

j¼1

Xp

l¼1

jbil � bjlj

AEAB ¼
XnA

i¼1

XnB

j¼1

Xp

l¼1

jail � bjlj

ð13Þ

where ail represents the lth value in observation vector ai in cluster A.

We use the e-distance e(A, B) that [12] defined between clusters A = {a1. . .anA} and B =

{b1. . .bnB} in Eq (9). However, we now have a different objective function and therefore the

distance measure dM(ai,bj) is no longer Euclidean, but describes a Manhattan distance:

dMðai; bjÞ ¼
Xp

l¼1

jail � bjlj ð14Þ

If we can prove that the distance e(A, B) in Eq (9) suggested by [12] can be used with our

measure of dM(ai,bj), we generalise Ward’s method and show that it can be used with Manhat-

tan distances. If this is the case, it follows that the same Lance-Williams parameters are applica-

ble to our objective function. Thus the proof given by [12] will then also hold when we use an

objective function based on an L1 distance like the Manhattan distance.

2.3 Generalising Ward’s Method: Least Absolute Error Method

Suppose A = {a1. . .anA}, B = {b1. . .bnB} and C = {c1. . .cnC} are distinct clusters with all the vec-

tors ai, bi and ci consisting of p elements.

[12] define the constants d
SR
AA, d

SR
BB and d

SR
AB:

d
SR
AA ¼

1

n2
A

XnA

i¼1

XnA

j¼1

dðai; ajÞ

d
SR
BB ¼

1

n2
B

XnB

i¼1

XnB

j¼1

dðbi; bjÞ

d
SR
AB ¼

1

nAnB

XnA

i¼1

XnB

j¼1

dðai; bjÞ

ð15Þ

where d refers to either of the two distances: dE2 defined in Eq (10) or dEθ defined in Eq (11).

The constants defined by [12] represent the mean squared error within and between clus-

ters for the minimum variance method, and the mean error to the power θ within and between

clusters for their Extended Method.

By replacing the distance d(ai,bj) in Eq (15) with dM(ai,bj) as defined in Eq (14), we define

the mean absolute error within and between clusters. This is exactly what we want to achieve,

as our objective function is minimum absolute error. We are therefore able to use our distance

Ward’s Method for Manhattan Distances
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measure dM(ai,bj) with similar constants as defined by [12], and we continue to show that the

rest of the proof now also holds for our distance metric.

We first define the constants d
M
AA, d

M
BB and d

M
AB in terms of dM, our distance measure. The

notation of δM is henceforth simplified to δ.

dAA ¼
1

n2
A

XnA

i¼1

XnA

j¼1

dMðai; ajÞ

dBB ¼
1

n2
B

XnB

i¼1

XnB

j¼1

dMðbi; bjÞ

dAB ¼
1

nAnB

XnA

i¼1

XnB

j¼1

dMðai; bjÞ

ð16Þ

where:

• δAA represents the mean absolute deviation within cluster A: the distance between all the vec-

tors ai and aj

• δBB represents the mean absolute deviation within cluster B: the distance between all the vec-

tors bi and bj

• δAB represents the mean absolute deviation between clusters A and B: the distance between

all the vectors ai and bj

We note that [12] used the constant
nAnB
nAþnB

, as did [2] on p. 468. Then, similar to the defini-

tion of e(A, B) in Eq (9), we define eM(A, B):

eMðA;BÞ ¼
nAnB

nA þ nB

�
2

nAnB

XnA

i¼1

XnB

j¼1

dMðai; bjÞ �
1

n2
A

XnA

i¼1

XnA

j¼1

dMðai; ajÞ

�
1

n2
B

XnB

i¼1

XnB

j¼1

dMðbi; bjÞ

�

¼
nAnB

nA þ nB
2dAB � dAA � dBBð Þ

ð17Þ

For another cluster, C, similar to δAA, δBB and δAB in Eq (16), we define the constants δCC,

δAC and δCB:

dCC ¼
1

n2
C

XnC

i¼1

XnC

j¼1

dMðci; cjÞ

dAC ¼
1

nAnC

XnA

i¼1

XnC

j¼1

dMðai; cjÞ

dBC ¼
1

nBnC

XnB

i¼1

XnC

j¼1

dMðbi; cjÞ

ð18Þ

where δCC, δAC and δCB follow the same convention as δAA, δBB and δAB in Eq (16).

Ward’s Method for Manhattan Distances
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Now we have, similar to eM(A, B) in Eq (17):

eMðA;CÞ ¼
nAnC

nA þ nC
2dAC � dAA � dCCð Þ

eMðB;CÞ ¼
nBnC

nB þ nC
2dBC � dBB � dCCð Þ

ð19Þ

Consider cluster A [ B formed by merging clusters A and B. We denote A [ B by K, and define

the constants δKC and δKK, similar to Eq (16):

dKC ¼
1

nKnC

XnK

i¼1

XnC

j¼1

dMðki; cjÞ ð20Þ

where δKC is the mean absolute deviation between clusters C and A [ B (the distance between

all the vectors cj in C and all vectors ai and bi in A [ B).

Therefore δKC should represent the mean absolute deviation between:

• all vectors ai in A [ B and cj in C (equivalent to all vectors ai in A and cj in C) and

• all vectors bi in A [ B and cj in C (equivalent to all vectors bi in B and cj in C)

;dKC ¼
1

ðnA þ nBÞnC

XnA

i¼1

XnC

j¼1

dMðai; cjÞ þ
XnB

i¼1

XnC

j¼1

dMðbi; cjÞ

 !

ð21Þ

Similar to Eq (18), the constant δKK is defined as:

dKK ¼
1

n2
K

XnK

i¼1

XnK

j¼1

dMðki; kjÞ ð22Þ

where δKK is the mean absolute deviation within cluster A [ B (the distance within all vectors

in A, i.e. ai and aj and all within vectors in B, i.e. bi and bj, as well as the distance between all

vectors in A and B).

Therefore, δKK should represent the mean absolute deviation between:

1. all vectors ai in A and aj in A,

2. all vectors ai in A and bj in B,

3. all vectors bi in B and aj in A, and

4. all vectors bi in B and bj in B.

;dKK ¼
1

ðnA þ nBÞ
2

XnA

i¼1

XnA

j¼1

dMðai; ajÞ þ 2
XnA

i¼1

XnB

j¼1

dMðai; bjÞ þ
XnB

i¼1

XnB

j¼1

dMðbi; bjÞ

 !

ð23Þ

In terms of the original constants, we now have:

dKC ¼
nAnCdAC þ nBnCdBC

ðnA þ nBÞnC

dKK ¼
n2
AdAA þ 2nAnBdAB þ n2

BdBB

ðnA þ nBÞ
2

ð24Þ

Ward’s Method for Manhattan Distances

PLOS ONE | DOI:10.1371/journal.pone.0168288 January 13, 2017 9 / 21



We define eM(K, C) similar to the way we defined eM(A, B) in Eq (17):

eMðK;CÞ ¼
nKnC

nK þ nC
2dKC � dKK � dCCð Þ

And write this in terms of A and B:

eMðA [ B;CÞ ¼
ðnA þ nBÞnC
nA þ nB þ nC

�
2nAnCdAC þ 2nBnCdBC

ðnA þ nBÞnC

�
n2
AdAA þ 2nAnBdAB þ n2

BdBB

ðnA þ nBÞ
2

� dCC

�

¼
ðnA þ nBÞnC
nA þ nB þ nC

2nAnCdAC þ 2nBnCdBC

ðnA þ nBÞnC

� �

�
ðnA þ nBÞnC

nA þ nB þ nC

n2
AdAA þ 2nAnBdAB þ n2

BdBB

ðnA þ nBÞ
2

 !

�
ðnA þ nBÞnC

nA þ nB þ nC
dCC

ð25Þ

[12] then simplify the second term in Eq (25), using Eq (17):

eMðA;BÞ ¼
nAnB

nA þ nB
ð2dAB � dAA � dBBÞ

;2dAB ¼
nA þ nB
nAnB

eMðA;BÞ þ dAA � dBB

Now the second term in Eq (25) can be simplified as:

�
ðnA þ nBÞnC
nA þ nB þ nC

n2
AdAA þ 2nAnBdAB þ n2

BdBB

ðnA þ nBÞ
2

 !

¼ �
nC

nA þ nB þ nC

n2
AdAA þ nAnB

nA þ nB
nAnB

eMðA;BÞ þ dAA þ dBB

� �

þ n2
BdBB

ðnA þ nBÞ

0

B
B
@

1

C
C
A

¼ �
nC

nA þ nB þ nC

n2
AdAA þ ðnA þ nBÞeMðA;BÞ þ nAnBdAA þ nAnBdBB þ n2

BdBB

ðnA þ nBÞ

� �

¼ �
nC

nA þ nB þ nC

nAðnA þ nBÞdAA þ ðnA þ nBÞeMðA;BÞ þ nBðnA þ nBÞdBB

ðnA þ nBÞ

� �

¼
1

nA þ nB þ nC
� nAnCdAA � nCeMðA;BÞ � nBnCdBBð Þ

ð26Þ
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Eq (26) is then substituted into Eq (25):

eMðA [ B;CÞ ¼
ðnA þ nBÞnC

nA þ nB þ nC

2nAnCdAC þ 2nBnCdBC

ðnA þ nBÞnC

� �

þ
1

nA þ nB þ nC
� nAnCdAA � nCeMðA;BÞ � nBnCdBBð Þ

�
ðnA þ nBÞnC

nA þ nB þ nC
dCC

¼
1

nA þ nB þ nC

�

2nAnCdAC þ 2nBnCdBCð Þ � nAnCdAA

� nCeMðA;BÞ � nBnCdBB � ðnA þ nBÞnCdCC

�

¼
1

nA þ nB þ nC

�

ðnAnCÞð2dAC � dAA � dCCÞ

þðnBnCÞð2dBC � dBB � dCCÞ � nCeMðA;BÞ
�

;eMðA [ B;CÞ ¼
nA þ nC

nA þ nB þ nC
eMðA;CÞ þ

nB þ nC
nA þ nB þ nC

eMðB;CÞ

�
nC

nA þ nB þ nC
eMðA;BÞ

ð27Þ

We have now shown that the proof used by [12] also holds when using dM(ai,bj), a Manhat-

tan distance. The same Lance-Williams parameters as used in Ward’s minimum variance

method also apply to the least absolute error version of Ward’s method. We can therefore use

Ward’s method with the Manhattan metric.

3 Application

In this section we aim to show how groupings of languages, similarities between languages and

language traits well known in the field of linguistics can be extracted or independently

observed using unsupervised machine learning techniques; that is, to autonomously classify

languages without any prior linguistic knowledge, only the assumption that some languages

are related to each other. We assume that languages are classified in a similar way to natural

organisms, and we are able to classify languages by means of these numerical biological classi-

fication methods. Because it is assumed that there exists some sort of hierarchy or evolutionary

relationship between the languages, hierarchical clustering algorithm is used to classify the

languages.

3.1 Literature

[19] observed that languages change over time and follow the same trends as Darwin suggested

for biological organisms in terms of evolution and change (see p. 13 in [20]). If we assume that

languages can indeed be classified in a similar way to natural organisms, we can classify lan-

guages by means of a numerical biological classification system known as numerical

taxonomy.

The concept of numerical taxonomy was introduced by Sokal and Sneath in 1963. This

approach classifies items, based on their properties or character traits, by using numerical

techniques. Numerical taxonomy uses multivariate techniques applied to classification

Ward’s Method for Manhattan Distances
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problems [21]. Sokal and Sneath distinguish two types of relationship between organisms:

“relationships based on similarity and those based on descent” on p. 95 of [21]. The affinity, or

overall similarity between organisms based on specific character traits, is referred to as a phe-

netic relationship [21] whereas a phylogenetic relationship “aims to show the course of evolu-

tion” (see p. 220 in [21]). Phynetic classification is therefore defined as “a system of

classification based on the overall similarity of the organisms being classified” [22]. Phyletic or

phylogenetic classification, on the other hand, takes into account the evolutionary ancestry of

the organisms.

Since we assume that languages are related to each other, and that some languages are evo-

lutionarily closer than others, we use hierarchical clustering to classify the languages.

[23] provide an example of phylogenetic classification of languages. These authors propose

a statistical signature based on the frequency of observing bi-grams (adjacent pairs of letters)

as explained by [24] and a signature similar to the genetic signature in biology. They use this

statistical language signature (SLS) as a quantitative measure to analyse written text, and sug-

gest that the SLS remains more or less constant within languages, but differentiates between

languages. Using distance matrices, [23] construct phylogenetic trees of 34 languages. The

trees include 33 Indo-European languages and Basque, defined as a language isolate [25] and

clearly shown to be so in the way the classification trees are formed. A similar language tree is

constructed by [26], where the relative entropy between pairs of texts constitutes the elements

of the distance matrix. [26] then apply the Fitch-Margoliash method that uses a weighted least

squares method for clustering, to the distance matrix to obtain the language tree [27].

3.2 Methodology

Thirty-two Indo-European languages are analysed in this section, with the aim of identifying

the phylogenetic relationships between these languages. [23] and [26] suggest the use of trans-

lations of the Universal Declaration of Human Rights [28] as corpus. Using the Universal Dec-

laration of Human Rights provides the advantage that the different texts are more or less the

same in length. The problem, however, is that borrowed words and words that have exactly the

same translation in related languages could bias results when assessing the proximity between

languages [23]. For this reason, we aim to expand our analysis to a corpus of non-parallel texts.

Many of the non-parallel texts are obtained form newspaper data and are availble from the

Leipzig Corpus [29]. For languages not available in the Leipzig Corpus, files are also obtained

from the HC Corpus [30], a Bible corpus [31] as well as texts from the Universial Declaration

of Human Rights text files (UDHR Corpus) [28]. Table 1 provides an overview of the sources

from which the files were obtained. Datasets can be downloaded from the listed sources.

Table 1. Language File Sources.

Source Language(s)

Leipzig Corpus

[29]

Afrikaans, Bosnian, Catalan, Corsican, Czech, Danish, Dutch, English, French, Frisian,

Calician, German, Icelandic, Irish, Italian, Latvian, Lithuanian, Luxembourgish,

Norwegian, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish

HC Corpus [30] Serbian

Bible Corpus

[31]

Scottish, Welsh

UDHR Corpus

[28]

Asturian, Breton, Friulian

doi:10.1371/journal.pone.0168288.t001
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While all the selected languages use the Latin alphabet, there are different characters or spe-

cial letters in each language representing different sounds and accents. Whereas [23] mapped

each of the accented characters to its closest equivalent in the Latin alphabet, ignoring the lin-

guistic implications, we introduce an alphabet consisting of 65 characters: the 26 letters of the

Latin alphabet, blank spaces between characters and 38 special characters found in the lan-

guages we analyse. Our extended alphabet is defined in Table 2.

Statistical Language Signature. The probability of observing a certain character in a lin-

guistic sequence is highly dependent on the previous characters in the sequence as well as the

language under consideration [24]. Based on this observation, [23] suggest that for any given

language, a statistical language signature (SLS) can be obtained by using bi-grams (adjacent

pairs of letters). We are interested in the number of times any given bi-gram is observed in a

text. We know that the bi-gram ‘th’ will be observed often in the English language, while a bi-

gram such as ‘en’ will be more common in Afrikaans or German. The SLS for each language is

based on the number of occurrences of each bi-gram in that specific language. The SLS that we

calculate is the relative frequency of the bi-gram in each language. This is one of the methods

suggested by [23].

We let nαβ denote the number of times the bi-gram ‘αβ’ is observed in the document. The

table consisting of the relative bi-gram frequencies is defined as matrix RF with cells:

RFða; bÞ ¼
nab

ðn � 1Þ
ð28Þ

where n is the number of characters in the document (including blank spaces)

Matrix RF is size 65 × 65. In order to avoid complications when performing cluster analysis,

we henceforth describe our data as a set of 32 observations, (for the 32 languages) where each

observation is the SLS in vector form. Each observation is a vector of p = 65 × 65 = 4225

elements.

[23] investigate the use of the relative bi-gram frequency table as an SLS. They propose that

the SLS of a text depends on the language in which it is written and not on its semantic con-

tent. However, this also means that languages that share vocabulary, will be clustered togehter.

This is especially the case with loanwords. A discussion about loanwords in English is provided

in the discussion of the clustering results. Another observation made by [23] is that the SLS is

unique to a language. If we assume this is true, we can continue using this quantitative measure

in our analyses of languages. We can then quantify the proximity between languages by intro-

ducing a concept of distance, appropriate in R4225.

After each language is assigned an SLS, we determine the distance between the SLS vectors

of the languages. We construct a distance or dissimilarity matrix between languages, and then

perform a hierarchical clustering method on this matrix. With the results of the hierarchical

clustering, we are able to construct a dendrogram. A dendrogram graphically represents the

Table 2. Table of characters used for analysis.

a b c d e f g h i j k

l m n o p q r s t u v

w x y z _ ä à á â å ã
æ ç ê ë è é ı̀ ı́ ı̂ ñ ö

ø ò ó õ ô š ß ü ù ú û

ý ž ś ź ð ż ł ć ą ę

doi:10.1371/journal.pone.0168288.t002
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results obtained from a cluster analysis and is similar to the phylogenetic tree constructed by

[23]. A dendrogram “shows all the steps in the hierarchical procedure, including the distances

at which clusters are merged” (see p. 456 in [2]). Our trees are rooted, as all the languages we

use come from the Indo-European family. We perform a cluster analysis, using Ward’s

method with the Manhattan metric. The analysis is done in R [32], using the packages

stringi [33] for cleaning datasets and cluster [34].

3.3 Results

The distance between a pair of languages is obtained by calculating the Manhattan distance

between the SLS vectors of those languages. In order to discuss the difference in results when

using the Euclidean distance rather than the Manhattan distance, the Euclidean distance

matrix is also obtained.

We construct dendrograms resulting from the cluster analysis for both objective functions

of Ward’s method: minimum variance and least absolute error (i.e. using the Euclidean and

the Manhattan distance, respectively). Fig 1 shows the results from using Ward’s method with

a Euclidean distance matrix and Fig 2 the results from using Ward’s method with a Manhattan

distance matrix.

Dendrograms. Both dendrograms show the different sub-groups of the Indo-European

language family and classify languages from the following subdivisions: Baltic, Slavic (Balto-

Slavic), Celtic, Germanic and Romance. The phylogenetic classification of the languages we

analyse is as follows:

Fig 1. Ward’s Linkage using Euclidean Distances.

doi:10.1371/journal.pone.0168288.g001
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• Slavic: Bosnian, Serbian, Slovenian, Slovak, Czech, Polish

• Baltic: Lithuanian, Latvian

• Celtic: Breton, Welsh, Scottish, Irish

• Germanic: English, Icelandic, Swedish, Danish, Norwegian, Luxembourgish, Frisian, Dutch,

Afrikaans, German

• Romance: French, Italian, Spanish, Asturian, Catalan, Friulian, Galician, Portuguese, Corsi-

can, Romanian

If we consider Fig 1, we note that using the Euclidean distance matrix with Ward’s method

results in one language being misclassified into another sub-group of languages. Breton, a

Celtic language is clustered with the Germanic languages. English, a West Germanic language,

is also misclassified, but still within the Germanic group.

It is worth noting that, although English is classified as a Germanic Language [35, 36], one

cannot ignore the influence of Latin and French on the English language. On p. 15 [37] explain

that French is a Romance language that was influenced by Latin, and that it is therefore some-

times not possible to discern whether a loanword in English derives from French or Latin.

Both of these languages, however, contributed significantly to the English language (see p. 248

of [38]). [38] further explains, on p. 249, in which specific areas French and Latin contributed

most to English: The French loanwords in English are typically found in the areas of govern-

ment and administration (e.g. Authority, state, liberty, office), whereas Latin was used as

Fig 2. Ward’s Linkage using Manhattan Distances.

doi:10.1371/journal.pone.0168288.g002
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language of the “church, scholarship, and partly of law” (see p. 250 of [38]). Examples of Latin

loanwords include minor, history, individual, explicit.
Considering the text used to analyse the classification of languages, we notice that the text

used by [23], the Universal Declaration of Human Rights, includes a vast amount of these loan-

words. Based on the influence of Latin and French, especially in the text that [23] used, we rec-

ognise that the algorithm could classify English with the Romance languages rather than the

Germanic Languages, as is the case in [23]. Possible misclassification of other languages may

also be contributed to the high amount of loanwords in this text, because the SLS depends only

on the bi-grams (i.e. the lexical aspect of the language) and not on the semantic content [23].

On the other hand, Ward’s clustering used with Manhattan distances, in Fig 2, seems to

cluster the languages more or less intuitively from a linguistic and sometimes even geographi-

cal point of view. An example of this is that the Nordic Languages or Scandinavian Germanic

Languages (Icelandic, Norwegian, Danish and Swedish) are clustered together, before they are

joined with the West Germanic (e.g. Afrikaans, Dutch and German). Here English is closer to

its correct linguistic classification. English belongs with the West Germanic languages as it

forms part of the Anglo-Frisian language family [35]. With this method, Breton is also cor-

rectly classified as a Celtic language.

Ward’s method yielded the best results when used in conjunction with the Manhattan dis-

tance. Using Ward’s method of linkage with the Manhattan distance metric provides us with 5

distinct logical clusters, that also make sense phylogenetically: Baltic Languages, Slavic Lan-

guages, Romance Languages, Germanic Languages and Celtic Languages.

3.4 Cluster Validation

The discussion above is only based on the visual inspection of the trees in Figs 1 and 2, and is

therefore subjective in nature. It is also essential to validate clusters objectively [39]. [39] dis-

cuss several techniques of cluster validation, and make the distinction between external and

internal measures of cluster validity.

External measures of cluster validity include comparing clustering results with a benchmark

or gold standard, while internal measures are based solely on information inherent to the data.

These validation techniques “measure how well a given partitioning corresponds to the natural

cluster structure of the data” (see p. 3203 of [39]).

To compare the figures above with a “gold standard”, a tree is constructed in R [32], to visual-

ise the actual linguistic classifications of these languages. This tree is based on information about

language families obtained from Glottolog 2.6 [40] and is shown in Fig 3. We are now able to

compare the trees in Figs 1 and 2 with Fig 3. The tree created as benchmark does not necessarily

contain the correct branch lengths and weights. This is because it is not possible to quantify the

relationship between languages by only considering information on ancestry. For this reason,

we suggest using the Robinson-Foulds metric for comparing phylogenetic trees [41].

3.4.1 Robinson-Foulds Distance. [41] suggest a metric to compare different methods of

constructing phylogenetic trees. For this comparison, only the structure or topology of the

trees is taken into consideration, and not the branch weights [41]. This distance measure

between two trees is calculated by “testing edges for matching and counting the unmatched

edges” (see p. 146 of [41]). This distance explains which of two trees is closer to a third one,

and can be calculated in R [32] using the RF.dist function from the Phylogenetic analysis

package, phangorn [42]. The Robinson-Foulds distance between the phylogenetic tree con-

structed from the Euclidean distance matrix (Fig 1) and the benchmark (Fig 3) is 33. The Rob-

inson-Foulds distance between the phylogenetic tree constructed from the Manhattan distance

matrix (Fig 2) and the benchmark (Fig 3) is only 21. Although the Robinson-Foulds metric
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does not allow us to infer whether this difference in distances is statistically significant [41], we

can conclude that using the Manhattan distance matrix for this data set provides results that

are closer to the benchmark than those generated by using the Euclidean distance matrix.

3.4.2 Internal Validation Measures. Three of the internal measures discussed by [39] are

used in this study. Clusters should be compact and well separated. To validate our clusters, we

will consider the following characteristics of the clusters, as mentioned in [39]. The validation

is done in R [32], using the Cluster Validation Package clValid [43].

Compactness and Separation: If a cluster is compact, it means that homogeneous observa-

tions are grouped together, and within-cluster variation is minimised. Where clusters are well

separated, the between-cluster variation is maximised. As this is the basis of Ward’s clustering

algorithm, we aim to show that using the Manhattan with Ward’s algorithm does not reduce

the compactness and separation of the clusters. [39] suggests two measures to evaluate the

compactness and separation of clusters, the Dunn Index and the Silhouette Width.

The Dunn Index is defined as the ratio of the smallest between-cluster distance and the larg-

est within-cluster distance. A high value of the Dunn Index would indicate that the smallest

between-cluster distance is still larger than the largest within-cluster distance and therefore a

high value for this index is desired [39, 43].

The silhouette value of an item measures the degree of confidence in a particular clustering

assignment of an individual observation i [39, 43], and is calculated as:

SðiÞ ¼
bi � ai

maxðbi; aiÞ
ð29Þ

Fig 3. Language Tree with information from Glottolog 2.6.

doi:10.1371/journal.pone.0168288.g003
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where ai denotes the average distance between item i and all other items in the same cluster

and bi represents the average distance between item i and all items in the closest of the other

clusters.

The Silhouette Width is calculated as the average Silhouette value over all observations and

yields an answer between −1 and 1. A larger Silhouette Width value is indicative of better clus-

tered observations.

Connectedness: The validation test for connectedness attempts to determine to what

degree similar items or nearest neighbours, are clustered together [39]. [39] suggest a represen-

tative of this connectedness characteristic is the measure of connectivity, counting “the viola-

tions of nearest neighbour relationships” (see p. 3204 of [39]). [44] define the connectivity as

follows:

If nni(j) is defined as the jth nearest neighbour of item i, and xinni(j) is defined as below:

xinniðjÞ ¼

(
0 if i and j are in the same cluster

1

j otherwise

Then for a data matrix M containing m rows and n columns with a clustering solution C1, C2,

. . .Ck, the connectivity is defined as:

ConnðCÞ ¼
Xm

i¼1

Xn

j¼1

xinniðjÞ ð30Þ

The value of the connectivity measure ranges from zero to infinity and a smaller value is

desired [44].

Based on these validation techniques, we compare clustering using Euclidean distances

with clustering using Manhattan distances. Table 3 provides an overview of the results of these

three cluster validation techniques.

Although the values for the Euclidean and Manhattan distances in Table 3 differ by a small

factor, it seems that the Manhattan distance used with Ward’s clustering algorithm yielded bet-

ter results than using the Euclidean distance in terms of cluster compactness, stability and con-

nectedness. This shows that the important characteristic of Ward’s clustering algorithm,

minimising within-cluster variation, and maximising between-cluster variation, is, in fact,

enhanced by using the Manhattan distance metric.

4 Conclusion

This paper investigated the use of Manhattan distances with Ward’s clustering algorithm. An

important component of this research was the generalisation of Ward’s method for use with a

l1 norm distance such as the Manhattan distance. Ward’s method is generalised to include

Manhattan distances.

In the application Ward’s clustering algorithm is used to classify a set of Indo-European

languages. The results from using Ward’s method with Euclidean distances was compared to

Table 3. Comparison of Cluster Validation: Euclidean Distance vs. Manhattan distance.

Cluster Characteristic Validation Measure Euclidean Distance Manhattan Distance Best Result

Compactness and Separation Silhouette Width 0.2129 0.2571 Manhattan

Dunn Index 0.5557 0.6246 Manhattan

Connectedness Connectivity 17.10 16.52 Manhattan

doi:10.1371/journal.pone.0168288.t003
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the results from using Ward’s method with Manhattan distances. This classification in the

form of hierarchical cluster analysis successfully reproduced the phylogenetic classification of

the languages. Validation was not only based on comparing the two clusterings with a tree con-

structed based on the linguistic ancestry, but also on measures such as cluster compactness,

separation and connectedness.

The Manhattan distance method yielded the most. The Robinson-Foulds distance between

the tree constructed as benchmark and the tree resulting from Ward’s method with the Man-

hattan distance was less than the distance from the benchmark tree to the tree using Euclidean

distances. Using measures like the Dunn Index, Silhouette width and connectivity, it was also

shown that intra-cluster distances were minimised and inter-cluster distances were maxi-

mised. In our situation, the use of an alternative objective function (in this case least absolute

error) with Ward’s function produces more accurate results than Ward’s method with the

Euclidean distance metric.

The proposed methodology can not only be applied to other language families beyond

Indo-European languages, but also to other languages within this family. Because many other

Indo-European languages do not make use of the Latin alphabet, further research could be

done on how to compare languages with different alphabets. This could be done by transliter-

ating or using single units of sound from languages with different scripts and map these to

their counterparts in the Latin alphabet.

Another possibility for further research is the use of tri-gram frequencies to form the SLS.

This would mean having a three-dimensional SLS. The Manhattan metric could still be used in

this case, as well as Ward’s method of linkage within the hierarchical clustering process, mak-

ing this adaptation a natural extension of this research.

Ultimately, we established that Ward’s clustering algorithm can be used in conjunction

with Manhattan distances, without the characteristic of minimising within-cluster variation

and maximising between-cluster variation being violated, and that for this specific case it pro-

duced better results than using Euclidean distances.
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