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Abstract

Objectives—Current pancreatic cancer diagnostics cannot reliably detect early disease or 

distinguish it from chronic pancreatitis. We test the hypothesis that optical spectroscopy can 

accurately differentiate cancer from chronic pancreatitis and normal pancreas. We developed and 

tested clinically-compatible multimodal optical spectroscopy technology to measure reflectance 

and endogenous fluorescence from human pancreatic tissues.

Methods—Freshly-excised pancreatic tissue specimens (39 normal, 34 chronic pancreatitis, 32 

adenocarcinoma) from 18 patients were optically interrogated, with site-specific histopathology 

representing the gold standard. A multinomial logistic model using principal component analysis 

and generalized estimating equations provided statistically rigorous tissue classification.

Results—Optical spectroscopy distinguished pancreatic cancer from normal pancreas and 

chronic pancreatitis (sensitivity 91%, specificity 82%, positive predictive value 69%, negative 

predictive value 95%, area under receiver operating characteristic curve = 0.89). Reflectance alone 

provided essentially the same classification accuracy as reflectance and fluorescence combined, 

suggesting that a rapid, low-cost, reduced-footprint, reflectance-based device could be deployed 

without notable loss of diagnostic power.

Conclusions—Our novel, clinically-compatible, label-free optical diagnostic technology 

accurately characterizes pancreatic tissues. These data provide the scientific foundation 

demonstrating that optical spectroscopy can potentially improve diagnosis of pancreatic cancer 

and chronic pancreatitis.
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INTRODUCTION

Pancreatic cancer is the third-leading cause of cancer death in the United States, with a five-

year survival rate of only 7% (1), in part because no clinical method currently exists to 

reliably diagnose the disease in its early stages. The current method of choice to detect 

early-stage pancreatic adenocarcinoma is endoscopic ultrasound-guided fine-needle 

aspiration (EUS-FNA), which has shown the potential to detect small tumors (2) but is 

hindered by wide variations in negative predictive value (reported values vary from 16–96%) 

(2, 3). A recent meta-analysis of 28 clinical studies concluded that it was not advisable to 

use EUS-FNA to exclude the presence of cancer because “malignancy cannot be ruled out 

with adequate reliability (3).” Furthermore, EUS-FNA is unable to consistently distinguish 

pancreatic adenocarcinoma from chronic pancreatitis (4). This key limitation is driven by the 

failure of current methods to provide reliable needle-based tissue sampling suitable for 

histology, as tissue architecture is essential to accurately characterize and differentiate 

inflammatory from neoplastic pancreatic mass lesions. In a prospective clinical study, the 

sensitivity of EUS-FNA for detecting pancreatic adenocarcinoma in the setting of chronic 

pancreatitis was only 54% (4). Therefore, there is a significant clinical need to develop a 

method to more accurately detect and differentiate cancer and chronic pancreatitis.

Optical spectroscopy has shown potential to assist with clinical (pre-) cancer diagnostics in 

many organs and tissues (5, 6), including needle-based in vivo diagnostics (7, 8). The 

feasibility of tissue optical spectroscopy for characterizing human pancreatic disease has 

been demonstrated in ex vivo pilot studies (9–13). Pancreatic tissue histology (Fig. 1) 

illustrates some of the key morphological and biochemical changes that are typically 

associated with pancreatic cancer and chronic pancreatitis, relative to normal pancreas. 

These changes are expected to affect the manner in which incident light propagates through 

the tissue before returning to the surface, influencing the detected optical reflectance and 

fluorescence spectra.

Here, we report a clinically-compatible optical spectroscopy technology and test the 

hypothesis that this technology can accurately distinguish between pancreatic cancer, 

chronic pancreatitis, and normal pancreatic tissue. The analysis of optical measurements 

from a medium as complex as human tissue, and the subsequent use of this optical data for 

tissue classification, is a challenging task due to the multifaceted information present in each 

measurement. Therefore, mathematical models (12, 13) play a crucial role in optical 

detection of disease by extracting quantitative diagnostic parameters from the measured 

optical spectra of human tissues. Furthermore, biostatistical algorithms are critical for 

rigorously assessing the potential of new diagnostic techniques, as they can quantitatively 

assess diagnostic accuracy while also correcting for effects of correlations in the data set 

(such as the measurement of multiple tissue sites from each patient) (14). With these 
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considerations in mind, our technology includes instrumentation for measuring optical 

reflectance and fluorescence, a principal component analysis model to analyze these 

complicated optical signals, and a set of biostatistical algorithms to rigorously test the ability 

of the optical method to accurately classify pancreatic tissues. By performing this ex vivo 
study, we were able to compare the results of our technique against the corresponding “gold 

standard” histopathology readings obtained from the same tissue sites that we measured 

optically.

MATERIALS AND METHODS

Clinically-compatible instrumentation

To acquire optical spectra from human pancreatic tissues, prototype clinically compatible 

investigational instrumentation was developed (10, 11, 15) and employed. The 

instrumentation (Supplementary Figure 1) included two light sources: a continuous-wave 

tungsten-halogen lamp (HL 2000FHSA, Ocean Optics, Dunedin, FL) for reflectance and a 

355 nm laser (PNV001525-140, JDS Uniphase, San Jose, CA) to excite tissue fluorescence. 

To deliver light to and collect light from the tissue surface, a custom fiber-optic probe 

(Ocean Optics) was employed. The probe contained three fibers, each with diameter 660 µm, 

arranged in a triangular configuration (Supplementary Figure 1). One fiber delivered light 

from the lamp to the tissue, the second fiber delivered laser light to the tissue, and the third 

fiber collected light that returned to the tissue surface. The collected light was sent to a 

spectrograph (MS 125, Oriel Instruments, Stratford, CT) and an intensified charge-coupled 

device (ICCD 2063, Andor Technology, Belfast, Northern Ireland) for wavelength-resolved 

detection. The reflectance and fluorescence measurements were performed sequentially, 

with data acquisition times less than 500 ms for reflectance and less than 1 s for 

fluorescence.

Acquisition of optical and histopathological data

Reflectance and fluorescence spectra were acquired from freshly-excised human pancreatic 

tissues within 30 minutes of excision (Fig. 2). The Institutional Review Board of the 

University of Michigan approved the study (HUM00017352) and patient consent was 

obtained prior to all measurements. Multiple sites from each tissue specimen were 

measured, and two reflectance and two fluorescence measurements were acquired from each 

site (with the exception of one site, from which only one of each measurement was taken). 

For each measured site on each tissue specimen, biopsy and histopathology were performed 

to obtain the diagnostic “gold standard.” After the optical measurements were acquired at a 

given site, the fiber-optic probe was kept in position at that site to mark the location of the 

site until the pathologist was ready to perform a tissue biopsy of the site, and the biopsy was 

obtained by the pathologist immediately after the probe was removed. Biopsies were 3–5 

mm in diameter, comparable to the ~1 mm-diameter region of tissue (16) interrogated by the 

fiber-optic probe. These tissue biopsies were subsequently fixed in formalin, paraffin-

embedded, sectioned, stained with hematoxylin and eosin for histologic examination, and 

analyzed via histopathology. In all, 18 patients (39 normal sites, 34 pancreatitis sites, and 32 

adenocarcinoma sites) were evaluated.
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Data pre-processing

Reflectance spectra for which the detected signal at 550 nm divided by the detected signal at 

650 nm (R550/R650) was less than 0.2 were removed from the data set because these spectra 

were dominated by absorption from blood. It is important to note that the presence of blood 

is not considered problematic in tissue-optics studies because blood can be avoided by 

repositioning the tip of the probe (8), removed by suctioning the region of interest (7), or 

accounted for mathematically (12, 13). Fluorescence spectra with a signal-to-noise ratio 

(SNR) of less than 30 were also removed, because these spectra were considered too noisy 

to properly analyze. Prior to data analysis, all raw spectra were background-corrected, 

corrected for instrument response, smoothed, and normalized to peak intensity. The resulting 

corrected spectra were used for data analysis.

Identification and removal of outlier sites from the data set

A residual-based method (17) was employed to detect and remove outlier sites for which the 

two measured fluorescence or reflectance spectra were extremely different from each other. 

This was done through a series of linear mixed models where the spectrum measurements at 

specific wavelengths were regressed on the tissue diagnosis with a random intercept to 

account for correlation among sites that originated from the same patient. Ten regressions 

were performed on the fluorescence spectra at wavelengths of 375.18, 417.19, 423.38, 

427.52, 444.04, 452.99, 466.08, 479.16, 502.57, and 511.52 nm, and ten regressions were 

also performed on the reflectance spectra at wavelengths of 426.827, 440.598, 461.255, 

481.913, 490.175, 541.130, 544.573, 612.053, 625.135, and 755.964 nm.

For each of the regressions, the difference between the residuals of the two duplicate 

measurements at each site were calculated and ranked in order of magnitude. The ranks for 

the ten regressions were then averaged to give an overall fluorescence or reflectance average 

rank for each site. Sites whose overall mean rank exceeded the 85th percentile of the total 

number of sites were flagged as potential outliers. Through this method five sites were 

identified as having a pair of very different reflectance spectra, and four additional sites were 

identified as having a pair of very different fluorescence spectra. Each site with two 

extremely different measurements was removed from the analysis (unless one of those two 

measurements had been removed from the data set previously due to low R550/R650 value or 

low fluorescence SNR), and for the remaining sites, the two measured spectra were 

averaged. Of the 117 sites from which measurements were acquired, a total of 12 sites were 

removed from the data set due to low R550/R650 value, low fluorescence SNR, or high 

degree of difference between the two reflectance or fluorescence measurements.

Principal Component Analysis model

Differences among the tissue types were observed in both the reflectance and the 

fluorescence spectra (Figs. 2(B, C)). To quantitatively characterize these differences, a 

standard Principal Component Analysis (PCA) model (18) was employed to extract the 

principal components from each reflectance and fluorescence spectrum. The inputs to the 

PCA code were the corrected reflectance and fluorescence spectra after pre-processing and 

outlier removal were performed (see data pre-processing and outlier identification/removal 

paragraphs above), without any additional correction of the spectra for attenuation artifacts. 
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The PCA code was written in MATLAB (Mathworks, Natick, MA) using functions that 

were built into the MATLAB programming language.

The first three reflectance and fluorescence principal components, their scores, and their 

statistical significance for distinguishing between the tissue types are displayed in Fig. 3 and 

Supplementary Table 1. The first reflectance principal component score (RPC1) and the first 

fluorescence principal component score (FPC1) were the most statistically significant (P < 

0.01) for distinguishing adenocarcinoma from normal pancreatic tissue, distinguishing 

adenocarcinoma from chronic pancreatitis, and distinguishing chronic pancreatitis from 

normal pancreas.

Tissue classification algorithm – statistical methods

Selection of the variables used in the tissue classification algorithm was determined through 

multinomial logistic regression using Generalized Estimating Equations (GEE) (19–21) to 

statistically account for the intra-patient correlations in the data arising from the fact that the 

data set included multiple tissue sites from each patient. GEE has been previously employed 

in medical physics studies to correct for intra-patient correlations (14, 22–24), for instance, 

in ophthalmology, in which there are correlations between data taken from each of the two 

eyes of a single patient (14). However, optical methods for tissue classification typically do 

not account for statistical correlations between data obtained from multiple sites on a given 

patient. Here, we present an optics-based tissue classification algorithm that incorporates 

GEE to rigorously account for these intra-patient correlations, as we believe this to be a key 

improvement that should be widely adopted by the biomedical optics community. For tissue 

classification, a “ leave-two-patients-out” cross-validation (25) was employed 

(Supplementary Figure 2).

Tissue classification algorithm – selection of variables

For each variable extracted by the PCA model, a GEE model with an exchangeable 

correlation structure was employed to contrast the differences between the mean values of 

that variable for each pair of tissue types. For each contrast, a Wald test statistic using the 

robust covariance matrix was calculated to account for the repeatedly measured observations 

from the same patients (26). Following the identification of significant predictor variables 

(Supplementary Table 1), correlations between the selected variables were calculated and 

highly correlated variables were removed to minimize the multicollinearity.

The variables used in the algorithm that included reflectance and fluorescence were the 

scores of the first three reflectance principal components (RPC1, RPC2, RPC3), and the 

score of the first fluorescence principal component (FPC1). The score of the second 

fluorescence principal component (FPC2) was dropped due to extreme correlation with 

RPC2 (Pearson correlation = 0.76). The third fluorescence principal component FPC3 was 

dropped because it was not statistically significant for any of the tissue comparisons 

investigated in this study (Supplementary Table 1).

Wilson et al. Page 5

Pancreas. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tissue classification algorithm – “leave-two-patients-out” cross-validation

The classification algorithm (Supplementary Figure 2) was run nine times, and each time, 

the data set was split into a training set of 16 patients and a test set of two patients. The 

algorithm was executed nine times because there were 18 patients overall and each patient 

was put into the test set exactly once. In this way, the algorithm was always blinded to the 

patient data in the testing set. For each pair of training and test data sets a standard 

multinomial logistic regression was fit to the training dataset, which is then used to generate 

optical diagnosis probabilities of adenocarcinoma, chronic pancreatitis, and normal tissue 

types for the observations in the test data set. Thresholds were then applied to these 

probabilities to determine the sensitivity, specificity, positive predictive value, negative 

predictive value, and area under the receiver operating characteristic (ROC) curve for 

distinguishing cancer sites from non-cancer (normal and chronic pancreatitis) sites. Ternary 

plots of the diagnosis probabilities of adenocarcinoma, chronic pancreatitis, and normal 

pancreas are shown in Supplementary Figure 3 (using a combination of reflectance and 

fluorescence parameters) and Supplementary Figure 4 (using (a) only reflectance parameters 

and (b) only fluorescence parameters).

RESULTS

Variables from the PCA model were input into the tissue classification algorithm 

(Supplementary Figure 2) to distinguish between adenocarcinoma, chronic pancreatitis, and 

normal pancreas. The outputs of the classification algorithm were the optical diagnosis 

probabilities P(N), P(CP), and P(A) of each tissue site being normal, chronic pancreatitis, or 

adenocarcinoma. Ternary plots of the optical diagnosis probabilities P(N), P(CP), and P(A) 
were created for classification procedures that used both reflectance and fluorescence 

(Supplementary Figure 3), as well as reflectance only (Supplementary Figure 4(a)) and 

fluorescence only (Supplementary Figure 4(b)).

To determine the accuracy of the optical method for detecting pancreatic adenocarcinoma 

using reflectance and fluorescence PCA parameters, a threshold was applied to P(A). 
Specifically, a site was diagnosed as cancer if a manually-defined threshold P(A) > 0.3 was 

met. The resulting sensitivity, specificity, PPV, and NPV for distinguishing adenocarcinoma 

from non-cancerous tissues (Table 1) were calculated using cross-validation to be 91%, 

82%, 69%, and 95%, respectively. The user-defined threshold on P(A) can be raised or 

lowered depending on whether the operator wishes to optimize the procedure for maximum 

sensitivity or maximum specificity. To demonstrate this concept, the sensitivity and 

specificity calculated for different thresholds on P(A) were employed to generate ROC 

curves for distinguishing adenocarcinoma from non-cancerous tissues (Fig. 4). The area 

under the ROC curve was 0.89 for the algorithm including both reflectance and fluorescence 

PCA parameters. These results show the high diagnostic accuracy of the optical method 

employing both reflectance and fluorescence, as described in this report.

Additional variations of the classification algorithm were run to compare the results obtained 

by using only reflectance variables (RPC1, RPC2, RPC3) and only fluorescence variables 

(FPC1, FPC2) with those obtained by using a combination of reflectance and fluorescence 

variables (RPC1, RPC2, RPC3, FPC1). For these comparisons, thresholds were manually 
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selected such that the resulting sensitivity was the same (91%) for all three algorithms, and 

then the corresponding specificity, PPV, and NPV of the three algorithms were compared.

Using only reflectance variables, and choosing the threshold of P(A) > 0.20 for cancer 

diagnosis, the sensitivity, specificity, PPV, and NPV for distinguishing adenocarcinoma from 

non-cancerous tissues were 91%, 84%, 71%, and 95% (Table 1). The area under the ROC 

curve was 0.89 when only reflectance variables were employed (Fig. 4). Using only 

fluorescence variables, and choosing the threshold of P(A) > 0.22 for cancer diagnosis, the 

sensitivity, specificity, PPV, and NPV for distinguishing adenocarcinoma from non-

cancerous tissues were 91%, 78%, 65%, and 95% (Table 1). The area under the ROC curve 

was 0.86 when only fluorescence variables were employed (Fig. 4).

These results show that optical spectroscopy provided accurate classification of pancreatic 

disease. Interestingly, for distinguishing between the tissue types measured in this study, 

using reflectance alone provided essentially the same diagnostic accuracy as using 

reflectance and fluorescence combined (Table 1). This is a significant finding, as an optical 

device that used only the reflectance modality would be less expensive, more compact, and 

faster when performing measurements.

DISCUSSION

In this study, we have developed and employed clinically-compatible optical spectroscopy 

technology to distinguish pancreatic cancer from non-cancerous pancreatic tissues (normal 

and chronic pancreatitis). The tissue optical data were analyzed with a novel mathematical 

algorithm that combined principal component analysis with a statistically rigorous tissue 

classification procedure. This technology was assessed, for the first time, on a set of 18 

patients by using a “leave-two-out” cross-validation technique in which the classification 

results for each test set of two patients were compared with those of histopathology, as the 

diagnostic gold standard. The optical method accurately classified pancreatic cancer sites, 

with a sensitivity, specificity, positive predictive value, and negative predictive value of 91%, 

82%, 69%, and 95%, respectively, with an area under the receiver operating characteristic 

curve of 0.89. These results suggest that optical spectroscopy has the potential to distinguish 

pancreatic cancer from non-malignant pancreatic tissues to provide immediate diagnostic 

feedback in a clinical setting, since the data collection and analysis can be performed in a 

few seconds. This novel approach has the potential to revolutionize needle-based pancreatic 

tissue characterization and improve clinical diagnostics in this most challenging patient 

population. The technology could also be employed surgically, using a hand-held optical 

probe for tumor margin detection.

In this study, tissue classification employing only reflectance provided nearly identical 

results to those obtained with a combination of reflectance and fluorescence. This finding 

can possibly be attributed to an overlap between the information encoded in the reflectance 

and fluorescence principal components. The reflectance data is known to contain notable 

information about tissue scattering, which is partially due to collagen in the tissue. However, 

collagen is also a prominent endogenous fluorophore in human pancreatic tissue, so the 

information about collagen is also found in the fluorescence spectra. Therefore, it is to be 
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expected that the reflectance and fluorescence principal components would include 

overlapping information.

In Fig. 3(B), the first fluorescence principal component contains a spectral feature near the 

peak emission wavelength (~400 nm) of collagen fluorescence, which has been shown to 

distinguish between these tissue types in our previous work (13). Fig. 3(A) shows that the 

second and third reflectance principal components display spectral features similar to those 

of hemoglobin absorption, which has a distinctive Soret peak near 420 nm and secondary 

peaks near 545 nm and 575 nm. Since absorption (from hemoglobin) and scattering (from 

tissue components including collagen) play prominent roles in determining the measured 

reflectance spectrum, it makes sense that the first reflectance principal component could 

primarily include information about collagen scattering and the second and third reflectance 

principal components could primarily include information about hemoglobin absorption. 

Since the fluorescence spectrum also contains prominent information about collagen, as well 

as artifacts of hemoglobin absorption, it is quite possible that the fluorescence data is not 

providing a significant amount of diagnostic information that is different from that provided 

by the reflectance.

The diagnostic dilemma facing clinicians who care for patients with possible pancreatic 

disease is to accurately distinguish malignancy from chronic pancreatitis. Delay or failure to 

identify cancer contributes to the dismal survival rate associated with pancreatic 

adenocarcinoma. Using traditional methods of imaging, malignancy and inflammation share 

many histological features, and the dense fibrosis observed in both conditions renders 

aspirated cells (cytology via FNA) insensitive in many clinical situations. In addition, 

chronic pancreatitis has different diagnostic and treatment strategies, so there remains 

intrinsic value to confirming an enigmatic diagnosis in the patient with severe, unexplained 

abdominal pain, where pancreatic disease remains a possibility.

This work has demonstrated for the first time that quantitative tissue optical spectroscopy 

using visible light can be employed for classification of human pancreatic disease. 

Traditionally, the pancreas has been considered a challenging organ to study due to its 

location deep in the retroperitoneum and the lack of a non-invasive tissue gold standard for 

comparison. Our study, using freshly-excised surgical specimens containing the changes of 

both chronic pancreatitis and adenocarcinoma (as typically seen in this patient population) 

and the gold standard of tissue histopathology, provides the scientific proof of principle for 

the potential role of optical tissue characterization of the pancreas in vivo. Current 

pancreatic cancer detection methods, which employ ultrasound as the source of contrast, are 

unable to reliably detect the disease (27), especially in the setting of concurrent 

inflammation (pancreatitis) (4). Our technique has the potential to provide significantly 

increased contrast to reliably detect pancreatic cancer by optically characterizing disease-

related changes in the tissue. The innovative optical technology developed offers rapid data 

acquisition and analysis to provide immediate diagnostic feedback to the clinician, using 

statistically rigorous algorithms that can be tailored to the specific clinical question of 

interest (cancer versus non-cancer, cancer versus pancreatitis, cancer versus normal, 

pancreatitis versus normal).
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To establish the feasibility of clinical translation, we have addressed several limitations that 

must be overcome before the technology can be employed clinically, either as an 

intraoperative tool for tumor margin detection or as an endoscopic tool for needle-based 

tissue diagnostics. The data analyzed in this study were from freshly-excised human 

pancreatic tissues (ex vivo); therefore, the efficacy of the data analysis methods must be 

verified to be the same for in vivo human tissue. For minimally invasive applications, the 

technology must be incorporated into an endoscopic device that is compatible with the EUS 

procedure. Toward these goals, we have performed three important studies. First, we 

employed tissue-simulating “phantoms” to verify the accuracy of our method for both an ex 
vivo fiber-probe and an endoscope-compatible fiber-probe. Second, we verified that the 

method extracted consistent values of ex vivo human pancreatic tissue morphology 

properties despite large variations in tissue blood content over time. These two studies 

provided further evidence that the method is translatable to in vivo human pancreatic tissue. 

Third, we conducted a pilot study to optically interrogate human pancreatic tissues in vivo 
during surgery (28). Preliminary results from this in vivo study demonstrated that the optical 

method is able to extract the same diagnostically-relevant tissue parameters from in vivo 
data as were extracted from ex vivo data, and that these parameters can be employed to 

distinguish cancerous tissues from normal tissues in vivo in the same manner as they were 

employed for ex vivo data.

The results of these studies will be employed to appropriately inform the design of clinical 

optical diagnostic technology. We note that only data from normal, chronic pancreatitis, and 

adenocarcinoma sites were analyzed in the work reported here, although the methods could 

also be applicable to diagnosis of pre-malignant conditions and detection of cancer within a 

site containing several different tissue types. With this goal in mind, we conducted a pilot 

study that suggested the potential of the method to distinguish premalignant human 

pancreatic tissue sites from normal human pancreatic tissue sites (29).

In conclusion, we have presented an optical method for detection of pancreatic disease and 

employed a rigorous biostatistical method to demonstrate its accuracy for classifying 

pancreatic cancer, chronic pancreatitis, and normal pancreatic tissue. By showing the ability 

to reliably detect pancreatic cancer and distinguish cancer from chronic pancreatitis, our 

method provides a potentially valuable inroad toward addressing an important unmet clinical 

need. The technology developed does not require the administration of exogenous contrast 

agents to patients and the portable clinical device is constructed with components at a 

reasonable manufacturing cost. Furthermore, our study suggests that it may be possible to 

streamline the device even further (in terms of cost, footprint, and data acquisition and 

processing time) by employing only reflectance instrumentation, as using reflectance alone 

was shown to provide nearly identical diagnostic accuracy to using both reflectance and 

fluorescence. In addition to needle-based disease diagnosis, our technique is potentially 

applicable for rapid on-site detection of tumor margins during pancreatic surgery. Thus, our 

results provide the scientific “proof of principle” that the optical spectroscopic method 

described here has the potential to assist with the detection of pancreatic cancer, as well as 

chronic pancreatitis, in a clinical setting.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Representative histology images of (A) normal pancreatic tissue, (B) chronic pancreatitis 

(inflammation), and (C) adenocarcinoma. Histopathological analysis shows increased 

stromal collagen (light pink stain) in adenocarcinoma and chronic pancreatitis (relative to 

normal pancreas), as well as morphological changes in cell nuclei (purple stain) in 

adenocarcinoma (relative to both normal pancreas and chronic pancreatitis). These 

biochemical and morphological changes in diseased tissues provide a useful source of 

endogenous contrast for optical disease detection in the pancreas. Scale bar = 50 µm.
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Fig. 2. 
(A) Pancreatic tissue measurement (image from (10), used with permission) and patients and 

sites measured in this study. Mean reflectance spectra (B) and fluorescence spectra (C) from 

these measurements revealed significant differences between normal tissue, chronic 

pancreatitis, and adenocarcinoma. Error bars represent the standard error.
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Fig. 3. 
(A, B) First three principal components (accounting for 95% of the spectral variation) of the 

reflectance (A) and fluorescence (B) data sets. (C, D) Parameters extracted from principal 

component analysis (PCA) of tissue optical spectra, shown with their statistical significance 

for tissue classification. (C) The first reflectance principal component score was statistically 

significant for distinguishing adenocarcinoma from normal pancreatic tissue (P < 1×10−4), 

distinguishing adenocarcinoma from chronic pancreatitis (P < 9×10−3), and distinguishing 

chronic pancreatitis from normal pancreatic tissue (P < 2×10−3). (D) The first fluorescence 

principal component score was also statistically significant for distinguishing 

adenocarcinoma from normal pancreatic tissue (P < 1×10−4), distinguishing adenocarcinoma 

from chronic pancreatitis (P < 3×10−3), and distinguishing chronic pancreatitis from normal 

pancreatic tissue (P < 5×10−3). To remove negative values for ease of display, an offset of 4 

was added to all principal component scores before they were plotted on the bar graph.
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Fig. 4. 
Receiver operating characteristic (ROC) curves for distinguishing malignant 

(adenocarcinoma) tissue sites from non-malignant (normal and chronic pancreatitis) tissue 

sites using PCA parameters from both reflectance and fluorescence data (solid blue line), 

PCA parameters from only reflectance data (dashed red line), and PCA parameters from 

only fluorescence data (dashed green line). The ROC curves were generated by applying a 

threshold to the optical diagnosis probability of adenocarcinoma. The area under the ROC 

curve was 0.89 for combined reflectance and fluorescence parameters, 0.89 for only 

reflectance parameters, and 0.86 for only fluorescence parameters.
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