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Abstract

The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances 

in the life sciences that have grown from the ability to edit genomes within living cells. In this 

review we summarize CRISPR-based technologies that enable mammalian genome editing and 

their various applications. We describe recent developments that extend the generality, DNA 

specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and some 

of the remarkable advancements in basic research, biotechnology, and therapeutics development 

that these developments have facilitated.

Introduction

Genome editing, the introduction of a desired change to the sequence of genomic DNA, is 

driving a revolution in the biomedical sciences and has the potential to provide future 

treatments for many human diseases with a genetic component. The ideal genome editing 

tool would edit any genomic locus with high efficiency, high DNA sequence specificity, and 

little or no undesired byproducts. Such an ideal agent has not yet been developed and is 

unlikely to exist in nature, given that naturally occurring forms of genome-editing proteins 

evolved to achieve only partially related functions such as modulation of gene expression or 

protection from viral infection. Researchers have therefore recognized the need to develop 

new tools that increase the scope and effectiveness of genome editing, especially in 

eukaryotic cells and animal models of human disease. Recent efforts have resulted in 

remarkable advances towards this goal in a relatively short time period.

Early genome editing efforts were enabled by the discovery that the endogenous cellular 

repair pathway homologous recombination could be used to replace a small portion of the 

genome of a living cell with an exogenous donor DNA sequence. To use this strategy for 

genome editing, the exogenous DNA sequence must have homology to the target genomic 
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DNA site. Following transfection of the donor DNA, incorporation at the desired locus 

spontaneously occurs very inefficiently, at rates of 1 in every ~103 to 109 cells, depending on 

the cell type and cell state (Smithies et al., 1985; Thomas et al., 1986). This technique of 

spontaneous homologous recombination was used in mouse embryo-derived stem cells, 

allowing researchers to generate mice with a desired genotype (Capecchi, 1989).

In addition to the low efficiency of editing using spontaneous homologous recombination, 

this approach could also induce undesired genome editing events in which the exogenous 

DNA sequence was incorporated into the genome at random sites more frequently than at 

the desired locus (Lin et al., 1985). A key advance in overcoming this limitation was the 

observation, first in yeast and then in mammalian cells, that the introduction of a double-

stranded break (DSB) into the genomic locus using a meganuclease, an endonuclease that 

recognizes and cleaves a long DNA sequence, would stimulate homology-driven DNA 

incorporation (Figure 1a) (Rudin et al., 1989; Rouet et al., 1994). This “homology-directed 

repair” (HDR) strategy enhanced the efficiency of the desired genome editing event by two 

to three orders of magnitude, resulting in targeted incorporation typically being much more 

efficient than incorporation at random sites in the genome (Choulika et al., 1995; Jasin, 

1996).

Despite this breakthrough, genome editing still suffered from two major drawbacks. First, 

non-homologous end joining (NHEJ) also occurs at the site of DSBs, typically more 

efficiently than HDR, resulting in stochastic insertions and deletions (indels) of nucleotides 

at the target locus (Figure 1a) (Jeggo, 1998). While NHEJ-mediated genome editing is 

useful for gene disruption, when precise genome editing is desired indels are unwanted 

byproducts. Second, since the probability that a known meganuclease cleaves a particular 

target locus of interest is extremely small, either a meganuclease recognition site must be 

incorporated into the genomic locus of interest (Jasin, 1996), or a meganuclease must be 

engineered to cleave the target locus (Sussman et al., 2004; Rosen et al., 2006; Grizot et al., 

2009). Overcoming the first drawback is a focus of current research, and will be discussed 

later in this review. To address the second drawback, researchers turned to zinc-finger 

nucleases (ZFNs) (Bibikova et al., 2002; Bibikova et al., 2003; Porteus and Baltimore, 2003; 

Urnov et al., 2010) and transcription activator-like effector nucleases (TALENs) (Figure 1b) 

(Li et al., 2011a; Li et al., 2011b; Joung and Sander, 2013), engineered nucleases based on 

arrays of naturally occurring DNA-binding domains fused to the nonspecific DNA cleavage 

domain from FokI. Because the amino acid sequences of zinc finger arrays and TALE repeat 

arrays, unlike most DNA-binding proteins, can be readily designed to bind to virtually any 

target DNA sequence, ZFNs and TALENs can be engineered to cleave a target genomic loci 

with fairly high specificity (Carroll, 2008; Boch et al., 2009; Moscou and Bogdanove, 2009; 

Miller et al., 2011; Zhang et al., 2011; Joung and Sander, 2013). The design of ZFNs is 

complicated by their extensive protein-DNA contacts, however, and the cloning of TALEN 

genes is impeded by their highly repetitive nature. In addition, each new target locus requires 

the design, gene synthesis, expression, and validation of a new ZFN or TALEN protein 

(Figure 1b) (Urnov et al., 2010; Miller et al., 2011).

This significant barrier to genome editing—that each new target site requires the design and 

construction of a new nuclease—was substantially lowered by the advent of CRISPR-Cas9 

Komor et al. Page 2

Cell. Author manuscript; available in PMC 2018 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as an RNA-guided DNA endonuclease (Garneau et al., 2010; Jinek et al., 2012; Gasiunas et 

al., 2012). In this system, a Cas endonuclease protein forms a complex with a “guide RNA” 

molecule and localizes to a target DNA sequence following simple guide RNA:genomic 

DNA base pairing rules (Figure 1b) (Doudna and Charpentier, 2014; Hsu et al., 2014). The 

target DNA sequence (the protospacer) must be both complementary to the guide RNA, and 

also contain a “protospacer-adjacent motif” (PAM), a short DNA sequence required for 

compatibility with the particular Cas protein being used (Deveau et al., 2008; Garneau et al., 

2010; Sapranauskas et al., 2011; Jinek et al., 2012; Gasiunas et al., 2012). While this new 

technology places a modest limitation on the number of genomic sites amenable to genome 

editing due to the PAM requirement, it replaces the complex protein design and engineering 

tasks associated with ZFNs and TALENs with the much simpler task of designing a new 

guide RNA for each genomic site of interest using simple Watson-Crick base-pairing (Cong 

et al., 2013; Mali et al., 2013b; Jinek et al., 2013).

The elucidation of the mechanics of CRISPR-Cas9 (Barrangou et al., 2007; Garneau et al., 

2010; Deltcheva et al., 2011; Sapranauskas et al., 2011; Jinek et al., 2012; Gasiunas et al., 

2012), and its adaptation for use in eukaryotic genome editing (Cong et al., 2013; Mali et al., 

2013b; Wang et al., 2013; Cho et al., 2013; Hwang et al., 2013b; Jinek et al., 2013) has had a 

transformative impact on the life sciences. The ease with which new DNA sequences can be 

targeted for genome editing has enabled scientists to rapidly discover new gene functions, 

develop new cell and animal models of diseases, and make substantial progress towards 

human therapeutics. In this review we summarize some of the recently developed tools that 

use CRISPR-Cas9 for the manipulation of mammalian genomes, and their applications in 

basic science, biotechnology, and medicine.

New natural CRISPR enzymes

Several natural CRISPR nucleases have now been used for mammalian genome editing. 

Each CRISPR nuclease can vary in size, PAM requirement, and location of the introduced 

DSB within the protospacer (Table 1). The most commonly used variant is the 1,368-residue 

Cas9 protein from Streptococcus pyogenes (SpCas9) (Haft et al., 2005). Most known 

naturally occurring Cas9 nucleases including SpCas9 natively use two different RNA 

molecules, the CRISPR-RNA (crRNA) and the trans-activating crRNA (tracrRNA) to form a 

functional guide RNA:Cas9 complex (Deltcheva et al., 2011). The discovery that a single 

guide RNA (sgRNA) could take the place of the crRNA and the tracrRNA further simplified 

the use of the CRISPR-Cas9 system such that only one protein and one RNA molecule are 

needed to achieve RNA-programmed DNA cleavage (Jinek et al., 2012).

The relatively simple PAM requirement of NGG contributes to the popularity of SpCas9 for 

genome editing (Table 1). The Staphylococcus aureus (Sa) Cas9 analog (SaCas9) offers a 

smaller size (1,053 residues) that facilitates some of the applications described below, but 

requires a more complex PAM of NNGRRT (Ran et al., 2015; Friedland et al., 2015). Other 

Cas9 homologs with different PAM requirements have also been used for mammalian 

genome editing. For example, the Streptococcus thermophilus (St) Cas9 proteins St1Cas9 

and St3Cas9 are 1,121 and 1,388 residues and require NNAGAAW and NGGNG PAMs, 

respectively (Table 1) (Gasiunas et al., 2012; Cong et al., 2013; Gasiunas and Siksnys, 2013; 
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Esvelt et al., 2013; Ran et al., 2013b; Muller et al., 2016). The Neisseria meningitides (Nm) 

Cas9 protein (NmCas9) is 1,082 residues and requires a NNNNGATT PAM (Table 1) 

(Gasiunas and Siksnys, 2013; Esvelt et al., 2013; Ran et al., 2013b; Hou et al., 2013; Zhang 

et al., 2015). Table 1 lists other Cas9 homologs that have been validated for mammalian 

genome editing. Nevertheless, SpCas9 remains the most widely used homolog as it is the 

most well characterized, offers a reasonable balance between PAM complexity and construct 

size, and has been extensively tested in a wide variety of contexts.

Recent progress has uncovered additional nucleases capable of RNA-guided sequence-

specific DNA cleavage. For example, both the 1,307-residue Acidaminococcus sp. Cpf1 

(AsCpf1) and the 1,228-residue Lachnospiraceae bacterium Cpf1 (LbCpf1) enzymes have 

been used for mammalian cell genome editing (Zetsche et al., 2015a). In contrast to the 

known Cas9 homologs, these two enzymes natively require only a crRNA, as opposed to a 

dual-guide RNA, a TTTN PAM at the 5′ end, rather than the 3′ end, of the protospacer, and 

cleave the two DNA strands in a staggered, rather than a blunt-ended, configuration (Zetsche 

et al., 2015a; Fonfara et al., 2016). While these and other RNA-programmed endonucleases 

already offer researchers a variety of possible genome editing options, the steadily 

increasing popularity of genome editing, coupled with the development of new precision 

genome editing techniques such as those described below, suggests the continued 

importance of discovering additional programmable DNA-binding or DNA-cleaving 

proteins.

Expanding the targeting scope of Cas9

As genome editing techniques using RNA-guided nucleases become more precise and 

diverse, the need for agents with different PAM requirements increases. The relatively 

simple NGG PAM sequence of SpCas9 occurs on average every 8–12 bp in the human 

genome (Cong et al., 2013; Hsu et al., 2013), a frequency that is not excessively limiting for 

classical HDR- and NHEJ-based genome editing as multiple DNA cleavage locations can 

lead to the same desired HDR or NHEJ outcome. The discovery of additional naturally 

occurring RNA-guided nucleases such as those in Table 1 offer additional targeting 

flexibility. For other genome-editing techniques such as base editing (see below), or when it 

is necessary to distinguish between a wild-type and mutant allele, however, precise targeting 

of a locus with single-nucleotide resolution can be critical. In these cases, the PAM 

requirements can be a major restriction.

Wild-type SpCas9 has been shown to have some activity on sites with NAG and NGA 

PAMs, but typically with much lower efficiencies than on sites with canonical NGG PAMs 

(Jiang et al., 2013; Hsu et al., 2013; Zhang et al., 2014; Kleinstiver et al., 2015b). A recent 

study used a bacterial selection system to identify three new variants of SpCas9 that can 

target NGA, NGAG, and NGCG PAMs with high efficiencies and specificities (Table 1) 

(Kleinstiver et al., 2015b). This study is an exciting example of how a small number of 

mutations—in these cases, three to four—can substantially alter the PAM specificity of an 

RNA-guided nuclease.
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Researchers have also engineered Cas9 enzymes to exhibit relaxed PAM specificities. In one 

approach, an unbiased selection system was used to relax the NNGRRT PAM requirement of 

SaCas9 to NNNRRT (Table 1). The engineered variant had three mutations, and exhibited 

off-target editing comparable to that of the wild-type enzyme in human cells (Kleinstiver et 

al., 2015a). In a different study, the crystal structure of FnCas9 was used to guide the 

rational design of a variant with a relaxed PAM requirement. While the wild-type FnCas9 

recognizes a NGG PAM, the engineered variant (which differs from wild-type at three 

residues) requires only a YG PAM, and can be used to edit mammalian genomes when the 

protein is pre-complexed with sgRNA and directly injected into zygotes (Table 1) (Hirano et 

al., 2016). These important advances expand the number of target loci amenable to RNA-

guided genome editing.

Improving the DNA specificity of CRISPR-based agents

In addition to expanding the targeting scope of genome editing agents, improving their DNA 

specificity has also been a major priority. Researchers have revealed the DNA-targeting 

specificities of CRISPR-based genome editing agents using a variety of approaches. These 

methods include ChIP-seq (Cencic et al., 2014; Kuscu et al., 2014; Wu et al., 2014; O’Geen 

et al., 2015), targeted analysis of genomic sites identified through computational predictions 

(Fu et al., 2013; Hsu et al., 2013), in vitro high-throughput profiling methods (Pattanayak et 

al., 2013), whole-genome sequencing methods (Smith et al., 2014; Veres et al., 2014; Yang 

et al., 2014; Kim et al., 2015), the GUIDE-seq method (Tsai et al., 2015), and the BLESS 

method (Crosetto et al., 2013; Ran et al., 2015). While detailed analyses of these methods 

are beyond the scope of this review, collectively they have revealed the presence of off-target 

activity among wild-type Cas9 homologs with certain sgRNAs and established that no 

simple algorithm or inspection process can accurately and comprehensively predict the off-

target substrates of a given Cas9:sgRNA complex (Tsai and Joung, 2016). In many reported 

cases, off-target sites with more mismatches relative to the on-target site are modified by 

wild-type CRISPR agents more extensively than sites with fewer mismatches. Indeed, off-

target modification in a few studied cases can approach or even exceed the efficiency of on-

target modification (Fu et al., 2013; Kuscu et al., 2014; Tsai et al., 2015; Ran et al., 2015). 

Notably, the inherent specificity of Cpf1 enzymes appears to be higher than that of the 

SpCas9 variant (Figure 2d) (Kim et al., 2016; Kleinstiver et al., 2016b).

Researchers have developed several strategies to substantially improve the specificity of 

SpCas9 (and likely other CRISPR agents) without making any changes to the Cas9 protein 

sequence. Off-target modification by SpCas9 can be decreased up to several orders of 

magnitude simply by truncating the sgRNA of SpCas9 to have fewer than 20 nucleotides of 

complementarity with its target DNA (Figure 2b) (Fu et al., 2014; Tsai et al., 2015). Another 

strategy that improves the specificity of Cas9 is to decrease its activity or lifetime in cells 

after it has had sufficient opportunity to modify the target locus. This strategy improves 

genome-editing specificity as it reduces the amount of time Cas9 can function after its on-

target locus has already been modified and only off-target loci are available for modification. 

For example, the direct delivery of Cas9:sgRNA ribonucleotide protein complexes (RNPs) to 

cells, which results in transient Cas9 activity, rather than plasmid transfection, which results 

in long-lasting Cas9 and sgRNA expression, can increase the ratio of on-target genome 
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editing to off-target genome editing by more than an order of magnitude in mammalian cells 

(Lin et al., 2014b; Kim et al., 2014; Ramakrishna et al., 2014; Zuris et al., 2015; Liu et al., 

2015b).

Researchers have also engineered variants of Cas9 that are activated by light or exogenous 

small molecules. These variants, including an intein-inactivated Cas9 system (Davis et al., 

2015) and a small molecule-dimerized split Cas9 system (Zetsche et al., 2015b), have been 

shown to substantially improve genome editing specificity in mammalian cells compared 

with wild-type Cas9 by carefully controlling the temporal window within which active Cas9 

is generated so that less active Cas9 is present after modification of the on-target loci is 

complete (Figure 2g,h). Similar systems, such as light-activated Cas9 variants (Nihongaki et 

al., 2015a; Hemphill et al., 2015; Jain et al., 2016), split Cas9 variants (Truong et al., 2015; 

Wright et al., 2015), small-molecule induction of Cas9 (Dow et al., 2015), and an engineered 

allosterically regulated Cas9 (Oakes et al., 2016) could also be used to reduce off-target 

genome editing following these same principles.

An additional strategy to reduce off-target genome editing through Cas9 engineering is to 

require that two separate Cas9 binding events take place at the same locus in order to result 

in DNA cleavage. Cas9 can be converted to a nickase enzyme (Cas9n) by inactivating either 

of its two catalytic residues (Mali et al., 2013a; Ran et al., 2013b). By designing two 

sgRNAs that bring separate Cas9n molecules to nick opposite DNA strands, double-stranded 

breaks only occur with simultaneous binding events (Figure 2e). This strategy reduces the 

theoretical likelihood of off-target events from 1/n to ~1/n2; in practice paired nicking 

reduced off-target activity up to several orders of magnitude in mammalian cells while 

retaining on-target activity (Ran et al., 2013a; Mali et al., 2013a). Inactivation of both 

catalytic residues results in dCas9, which cannot cleave either DNA strand but retains its 

ability to bind to a target DNA sequence. Fusion of the nonspecific restriction endonuclease 

FokI, which requires dimerization to become catalytically competent, to dCas9 results in an 

engineered variant that requires dual guide RNAs to coordinate FokI-dCas9 dimerization at a 

specific locus (Figure 2f) (Guilinger et al., 2014b; Tsai et al., 2014; Wyvekens et al., 2015). 

This approach results in up to two orders of magnitude of improved specificity in 

mammalian cells although with somewhat reduced activity compared to wild-type Cas9. 

Because ChIP-seq experiments suggest that dCas9 binding is more promiscuous than Cas9 

cleavage (Wu et al., 2014), however, a paired nickase approach may offer additional 

specificity advantages compared with the use of FokI-dCas9 dimers.

Recently, structure-guided engineering of SpCas9 has yielded variants with improved 

specificity. Several previous studies have implicated excess DNA-binding energy as a source 

of off-target genome editing activity among ZFNs, TALENs, and Cas9 (Gupta et al., 2011; 

Pattanayak et al., 2011; Pattanayak et al., 2013; Guilinger et al., 2014a). By introducing just 

three to four mutations into SpCas9 that neutralize nonspecific electrostatic interactions 

between the protein and the sugar-phosphate backbone of its target DNA, its DNA 

specificity increases dramatically (Figure 2c) (Slaymaker et al., 2016; Kleinstiver et al., 

2016a).
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Together, these advances in enhancing the specificity of CRISPR-based genome editing 

agents in mammalian cells are key developments that increase their promise both as research 

tools, and as potential future therapeutics.

Improving the product selectivity of genome editing agents

Because all of the above genome editing tools are programmable nucleases that create a 

double-stranded break in DNA, a major limitation to the use of these tools is the introduction 

of stochastic indels at the site of genome editing due to NHEJ (Figure 1a). While certain 

applications rely on these indels to disrupt genes, splicing, or regulatory sequences, for many 

applications the unpredictable insertion or deletion of nucleotides at the target locus is not 

desired, and precise editing in which the predominant product is the replacement of one 

allele for another is required. Although HDR is capable of effecting precise allele 

replacement, HDR efficiency is typically quite low (< 5%), depends on many factors 

including cell type and cell state, and is competitive with NHEJ. DNA nicks do not 

commonly result in NHEJ, and thus the usage of a single Cas9 nickase with a donor DNA 

template usually results in lower indel frequency (Cong et al., 2013). This single nickase 

strategy, however, also results in substantially decreased HDR-mediated editing efficiencies 

compared to that of wild-type Cas9 or double nicking strategies, and is not amenable to all 

cell types.

To improve the product selectivity of genome editing to favor precise allele replacement, 

researchers have inhibited certain endogenous DNA repair components to favor HDR over 

NHEJ (Figure 3d). For example, the small molecule Scr7 is known to inhibit DNA ligase IV, 

a key component of NHEJ (Srivastava et al., 2012; Vartak and Raghavan, 2015). 

Administration of Scr7 in combination with Cas9, a sgRNA, and a donor DNA template has 

been shown to enhance HDR:NHEJ ratios substantially in some systems (Vartak and 

Raghavan, 2015; Chu et al., 2015; Maruyama et al., 2015; Pinder et al., 2015), but not in 

others (Song et al., 2016). Small molecules targeting DNA-dependent protein kinase (DNA-

PKcs), another key element of NHEJ, have also been successfully to enhance HDR 

outcomes (Robert et al., 2015). Likewise, shRNA-mediated silencing of KU70, KU80, or 

DNA ligase IV (all involved in NHEJ) substantially suppresses NHEJ-mediated indel 

formation and increases HDR-mediated genome editing when administered in combination 

with Cas9, a sgRNA, and a donor DNA template (Chu et al., 2015).

As an alternative strategy to suppressing NHEJ, a small molecule activator of Rad51, a 

protein involved in HDR, can augment HDR-mediated genome editing when added to cells 

treated with Cas9, a sgRNA, and a donor DNA template (Figure 3d) (Pinder et al., 2015; 

Song et al., 2016). A high-throughput screen designed to identify potential small molecules 

capable of enhancing HDR-mediated genome editing has been used to discover additional 

compounds that can be administered to cells to increase precision genome editing (Yu et al., 

2015). HDR is known to be dependent on many variables, such as the cell- and tissue-type, 

the location of the target DNA within the chromosome, and the cell cycle (Biswas et al., 

1992; Saleh-Gohari and Helleday, 2004; Heyer et al., 2010; Miyaoka et al., 2016). 

Chemically synchronizing cells to arrest them in G-phase by blocking M-phase before 

delivering Cas9 RNP and donor DNA template will increase HDR rates (Lin et al., 2014b).

Komor et al. Page 7

Cell. Author manuscript; available in PMC 2018 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The use of exogenous molecules to manipulate components of the NHEJ or HDR pathways 

therefore can be used to enhance HDR outcomes (Figure 3d), but such treatments are 

typically very perturbative to cells, are cell-type specific, and impair the cell’s ability to 

perform native DNA repair functions. These strategies therefore may have limited relevance 

in a therapeutic context or in research settings in which preserving native cell states is a 

priority.

Judicious design of the donor DNA template can also enhance HDR-mediated precision 

genome editing efficiency. The observation that Cas9 dissociates from its cleaved DNA 

substrate asymmetrically prompted a study on the effects of donor template geometry on 

HDR rates. Researchers discovered that if the ssDNA template is designed such that it can 

anneal to the DNA strand that is released by Cas9 first, HDR-mediated genome editing rates 

can be improved (Figure 3b) (Richardson et al., 2016). Frequently, the high levels of indels 

are exacerbated by the ability of an HDR-mediated product to remain a substrate for 

subsequent cleavage by Cas9 (Figure 3c). In some cases, this reprocessing of desired HDR 

product can be avoided by installing silent (or acceptable) mutations into the donor template 

such that the HDR product contains mutations in the PAM or the PAM-proximal region of 

the protospacer, thereby blocking Cas9 from cutting the product (Figure 3c) (Paquet et al., 

2016).

“Base editing” is a new strategy to introduce point mutations in an RNA-programmed 

manner that does not rely on HDR or double-stranded DNA breaks (Komor et al., 2016). 

The fusion to dCas9 of a cytidine deaminase enzyme that operates on single-stranded DNA 

(but not duplex DNA) allows C to U conversion within a small (~3–5-base) window of the 

protospacer, exploiting the presence of a short segment of accessible single-stranded DNA in 

the “R-loop” ternary complex (Jiang et al., 2016) between Cas9, the guide RNA, and the 

target DNA. To make base editing efficient and permanent in mammalian cells, the dCas9–

cytidine deaminase fusion protein was further engineered to inhibit base excision repair at 

the site of the edit, and to induce cellular mismatch repair to replace the original C:G base 

pair with a T:A base pair (Figure 3a) (Komor et al., 2016). Base editing efficiencies are 

typically much higher than the efficiency of HDR-mediated point mutation. In addition, 

because base editing avoids making double-stranded DNA breaks, indel formation is 

minimized (Nishida et al., 2016; Komor et al., 2016). Current limitations of this new strategy 

include off-target editing that parallels Cas9 off-target DNA cleavage, the requirement of an 

NGG PAM a specific distance from the target C, and the inability to distinguish among 

multiple Cs present within the editing window. Advances described above that expand the 

targeting scope and improve the DNA specificity of Cas9 may offer solutions to some of 

these limitations.

Epigenome Editing

In addition to changing the DNA sequence of a given genome, researchers have also begun 

to edit the epigenome in order to alter the regulation of a target gene, rather than its sequence 

identity (Thakore et al., 2016). One technique to increase expression of a specific gene is to 

tether the dCas9:sgRNA complex to a transcriptional activator and program it to bind near 

the transcriptional start site of a gene of interest. For example, the transcriptional activation 
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domain VP64, which consists of four tandem copies of the Herpes Simplex Viral Protein 16 

(VP16), can be fused directly to the C-terminus of dCas9 and used to increase the expression 

of a wide variety of different genes (Figure 4a) (Mali et al., 2013a; Maeder et al., 2013; 

Perez-Pinera et al., 2013). This fusion has been shown to be target sequence-specific and 

capable of opening chromatin (Polstein et al., 2015). A light-activated version of this system 

has been developed by fusing dCas9 and VP64 or p65, the transactivation domain of NF-

KB, to each member of a light-activated heterodimerizing pair of proteins (Figure 4a) 

(Nihongaki et al., 2015b; Polstein and Gersbach, 2015). In addition, the small molecule-

dimerized split Cas9 system described above has been adapted to generate a small molecule-

activated dCas9-VP64 activator (Figure 4a) (Zetsche et al., 2015b). These systems allow 

spatial and temporal dynamic control of gene activation.

A variety of second-generation dCas9-activator fusions have been subsequently engineered 

that incorporate varying copies of VP16 (Cheng et al., 2013; Chakraborty et al., 2014), the 

tripartite activator VPR (VP64-p65-Rta, where Rta is the transcriptional activation domain 

of the Epstein-Barr virus) (Chavez et al., 2015), or the repeating peptide array SunTag that 

subsequently recruits multiple copies of an antibody-VP64 fusion (Tanenbaum et al., 2014) 

(Figure 4a). These various constructs offer strong gene activation in a variety of mammalian 

cell types (Chavez et al., 2016). Alternately, transcriptional activators can be attached to the 

sgRNA through an RNA hairpin that binds with very high affinity to the MS2 bacteriophage 

coat protein (Peabody, 1993). Coexpression of wild-type dCas9 or dCas9-VP64, the sgRNA-

hairpin construct, and a MS2-VP64 (Zalatan et al., 2015; Konermann et al., 2015) or MS2-

p65-HSF1 (where HSF1 is the activation domain from the human heat-shock transcription 

factor 1) (Konermann et al., 2015) fusion protein results in assembly of an RNA-guided 

transcriptional activator (Figure 4a). The combination of dCas9-VP64 and MS2-p65-HSF1, 

termed the synergistic activation mediator (SAM), exhibits particularly robust transcriptional 

activation (Konermann et al., 2015).

Conversely, dCas9 can be used as a transcriptional repressor on its own, simply exploiting its 

high affinity for target DNA and ability to block components of the transcriptional 

machinery (Qi et al., 2013), or as a fusion to the Kruppel-associated box (KRAB) 

transcriptional repressor (Figure 4b) (Gilbert et al., 2013; Lawhorn et al., 2014; Thakore et 

al., 2015). Together, these techniques of activating (CRISPRa) or repressing (CRISPRi) 

genes at will can be combined to allow researchers to reversibly modulate gene expression 

with a dynamic range of several orders of magnitude (Gilbert et al., 2014). A public tool is 

available to facilitate the design of appropriate sgRNAs to enable efficient CRISPRi and 

CRISPRa (Liu et al., 2015a). Researchers have also used genome-wide sgRNA libraries in 

high-throughput CRISPRi and CRISPRa screens to identify genes that result in phenotypes 

of interest when up- or down-regulated (Gilbert et al., 2014). Orthogonal RNA-protein 

binding modules have been incorporated into dCas9 transcriptional regulation complexes 

that allow for simultaneous gene activation and repression (Zalatan et al., 2015).

The packaging of DNA into chromatin is key feature of eukaryotic DNA, and researchers 

have begun to develop tools that allow chromatin manipulation in a sequence-programmed 

manner (Keung et al., 2015). The fusion of the DNA methyltransferase enzyme DNMT3A to 

dCas9 results in an epigenetic modifier that methylates CpG islands within ~100 bp of the 

Komor et al. Page 9

Cell. Author manuscript; available in PMC 2018 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sgRNA-programmed genomic loci (Figure 4b) (McDonald et al., 2016; Liu et al., 2016; 

Vojta et al., 2016). Tethering the catalytic domain of the DNA demethylase Tet1 to dCas9 

has been used for targeted DNA demethylation (Figure 4a). These fusions can induce over 

90% demethylation of CpG islands within a 200-bp range of the target site (Xu et al., 2016; 

Morita et al., 2016; Liu et al., 2016). Researchers have also developed a histone-modifying 

CRISPR-based tool in which the catalytic domain of human acetyltransferase p300 was 

fused to the C-terminus of dCas9. This fusion catalyzes histone H3 lysine 27 (H3K27) 

acetylation at loci up to thousands of base pairs from the sgRNA-specified locus and results 

in transcriptional activation of genes (Figure 4a) (Hilton et al., 2015). Alternately, the 

histone demethylase LSD1 has been fused to dCas9, allowing for demethylation of 

dimethylated histone H3 lysine 4 (H3K4me2) at sites >350 bp from the sgRNA (Figure 4b) 

(Kearns et al., 2015). The much larger activity window of the methylation tools, unlike the 

small window of base editing, arises from the use of domains that operate on double-

stranded DNA in the reported epigenome editing agents, in contrast with the use of single-

stranded DNA-specific enzymes in base editors.

Delivery of genome-editing and epigenome-editing agents

Although their substrates are intracellular, the genome-editing and epigenome-editing agents 

described above are all macromolecules and therefore do not spontaneously enter cells. The 

delivery of genome-editing agents into cells has therefore been the subject of intense 

research over the past several decades and remains a significant barrier to some applications 

of genome editing (Bartus et al., 1998; Gaj et al., 2013). For many research applications, the 

transfection of plasmid DNA expressing genome editing proteins and guide RNAs is 

sufficient. In other cases including in vivo therapeutic applications, however, DNA 

transfection is not possible, and alternative methods to deliver genome editing agents are 

needed.

A number of effective ex vivo methods have been used to deliver proteins or their encoding 

genes into cultured mammalian cells. These methods include electroporation or 

nucleofection, lipid-based transfection, viruses, cationic peptides, and other approaches (Luo 

and Saltzman, 2000; Maasho et al., 2004; Zeitelhofer et al., 2007; Cockrell and Kafri, 2007; 

Yin et al., 2014a). For some cell types including many cancer cell lines and certain blood 

cells, ex vivo delivery methods when applied to genome-editing proteins such as Cas9 can 

be very effective, resulting in the exposure of the vast majority of treated cells to the 

genome-editing agent (Heckl et al., 2014). For other cell types of interest, including 

hematopoietic stem cells and some primary cells (i.e, cells taken directly from tissue, rather 

than replicated in culture), even ex vivo delivery using a wide variety of methods has proven 

challenging (Amsellem et al., 2003; Lombardo et al., 2007).

Viral delivery of genome editing agents has been explored using lentivirus, adenovirus, and 

adeno-associated virus (AAV) (Gori et al., 2015) (Figure 5a). Lentiviruses are able to infect 

non-dividing cells and have been used in vivo to efficiently transduce a variety of specific 

target organs (Cockrell and Kafri, 2007). Furthermore, the packaging limit of lentivirus is 

~8.5 kb (although inserts larger than ~3 kb are packaged less efficiently), sufficient to 

package most Cas9 genes, guide RNA expression constructs, and required promoter and 
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regulatory sequences (Kumar et al., 2001; Yacoub et al., 2007). Lentiviruses have been 

successfully used to deliver Cas9 and sgRNA genes into mice to characterize the 

contributions of a panel of tumor suppressor genes to the progression of lung cancer 

(Sanchez-Rivera et al., 2014).

Adenoviruses are also capable of infecting both replicating and non-replicating cells, but do 

not integrate their DNA into the host cell genome, and can elicit a strong immune response 

in animals (Wang et al., 2004). Adenovirus-mediated delivery of Cas9 has been used to 

achieve in vivo genome editing in mouse lungs (Maddalo et al., 2014) and livers (Cheng et 

al., 2014; Ding et al., 2014; Wang et al., 2015a).

Finally, AAV variants engineered for gene therapy can infect both dividing and non-dividing 

cells, do not integrate its DNA into the host genome, and do not elicit a significant immune 

response in the host (Wang et al., 2004). A variety of serotypes of AAV are known, offering 

delivery into different tissue types. However, AAV has a packaging limit of ~4.5 kb of 

foreign DNA (Wu et al., 2010). Thus, packaging into AAV genes encoding SpCas9 (4.2 kb), 

a sgRNA, a donor DNA template, and associated promoters and regulatory sequences is 

generally not possible. The gene encoding SaCas9 (3.2 kb) is significantly smaller than that 

encoding SpCas9, and can be packaged along with an sgRNA and associated promoters into 

a single AAV vector (Ran et al., 2015). Alternatively, genes encoding SpCas9 and its sgRNA 

have been packaged into separate AAV vectors for in vivo genome editing in mouse brains 

(Swiech et al., 2015) and livers (Yang et al., 2016). An additional option is to use a split-

intein Cas9 system and package each half into separate AAV vectors. Upon coinfection, the 

Cas9-intein halves associate and undergo protein splicing to yield a complete, covalently 

intact Cas9 protein. This system has successfully mediated genome editing in cultured 

human and mouse cells (Truong et al., 2015).

To circumvent the challenges associated with delivery of a Cas9-encoding gene, researchers 

have developed a mouse that expresses Cas9. A Cre recombinase-inducible Cas9 transgene 

was inserted into the Rosa26 locus of the mouse. The resulting mouse can be crossed with 

mice expressing Cre recombinase from a tissue-specific promoter to generate mice that 

express Cas9 in specific tissues. An sgRNA and donor DNA can then be delivered using 

AAV or lentivirus to initiate genome editing (Platt et al., 2014).

Hydrodynamic injection (HDI) of plasmid DNA is a convenient and efficient non-viral 

delivery option that is particularly well-suited for DNA delivery into hepatocytes in rodents 

(Suda and Liu, 2007) (Figure 5a). Researchers have shown that DNA plasmids encoding 

Cas9 and sgRNA can be delivered to the livers of mice infected with hepatitis B virus 

(HBV) via a hydrodynamic tail vein injection. The resulting Cas9:sgRNA complexes cleave 

HBV viral DNA, resulting in a gradual decrease in HBV expression in the animals (Lin et 

al., 2014a; Zhen et al., 2015; Ramanan et al., 2015). This technique has also been used to 

generate mouse liver cancer models. In this study, a plasmid encoding Cas9 and sgRNAs 

was delivered via HDI to disrupt tumor suppressor genes. By co-injecting with a donor 

template for HDR, precise mutations can be introduced to genes of interest as well (Xue et 

al., 2014).
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Another delivery option that can result in germline genome editing in animals is the direct 

injection of Cas9 mRNA and purified sgRNA into oocytes or zygotes (Figure 5b). This 

technique has been used to knock-out specific genes in mice (Wang et al., 2013; Li et al., 

2013a; Yang et al., 2013a), rats (Li et al., 2013b), zebrafish (Hruscha et al., 2013; Hwang et 

al., 2013a; Chang et al., 2013; Hsu et al., 2013), flies (Bassett et al., 2013), frogs (Nakayama 

et al., 2013), pigs (Hai et al., 2014), and monkeys (Niu et al., 2014). By co-injecting with a 

donor DNA, precise HDR-mediated genome editing has been achieved in mice (Wang et al., 

2013; Yang et al., 2013a; Wu et al., 2013), nematodes (Lo et al., 2013), and zebrafish 

(Hruscha et al., 2013; Chang et al., 2013; Auer et al., 2014).

A DNA- and mRNA-free in vivo delivery method directly delivers purified RNPs using 

cationic lipids (Zuris et al., 2015) (Figure 5a). Due to the polyanionic charge of the sgRNA 

and its tight association with Cas9 protein, commercially available cationic lipid nucleic acid 

transfection reagents can efficiently deliver Cas9:sgRNA complexes into mammalian cells 

both in cell culture and in vivo. This strategy has been successfully used to perform genome 

editing in mouse inner ear hair cells and in neurons (Zuris et al., 2015; Wang et al., 2016). 

An additional advantage of the direct Cas9:sgRNA protein:RNA complex delivery over 

mRNA or DNA delivery is the more transient nature of protein delivery, which results in 

substantially higher DNA specificity and less off-target editing, for the reasons discussed 

above (Kim et al., 2014; Zuris et al., 2015; Liu et al., 2015b).

Applications of CRISPR-based genome editing

CRISPR components have been used for a variety of creative applications. Here we 

summarize some recent uses of CRISPR-based genome editing in eukaryotic cells and 

organisms for basic research, biotechnology, and therapeutics development. Although a 

major and important application of Cas9 is the generation of animal and cell models of 

diseases, including target gene knockouts, these have been reviewed recently and are not 

covered in this review (Sander and Joung, 2014; Mou et al., 2015).

Genome editing in human primary cells

Pluripotent stem cells are undifferentiated primary cells that are able to differentiate into 

virtually any cell type of the human body. Induced pluripotent stem cells (iPSCs) are 

pluripotent stem cells that can be directly generated from adult somatic cells, and have 

proven useful for regenerative medicine research (Takahashi and Yamanaka, 2006; Yu et al., 

2007). Genome editing in iPSCs allows the precise study of human genetic variants in a 

wide variety of tissues in cell culture. The use of Cas9 for mammalian genome editing 

advanced this capability by allowing scientists to perform genetic manipulations in iPSCs at 

efficiencies that are difficult to attain with TALENs or ZFNs (Ding et al., 2013; Yang et al., 

2013b; Byrne et al., 2014; Hockemeyer and Jaenisch, 2016).

Cells isolated from an individual can be genetically modified in a specific way using Cas9, 

then differentiated alongside identical but unmodified cells. These otherwise isogenic cells 

allow researchers to directly determine the impact of a given genetic variation on a disease 

phenotype, or to simply study gene function. Cas9-mediated, iPSC-derived knockout cell 

lines for a variety of different genes have been reported for use in loss-of-function studies 
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(Yang et al., 2013b; González et al., 2014; Smith et al., 2015; Liao et al., 2015; Chen et al., 

2015b; Liang et al., 2015; Wang et al., 2015b). This technique can also be combined with 

CRISPRi to specifically, rapidly, and reversibly down-regulate specific genes in iPSCs and 

iPSC-derived cell types (Mandegar et al., 2016). Similarly, specific mutations have been 

introduced into iPSCs and iPSC-derived cells using Cas9 and HDR-mediated genome 

editing for the study of genetic diseases (Yang et al., 2013b; Hou et al., 2013; Rong et al., 

2014; Smith et al., 2015).

A central goal of regenerative medicine is to replace unhealthy or diseased cells with heathy 

ones. One approach to this goal is cell therapy, in which primary cells are genetically 

manipulated then implanted into patients in order to cure or treat genetic diseases (Mironov 

et al., 2004). Several studies have used Cas9 to correct genetic mutations in patient-derived 

primary cells, including Duchene muscular dystrophy (DMD) (Li et al., 2015b; Ousterout et 

al., 2015), Fanconi anemia (Osborn et al., 2015), hemophilia (Park et al., 2015), cystic 

fibrosis (Schwank et al., 2013), and beta thalassemia (Xie et al., 2014). Additionally, 

primary immune cells have been made resistant to HIV infection by Cas9-mediated 

knockout of CCR5 or CXCR4, receptors for HIV entry (Wang et al., 2014b; Li et al., 2015a; 

Hou et al., 2015; Schumann et al., 2015).

Together, these studies highlight how CRISPR-based genome editing technologies have 

accelerated biological studies in primary cells. The development of more precise, specific, 

and capable genome editing technologies will likely further augment our understanding of 

diseased cells as these new technologies are applied to primary cell editing.

CRISPR-based treatment of animal models of human genetic disease

Cas9-mediated genome editing in vivo has been used to correct disease-associated alleles in 

animal models of genetic diseases. The zygotes of mice heterozygous for a dominant-

negative cataract-causing mutation in the CRYGC gene were injected with Cas9 mRNA and 

an sgRNA targeting only the mutant allele. HDR-mediated correction resulted in cataract-

free progeny (Wu et al., 2013). This technique was also applied to mdx mice, a model of 

DMD harboring a mutation in the gene encoding dystrophin. Cas9, sgRNA, and a donor 

template were injected into mouse zygotes, resulting in genetically mosaic progeny with 2 to 

100% gene correction and varying degrees of phenotypic rescue (Long et al., 2014). Disease 

correction, both genotypically and phenotypically, in post-natal mdx mice has also been 

reported following AAV-mediated delivery of SaCas9 or SpCas9 and sgRNA to skeletal and 

cardiac muscle cells to delete the mutated exon from the dystrophin gene (Long et al., 2016; 

Nelson et al., 2016; Tabebordbar et al., 2016). Finally, a mouse model of hereditary 

tyrosinemia type I (HT1) was corrected in vivo using Cas9. These mice have a homozygous 

G to A point mutation in the fumarylacetoacetate hydrolase (FAH) gene, which results in 

severe liver damage. Plasmid encoding Cas9 and sgRNA and a ssDNA oligo were delivered 

via HDI into adult mice. Wild-type Fah protein was detected in ~1/250 liver cells, and 

significantly less liver damage was observed as compared to untreated controls (Yin et al., 

2014b). Correction of this point mutation was also achieved using the concomitant lipid-

mediated delivery of Cas9 mRNA and AAV-mediated delivery of sgRNA and a repair 
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template. This combined viral and non-viral delivery method yielded point mutation 

correction in > 6% of hepatocytes (Yin et al., 2016).

These studies collectively demonstrate significant progress towards developing treatments 

for genetic diseases. Nearly all genetic diseases, including DMD, currently have no cure and 

in many cases those affected suffer from low quality of life and a shortened life expectancy. 

These significant advances suggest potential treatments and even potential cures of human 

genetic diseases.

High-throughput genetic screens

The ease with which CRISPR-based tools can be reprogrammed simply by constructing a 

new guide RNA has facilitated genome-wide screening. CRISPR-based knockout screens 

are reported to be more efficient and specific than RNAi, enabling researchers to obtain 

more reliable and robust results (Sanjana, 2016). In these experiments, sgRNA libraries and 

Cas9 are delivered into cells. Researchers then screen the treated cells for a phenotype of 

interest (Sanjana et al., 2014; Shalem et al., 2015). CRISPR-mediated knockout screens have 

been used to identify genes involved in cancer progression (Shalem et al., 2014; Chen et al., 

2015a; Shi et al., 2015) drug resistance (Shalem et al., 2014; Wang et al., 2014a), the 

immune response (Parnas et al., 2015), vulnerability to bacterial toxins (Zhou et al., 2014), 

and other biomedically relevant phenotypes.

Alternatively, Cas9-mediated saturation mutagenesis, in which an sgRNA library is targeted 

to thoroughly mutate a targeted region of the genome, can be used in a high-throughput 

manner to obtain high-resolution information on genetic loci. For example, a sgRNA library 

targeting the BCL11A enhancer was used to dissect the importance of each portion of the 

enhancer on HbF levels. Similarly, a single sgRNA was combined with a donor DNA library 

to replace a 6-bp portion of the BRCA1 gene with all possible hexamers, and to replace exon 

18 of BRCA1 with all possible SNP variations to dissect the mutations’ effects on transcript 

processing (Kiani et al., 2015).

Together, these studies demonstrate how Cas9 has enhanced the ability to screen the 

modification of many loci within the human genome in a single experiment. These types of 

studies provide researchers with powerful tools to dissect complex cellular signaling 

pathways, determine gene function, identify targets for therapeutic intervention, and predict 

drug side effects.

Gene Drives

Gene drives are a particularly powerful application of CRISPR technology. Gene drives, 

genetic elements that insert themselves into target sites lacking that element, convert 

heterozygous alleles to homozygous alleles within an organism. In organisms that support 

sexual reproduction, gene drives enable non-Mendelian inheritance of alleles that can spread 

throughout a population. This spread can be rapid for species with short reproductive 

generation times. While gene drives can be implemented in other ways, Cas9-based gene 

drives are very efficient. CRISPR gene drives were first demonstrated by inserting into the 

Drosophila genome a construct consisting of Cas9 and an sgRNA flanked by two “homology 

arms” that match the genomic sequence surrounding the sgRNA-programmed target site. 
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Cas9:sgRNA complex expression results in cleavage of the wildtype allele, and 

incorporation of the Cas9:sgRNA cassette via HDR to produce a homozygous mutant 

organism (Gantz and Bier, 2015). In mosquitos, researchers developed a Cas9-based gene 

drive that inserts a gene inducing a parasite-resistance phenotype (Gantz et al., 2015; 

Hammond et al., 2016). Gene drives have the potential to allow the facile generation of 

animal models with recessive mutations, as well as the genome editing of whole populations 

of rapidly reproducing organisms—a remarkably powerful capability that should be 

considered only with great thoughtfulness and caution (Oye et al., 2014; Esvelt et al., 2014).

Conclusion

The discovery and characterization of CRISPR systems have transformed genome editing 

and the life sciences. The development of new CRISPR technologies that extend the 

generality, DNA specificity, product selectivity, and even the fundamental capabilities of 

natural CRISPR systems has driven and accelerated this transformation. These technologies 

have armed researchers with powerful new tools to study living systems and human disease. 

Incredibly, they have also made it possible to imagine a near-term future in which the 

treatment of genetic diseases is within our reach. As these technologies grow in scope and 

capability, ethical and regulatory guidelines must also be thoughtfully developed (Baltimore 

et al., 2015) to ensure a balance between realizing the enormous potential of these tools to 

benefit mankind and minimizing the risk of their misuse.
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Figure 1. 
Genome editing using double-stranded breaks (DSBs). (a) A programmable nuclease 

incorporates a sequence-specific DSB in genomic DNA. In the absence of a repair template, 

the cell will process the DSB mostly by NHEJ, resulting in indels at the site of editing. In 

the presence of a separate DNA template containing sequences homologous to the regions 

flanking the DSB, HDR can result in incorporation of the repair template into the genomic 

DNA. (b) ZFNs, TALENs, and CRISPR-based nucleases have also been used to introduce 

programmable, sequence-specific DSBs. The ability of Cas9 to be reprogrammed to bind a 

new 23-bp sequence (the protospacer and PAM) by designing a new sgRNA, rather than by 

engineering a new DNA-binding protein (orange), has transformed the genome editing field.
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Figure 2. 
Strategies for improving the DNA specificity of CRISPR-based agents. (a) Wild-type Cas9 

variants have been shown to possess significant off-target activity. (b) DNA specificity can 

be improved using truncated sgRNAs with wtCas9 (Fu et al., 2014), (c) engineered HFCas9 

or eCas9 variants that reduce nonspecific electrostatic interactions between the protein and 

DNA (Slaymaker et al., 2016; Kleinstiver et al., 2016a), or (d) the Cpf1 CRISPR enzyme 

(Kim et al., 2016; Kleinstiver et al., 2016b). Alternatively, (e) two Cas9 nickase enzymes 

(Ran et al., 2013a; Mali et al., 2013a), or (f) dCas9-FokI fusions can be used to require two 

RNA-programmed binding events to induce a DSB (Guilinger et al., 2014b), increasing 

specificity. DNA specificity can also be increased by limiting the cellular residence time of 

wtCas9 using (g) a small molecule-activated split Cas9 (Zetsche et al., 2015b), or (h) a small 

molecule-activated intein-disrupted Cas9 (Davis et al., 2015).
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Figure 3. 
Approaches that improve the product selectivity of genome editing agents. Wild-type Cas9 

will induce undesired indels when the desired product is a precise DNA modification. (a) 

Base editing is capable of editing G:C base pairs to A:T base pairs with high conversions 

and very low indel rates (Nishida et al., 2016; Komor et al., 2016). (b) The ssDNA donor 

used during HDR can be designed such that it anneals with the DNA strand that is initially 

released by Cas9 following DNA cleavage to enhance HDR efficiency (Richardson et al., 

2016). (c) In some cases, HDR strategies can also be designed to install a silent mutation 

into the PAM in order to prevent re-cutting by Cas9 following HDR (Paquet et al., 2016). (d) 

Small molecule inhibitors of NHEJ (Srivastava et al., 2012; Robert et al., 2015; Vartak and 

Raghavan, 2015; Chu et al., 2015; Maruyama et al., 2015), enhancers of HDR (Yu et al., 

2015; Pinder et al., 2015; Song et al., 2016), or cell-cycle synchronizers (Lin et al., 2014b) 

can be used to increase the ratio of HDR:NHEJ genome editing products.
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Figure 4. 
CRISPR-based epigenome editing. (a) RNA-programmed gene activators can be assembled 

through the direct fusion of dCas9 with the transcriptional activators VP64 (Mali et al., 

2013a; Maeder et al., 2013; Perez-Pinera et al., 2013; Tanenbaum et al., 2014) and VPR 

(Chavez et al., 2015), the histone acetyltransferase enzyme p300 (Hilton et al., 2015), or the 

DNA demethylase Tet1 (Xu et al., 2016; Morita et al., 2016; Liu et al., 2016). Alternately, 

the transcriptional activators VP64 and p65-HSF1 can be attached to the sgRNA (Zalatan et 

al., 2015; Konermann et al., 2015). Light-activated and small molecule-activated variants 

can also be used (Nihongaki et al., 2015b; Zetsche et al., 2015b; Polstein and Gersbach, 

2015). (b) RNA-programmed gene repressors can be assembled by attaching the 

transcriptional repressor domain KRAB to dCas9 by either a direct fusion between the two 

proteins (Gilbert et al., 2013; Lawhorn et al., 2014; Thakore et al., 2015) or via the sgRNA. 

Alternatively, dCas9 can be fused to the DNA methyltransferase enzyme DNMT3a 

(McDonald et al., 2016; Liu et al., 2016; Vojta et al., 2016) or the histone demethylase LSD1 

(Kearns et al., 2015) to result in a transcriptional repressor.
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Figure 5. 
Strategies for in vivo delivery of CRISPR-based genome editing agents. (a) Viral (orange)-, 

lipid nanoparticle (green)-, and direct nucleic acid injection (blue)-mediated delivery of 

CRISPR-based genome editing agents have all been successfully used to achieve in vivo 
genome editing. (b) These methods have been used to deliver genome editing agents to a 

variety of mammalian organs shown. The genes that were modified within each organ are 

shown in a color corresponding to the delivery method used, matching the colors in (a).
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Table 1

Properties of some of the naturally occurring and engineered CRISPR enzymes that have been used for 

genome editing in mammalian cells.

Enzyme name Size (residues) PAM requirement and cleavage pattern

SpCas9/FnCas9 1368/1629

St1Cas9 1121

St3Cas9 1409

NmCas9 1082

SaCas9 1053

AsCpf1/LbCpf1 1307/1228

VQR SpCas9 1368

EQR SpCas9 1368

VRER SpCas9 1368
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Enzyme name Size (residues) PAM requirement and cleavage pattern

RHA FnCas9 1629

KKH SaCas9 1053
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