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Abstract

Red blood cell transfusions in the setting of trauma is a double edged sword, as it is a necessary 

component for life-sustaining treatment in massive hemorrhagic shock, but also associated with 

increased risk for nosocomial infections and immune suppression. The mechanisms surrounding 

this immune suppression are unclear. Using supernatant from human packed red blood cell (RBC), 

we demonstrate that clearance of E. coli by macrophages is inhibited both in vitro and in vivo 
using a murine model of trauma and hemorrhagic shock. We further explore the mechanism of this 

inhibition by demonstrating that human stored RBCs contain soluble high mobility group box 1 

protein (HMGB1) which increases throughout storage. HMGB1 derived from the supernatant of 

human stored RBCs was shown to inhibit bacterial clearance, as neutralizing antibodies to 

HMGB1 restored the ability of macrophages to clear bacteria. These findings demonstrate that 

extracellular HMGB1 within stored RBCs could be one factor leading to immune suppression 

following transfusion in the trauma setting.
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Introduction

Transfusion of packed red blood cells (RBCs) has been linked to an increased risk of 

nosocomial infection and a state of relative immunosuppression (1). Although a necessary 
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part of resuscitation for many patients, RBC transfusion is associated with an increased 

possibility of ventilator acquired pneumonia (2,3) and secondary infections (4). Some 

authors have hypothesized that these adverse events are increased in patients undergoing 

massive transfusion (5), which may be due to a two-hit phenomenon, with injury serving as 

the first hit and RBC transfusion providing the second hit (6). An area of significant interest 

and a source of significant controversy is the role of storage duration in outcomes following 

RBC transfusion. Many of the deleterious effects of transfusion are thought to be amplified 

in older RBCs and may be related to changes in RBC membranes or in soluble mediators 

released from RBCs or leukocytes. Prospective and retrospective analyses have suggested an 

increased risk of mortality (7), multiple system organ failure (MSOF) (5), need for ICU stay 

(7), and, importantly, an increased risk of nosocomial infection associated with older RBCs 

compared to younger red cell units (4,8). Although recent randomized, prospective data 

suggest no difference in outcomes between fresh versus longer stored units, these studies 

were not performed in the setting of massive transfusion and focused on leukoreduced blood 

(9, 10).

The constellation of biochemical and mechanical changes that occur in RBCs over the 

duration of storage has been termed the ‘storage lesion. We and others have argued that at 

least some of the potential deleterious clinical effects assigned to the storage lesion mirror 

those seen with excessive innate immune activation (11). Elements within stored RBC units 

have the capacity to act as damage associated molecular pattern (DAMP) proteins. DAMPs 

are endogenous mediators of inflammation, which contribute to activation of innate immune 

pathways. Excessive DAMP release as well as exogenous administration (12) has been 

linked to negative outcomes. Several DAMPs signal through the critical innate immune 

receptor toll-like receptor 4 (TLR4), a receptor also linked to host responses to pathogens 

(13). One such DAMP, and a key regulatory molecule in the host response to infection, is 

high mobility group box 1 (HMGB1) (12). HMGB1 is a non-histone DNA binding protein 

that is passively released from dead or dying cells or released by activated cells during 

inflammation and has an important role in the host inflammatory response (14). In 

experimental models of trauma, HMGB1 contributes to both pro-inflammatory responses 

(15) and immunosuppression (16). HMGB1 has been previously shown to be present in 

stored human RBC units (17); however, the effects of HMGB1 administration as part of 

transfused RBCs remain unexplored. Previous authors have shown that exogenous HMGB1 

can attenuate host response to pathogens (18) through dysregulation of phagocytosis and 

bacterial clearance (18-20).

In this study we hypothesize that the HMGB1 that accumulates in stored RBC units, when 

administered exogenously in large quantities such as would be possible in the setting of 

massive transfusion, can impair microbial clearance. To test this hypothesis, we will 

examine the in vitro effects of exogenous HMGB1 (both recombinant and contained within 

stored RBC units) on the phagocytosis of E.coli by macrophages and inflammatory cytokine 

production. In order to test the in vivo relevance of these findings, we have devised a murine 

model of trauma and hemorrhage that involves resuscitation of mice with the acellular 

supernatant of stored human RBCs (containing HMGB1), followed by an infectious 

challenge to model the scenario of nosocomial infection.
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Materials and Methods

Animals

C57BL/6 WT mice (8-12 weeks, male) were purchased from the Jackson Laboratories (Bar 

Harbor, ME). Mice were housed in accordance with University of Pittsburgh (Pittsburgh, PA, 

USA) and National Institutes of Health (NIH; Bethesda, MD, USA) animal care guidelines 

in specific pathogen-free conditions with 12-hr light-dark cycles and free access to standard 

feed and water. All animal experiments were approved conducted in accordance with the 

guidelines set forth by the Animal Research and Care Committee at the University of 

Pittsburgh.

Human RBC and macrophage experiments

Following approval of the Institutional Review Board (PRO08010232) at the University of 

Pittsburgh, whole blood was collected from healthy volunteers following informed consent. 

Samples were stored in a de-identified fashion in accordance with IRB regulations. 

Experimental details for individual assays using human cells are outlined below.

Packed RBC supernatant preparation

The fresher (5 day) and older (42 day) packed RBC units preserved in CPD/AS-5 were 

acquired from the Institute for Transfusion Medicine and the Central Blood Bank with IRB 

approval (PRO09100378). RBCs were maintained under FDA mandated storage conditions 

throughout the duration of storage. For analysis, ten (10) units were randomly selected from 

the indicated day of storage. Stored units underwent gentle centrifugation 2000 × G, 4C] to 

separate the supernatant from cellular component. The acellular supernatants of these 

packed RBC units were stored at -80 C for future use. All experiments utilized non-

leukoreduced RBC units except for quantification of HMGB1, where, as indicated, 

leukoreduced PRBC supernatant was included for comparison.

Peritoneal Macrophage Isolation

Brewer thioglycollate (2 ml, 3%; Sigma Aldrich Corp., St. Louis, MO, USA) was injected 

intraperitoneally (i.p.) in C57BL/6 mice to stimulate macrophage recruitment. After 5 days, 

a peritoneal wash was performed with 0.2mM RPMI-EDTA solution to collect peritoneal 

macrophages (PM). Cells were subsequently washed twice with PBS, counted, and 

suspended in RPMI media. Cells were plated immediately for use.

E. coli Growth and Dilution

E. coli (ATCC 25922, American Type Culture Collection, Manassas, VA) were incubated in 

trypticase soy broth (TSB) at 37°C for 18 hours. Bacteria were collected by centrifugation 

and washed twice in PBS. Using spectrophotometry, bacterial stock were diluted to ∼1×108 

colony forming units (CFU)/ml. This sample was then serially diluted and inoculated at 

varying doses as outlined below.
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Macrophage Co-culture and Bacterial Clearance experiment

Peritoneal macrophages (PMs) were plated in 96-well plates at a concentration of 5×105 

cells/well. PMs were co-cultured for 6 hours with either media alone or 20% D5 or D42 

PRBC supernatant at 37°C and 5% CO2. After the 6hr co-culture, ∼1×103 E. coli were 

added for 2 hours again at 37°C and 5% CO2. After the 2hr incubation, E. coli CFUs were 

determined by serial dilution of the supernatant and plating on TSB agar plates and counting 

after 18 hour incubation. For evaluation of the effect of HMGB1, PMs were co-cultured in 

media with either recombinant HMGB1, generated as we have previously described (15) at 

concentrations of 1, 2, 5 μg/ml or BSA at similar concentrations as control at 37°C and 5% 

CO2 for 6 hours followed by E. coli inoculation and determination of bacterial clearance as 

described above. Finally, PMs were co-cultured in media with either an anti-HMGB1 

neutralizing antibody (gift from Dr. Kevin Tracey, Feinstein Institute for Medical Research) 

at a concentration of 2.5ug/ml or non-immune rabbit IgG (Sigma-Aldrich, St. Louis, MO) 

control at the same concentration and the bacterial clearance model was carried out as 

described.

RAW 264.7 Experiments

RAW 264.7 macrophages were cultured and plated in 48-well plates at a concentration of 

2×105 cells/well. Macrophages were co-cultured for 3 hours with either media alone or 20% 

D5 or D42 PRBC supernatant 37°C and 5% CO2. After 3hr co-culture, macrophages were 

stimulated with Ultrapure lipopolysaccharide (LPS) derived from E. coli (0111:B4, List 

Biological Laboratories, Inc, Vandell Way, CA) at a concentrations of 0.01ug/ml or media as 

previously described (19). After a total of 6 hours cells were harvested and RNA extracted 

for IL-6 and TNF-α expression analysis by RT-PCR.

Quantitative real-time PCR

RNA was isolated from RAW 264.7 macrophages using the RNeasy kit (Qiagen) and reverse 

transcribed to cDNA using Clontech cDNA synthesis kit (Clontech, Mountain View, CA). 

Quantitative real-time PCR was performed as previously described using Bio-Rad CFX 

System using primers verified for IL-6 and TNF-α (21). Expression levels are expressed as 

fold change relative to the housekeeping gene GAPDH.

Human Macrophage Isolation and Bacterial Clearance

Human monocyte-derived macrophages (HMDM) were prepared from blood of healthy 

adult volunteers. First, peripheral blood mononuclear cells (PBMC) were fractionated by 

Ficoll-Paque density gradient centrifugation (GE Healthcare, USA). CD14-positive 

monocytes were then selected by magnetically labeled beads, according to the 

manufacturer's instructions, using human CD14 MicroBeads, LS columns (Miltenyi Biotec, 

Auburn, CA). CD14+ monocytes were cultured and differentiated into macrophages over 9 

days in RPMI-1640 supplemented with 10% FBS, 100 U/ml penicillin, 100 mg/ml 

streptomycin and 10 ng/ml M-CSF (R&D, Minneapolis, MN USA). Cells were grown at 

37°C in 5% CO2. Medium was half changed at the 3rd, 5th and 7th day. After 9 days, 

differentiated macrophages were scraped, resuspended in antibiotic-free RPMI-1640 (10% 
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FBS) and plated in a 96-well plate at a concentration of 1×105 cells/well. The co-culture and 

bacterial clearance experiments were then conducted as described earlier.

Phagocytosis Assay

The effect of older vs. fresher PRBC supernatant was assessed with the Vybrant 

Phagocytosis Assay Kit (Thermo Fischer, V-6694). Briefly, per manufacturer's 

recommendations, PMs were plated on a 96-well plate at a concentration of 1×106 cells/

well. PMs were co-cultured with media, D5, or D42 PRBC supernatant as described above 

for 6 hours. Following co-culture incubation all media was removed and PMs were 

inoculated with fluorescein-labeled E. coli for 2 hours. Next, trypan blue was added to 

quench extracellular fluorescent E. coli and the plate was read. The effect of the D5 and D42 

supernatant was calculated as a percentage compared to the control media reading 

(arbitrarily set at 100%).

Trauma and Hemorrhagic Shock (THS) Model

Mice were anesthesized with isofluorane anesthesia. The femoral artery was cannulated with 

tubing connected to a blood pressure monitor. Polytrauma consisted of bilateral 

pseduofracture and liver crush injury. As previously described, pseudofracture is performed 

by injection of 0.15cc of bone matrix, prepared from donor mice tibia and femur that is 

crushed and suspended in PBS, into the posterior muscles of the thigh (22). Liver crush was 

performed by a midline laparotomy, exposure of the right middle lobe of the liver, which 

was crushed 4 times with a 12.5cm curved-hemostat. Hemorrhage was performed by 

removal of 25% of circulating blood volume (based on 80ml blood/kg body weight) via a 

closed cardiac puncture with a 1cc syringe and 30-gauge needle. The laparotomy was closed 

and the mice were allowed to recover for 2 hours. Upon awakening they were given 

buprenorphine (1mg/kg) for analgesia. After the 2-hour recovery, mice were resuscitated 

with Ringer's lactate solution (LR), D5 PRBC supernatant, or D42 PRBC supernatant at a 

volume of three times the hemorrhage volume. Sham mice underwent groin exploration and 

femoral artery cannulation without polytrauma or hemorrhagic shock.

Second-Hit Model

Twenty-four hours after THS, mice were inoculated via intraperitoneal injection with 5×104 

CFU E. coli (23). Twenty-four hours after E. coli inoculation, mice were sacrificed by 

cardiac puncture technique. Peritoneal washings were obtained, serially diluted, plated on 

TSB agar plates and cultured overnight at 37°C. The following day colony forming units 

(CFUs) were counted.

Quantification of HMGB1

HMGB1 concentration was determined from the supernatant of packed RBC via ELISA 

(Shino-test; Tokyo, Japan). Flow cytometry was performed prior to centrifugation from 

blood pooled from 3 random samples for FACS analysis of HMGB1 following 

permeabilization (identified using PE conjugated human anti-HMGB1, 2.5ug/ml (Biolegend, 

San Diego, CA) expression on leukocytes (identified using FITC anti-CD45, 1ug/ml 

(Biolegend, San Diego, CA) and RBCs (identified using FITC human anti-235b, 2.5ug/ml 
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(Biolegend, San Diego, CA)). Flow cytometry was performed using a FACSCanto flow 

cytometer using DIVA software (BD Biosciences).

Statistics

All data are presented as mean ± SD for n ≥ 3 unless stated otherwise in the figure legends. 

Statistical significance was determined with the 2-tailed Student's t test or 1-way ANOVA 

with Tukey's post-hoc test using Graph Pad Prism software (GraphPad). A p value of less 

than 0.05 was considered significant.

Results

RBC supernatant inhibits bacterial clearance and impairs macrophage function

The ability of peritoneal macrophages to clear pathogens was assessed in vitro in the 

presence of fresher and older RBC supernatants. E. coli were cultured with thioglycollate-

stimulated peritoneal phagocytes that were exposed to fresher or older RBC supernatants, 

while cell culture media treated with storage preservative alone was used as a control. As 

demonstrated in Figure 1, there was no significant change in microbial clearance from 

macrophages cultured with fresher RBC supernatant (CFU/ml, values are 107, 697.5±185.5 

vs. 755.0±157.0, p=0.304). However, pre-treatment of macrophages with older RBC 

supernatant significantly impaired the clearance of E. coli, resulting in higher CFUs 

(indicating less clearance of bacteria) (CFU/ml ×107: 930.6±133.8, p=0.0017 vs. control). 

Importantly, there were no significant differences in the number of peritoneal macrophages 

post-treatment, nor were there any significant changes post-incubation with bacteria in any 

of the treatment groups (data not shown). In order to assess the effects of RBC supernatant 

on cytokine gene expression by macrophages, we pre-treated isolated macrophages with 

RBC supernatant as above and then exposed the cells to LPS to induce cytokine message 

production. As demonstrated in Figure 1 (B,C) using RT-PCR with values relative to 

GAPDH, supernatants from both fresher and older RBC markedly impaired the gene 

expression of IL-6 and TNF-α by macrophages, with the effects most pronounced with the 

older RBC supernatant. Of note, gene expression, as demonstrated by others, does not 

necessarily correspond to protein production or cytokine release (24). Multiple 

concentrations of LPS were tested in the system with consistent inhibition of cytokine gene 

expression by D42 supernatant, although inhibition by D5 supernatant could be overcome 

when LPS concentration reached 1ug/ml (data not shown).

In order to determine whether the impaired clearance of microbes was due specifically to 

phagocytosis, we utilized a commercially available phagocytosis assay using peritoneal 

macrophages incubated with fluorescent E. coli to determine the rate of internalization. Pre-

incubation with RBC supernatant significantly inhibited phagocytosis of E. coli, with the 

most pronounced effect occurring in the macrophages exposed to day 42 supernatant (Figure 

1d).

Solube factors from older RBC supernatant impair microbial clearance after THS

The transfusion of packed RBC units of older storage age has been shown to increase the 

infectious complications following trauma (25). Following the identification of impaired 
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clearance of E. coli by macrophages treated with older (42 day old) RBC supernatant, we 

next sought to explore the in vivo relevance of these findings in a murine model of trauma 

and hemorrhage. The supernatant of fresher (5 day) or older (42 day) RBC were used as 

resuscitative fluid in order to evaluate role of soluble mediators in the packed RBC units in 

bacterial clearance following experimental trauma. The volume of supernatant (15cc/kg) was 

chosen to reflect a massive transfusion resuscitation to account for the significant blood loss 

in our model (16). Mice were injected with E. coli at 24 hours following THS. Mice 

resuscitated with supernatant from older RBC showed impaired clearance of E.coli 

compared to mice resuscitated with supernatant from fresher RBC or Lactated Ringer's 

[CFU/ml ×107 Older RBC Supernatant: 36.6±10.2 vs Fresher RBC Supernatant: 17.3±6.8 vs 

LR: 19.2±4.4, sham (out of box control): 3.7±2.2p<0.05] (Figure 2). There was no 

difference in survival of animals through the duration of the model.

Older blood supernatant inhibits human macrophage clearance of E.coli

Human monocyte-derived macrophages (HMDM) were prepared from blood of healthy 

adult volunteers and treated with either media alone, day 5 supernatant, or day 42 

supernatant. Following incubation with E. coli, microbial clearance was assessed. Similar to 

the findings using murine macrophages, bacterial clearance was markedly inhibited 

(resulting in higher measure CFU, or more residual bacteria) following exposure to day 42 

supernatant (CFU/ml ×107, media 260.7±39 vs day 5 SN 224.3±54 vs day 42 SN 389.6±98, 

p<0.0001 for day 42 vs media by ANOVA) (Figure 2c).

HMGB1 is present in RBC supernatants

HMGB1 has been shown to be a key mediator in the pathogenesis of organ injury and a 

contributor to immunosuppression following trauma and hemorrhagic shock. To determine if 

extracellular levels of HMGB1 increased with longer RBC storage, HMGB1 levels were 

measured in supernatants of stored RBC over time. Whole blood was collected from healthy 

volunteers without leukoreduction and the mean HMGB1 level was determined to be 0.9519 

ng/ml as a baseline for circulating levels of HMGB1 prior to blood storage. We found that 

there was a significant increase in supernatant HMGB1 levels over time (Fresher: 69.147 

ng/ml ± 2.2 vs. Older: 238.32 ng/ml ± 13.5, p<0.0001) (Figure 3). In order to assess whether 

the source of HMGB1 in the RBC supernatants was derived from the leukocyte component 

of stored RBCs, we performed the same studies in leukoreduced (LR) RBCs and found 

lower levels of HMGB1. Despite the reduction in concentration, an increase in HMGB1 

levels was still observed with storage (Fresher LR: 13.636 ng/ml ± 0.43 vs. Older LR: 

87.180 ng/ml ± 2.02, p<0.001). Because HMGB1 release was seen even in leukoreduced 

RBC we assessed whether HMGB1 could found associated with the actual RBC. FACS 

analysis for CD-235a allowed for sorting of RBCs, which were stained for HMGB1 and 

analyzed. Shown in Figure 3 are representative tracings from FACS analysis of 

permeabilized leukocytes (B) and RBCs from randomly selected, non-leukoreduced day 42 

units (C). Leukocytes were chosen as a positive control and express robust levels of 

HMGB1, which is not associated with RBCs. RBCs of shorter storage duration were also 

tested and also failed to express HMGB1 (data not shown).

Zettel et al. Page 7

Shock. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HMGB1 derived from RBC supernatants inhibits bacterial clearance

It has been previously demonstrated that HMGB1 inhibits phagocytosis in pulmonary 

leukocytes (19). Given our findings of impaired bacterial clearance after trauma, transfusion, 

and E. coli infection, and given the observation that HMGB1 accumulates in stored RBC 

units, we sought to assess whether HMGB1 could inhibit bacterial clearance in peritoneal 

macrophages. Peritoneal phagocytes were cultured with E. coli after incubating with either 

recombinant HMGB1 or bovine serum albumin (BSA) as a control protein. As shown in 

Figure 4a, HMGB1 strongly inhibited bacterial clearance, as measured by an increase in 

CFUs in macrophages treated with HMGB1. (CFU ×107 BSA: 300.7 ± 15.9 vs. HMGB1: 

443.0 ± 14.8, p<0.05). Having confirmed that exogenous administration of HMGB1 can 

reduce clearance of bacteria, we next sought to remove HMGB1 from the RBC supernatant 

to see whether we could reverse the effect on bacterial clearance seen with exposure of 

macrophages to older RBC supernatants. Treatment of older supernatant with a HMGB1 

neutralizing antibody resulted in a significant and marked increase in bacterial clearance by 

peritoneal macrophages (as measured by decreased remaining bacteria/CFU) as compared to 

IgG control (CFU ×107 IgG: 983.7 ± 52.1 vs. anti-HMGB1: 810.2 ± 46.0, p<0.05). These 

data support the hypothesis that HMGB1 present in stored RBC units inhibits phagocytosis 

by peritoneal macrophages.

Discussion

The transfusion of stored RBC units has been linked to an increase in nosocomial infection 

in patients following injury (1-4), although the mechanism by which this occurs remains 

largely unexplored. We and others have previously observed that numerous components of 

stored RBCs act as innate immune modulators (11,26), and it is well characterized that 

innate immune signaling on macrophages regulates their function in the setting of trauma 

(26,27). Here we identify the DAMP, HMGB1 as a potential inhibitor of macrophage 

phagocytosis following accumulation in stored RBC units. HMGB1 has previously been 

identified as an inhibitor of phagocytosis of apoptotic neutrophils through the binding of 

phosphatidyl serine (20) and is well recognized as an important innate immune signal in the 

setting of trauma (28,29) and sepsis (30). HMGB1 has also been shown to induce pyroptosis 

in macrophages (31). High concentrations of HMGB1 have been detected early in the 

inflammatory response to trauma and hemorrhage (12), and multiple animal models have 

characterized the deleterious effects of exogenous HMGB1 administration (12,28,32). The 

functional consequence of HMGB1 accumulation in stored RBCs was previously unknown 

but now appears to contribute to reduced inflammatory signaling and impaired microbial 

clearance.

In a series of in vitro experiments, we found that pretreatment of isolated murine 

macrophages with human RBC supernatant impaired E. coli clearance. Following addition 

of a fixed volume of bacteria, more CFUs of E. coli were obtained from macrophages 

pretreated with the supernatant of older (42 day old) but not fresher (5 day old) RBC units or 

control. Recovery of higher CFU counts suggests impaired phagocytosis and killing of 

bacteria (23). Keeping with the observation that RBC supernatants may impair macrophage 

function, we identify a reduction in the ability of peritoneal macrophages to express 
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cytokines. Both IL-6 and TNFα gene expression in response to LPS challenge were reduced 

in both RBC supernatant treatment groups, although the reduction was most pronounced in 

the older (day 42) supernatant group. We sought to validate these findings in vivo by 

devising a two-hit model – trauma/hemorrhage followed by intraperitoneal inoculation with 

E.coli. The two-hit approach of infection following hemorrhage has been utilized previously 

as a model of in vivo macrophage function in bacterial clearance (24). Resuscitation was 

performed using LR, fresher RBC supernatant, or older RBC supernatant. HMGB1 was 

shown to accumulate in stored RBC units, with the most pronounced effect in older RBC 

units (stored for 42 days). We show here that the source of the HMGB1 is predominantly 

leukocyte driven. RBCs were shown not to express HMGB1. The mechanism of HMGB1 

release could be by leukocyte cell death, either necrosis or pyroptosis or active release 

following activation. Clearance of bacteria was substantially reduced in mice receiving 

treatment with older RBC supernatant. The finding of impaired microbial clearance was 

attributed to HMGB1, as a neutralizing antibody to HMGB1 was sufficient to reverse the 

increase in CFU, while exogenous administration of HMGB1 to media treated macrophages 

reproduced the findings seen with stored RBC supernatants. As an initial suggestion of 

potential relevance beyond the murine studies, we also have shown that day 42 supernatant 

inhibited bacterial clearance by human macrophages.

Previous authors have validated the use of stored human RBC supernatant in murine studies 

(16). A two-hit model of murine trauma and intraperitoneal infection allowed for the 

assessment of bacterial clearance following induction of inflammation, which has previously 

been shown to have important implications on macrophage function (23). A paucity of 

literature exists to explore the physiological effects of RBC transfusion on immune function 

in the setting of massive hemorrhage. The volume of RBC supernatant was chosen to best 

model a murine ‘massive transfusion.’ The acellular supernatant fraction was chosen as this 

was the fraction most likely to contain soluble HMGB1, as confirmed by the absence of 

HMGB1 on RBCs as shown by FACS analysis. Although a smaller volume of HMGB1 was 

still detected in leukoreduced RBC units, this could still be from residual leukocytes, as 

leukoreduction techniques have been shown to leave some residual leukocyte component 

(<5,000,000 WBCs/unit) and/or result in leukocyte injury/death and the potential for 

HMGB1 release (33). Furthermore, transfusion of the acellular human supernatant 

minimizes issues of xenogeneic immune activation, allowing for the ability to test the effects 

of human HMGB1, albeit necessarily in a murine model of trauma. In addition, we pooled 

10 units of RBCs to create the supernatant used in these assays in order to minimize issues 

with inter-donor variability. The identification of potential immunomodulatory substances in 

stored RBC units may be of importance if the observational data suggesting an increase in 

nosocomial infection associated with older RBC transfusion persists in randomized 

prospective analyses of this patient population.

This study has a number of limitations. We sought to use human RBCs in order to assess the 

potential for inflammatory components within the stored units; however, the effects of 

human RBC supernatant within a murine system cannot be directly extrapolated to patient 

care. The finding of similar effect on human macrophages somewhat supports the validity of 

the observed effect of aged supernatant, however mechanistic studies in human cell lines 

would be required to understand potential clinical effects in further detail. Additionally, prior 
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authors have shown that gene expression, which we show to be altered by exposure to RBC 

supernatant, does not necessarily correlate with cytokine release in macrophages (24). 

Although we used an acellular fraction, issues of immune stimulation cannot be excluded, 

although one would expect these to be the same for both durations of storage tested. In 

phagocytosis assays (Figure 1D), the effect of day 5 supernatant was more pronounced than 

on any of the other clearance assays performed (such as Figure 1A). Potential explanations 

for this difference include differences in the bacterial strain (the phagocytosis assay required 

a fluorescent labeled E.coli) as well as different endpoints (CFU versus fluorescent 

intensity) for the assays. We do not provide a mechanism for the HMGB1 effect in the 

present analysis. Multiple previous studies have evaluated the role of HMGB1 signaling 

through known innate immune receptors including TLR4 (12,13,15,28,34,35), TLR2, and 

the receptor for advanced glycation end products (RAGE) (13). We have recently shown that 

platelets express HMGB1 (35), which is implicated in thrombus formation and cell 

signaling, but this effect does not appear to be shared by RBCs according to our findings 

here. The specific effects of HMGB1 on macrophage phagocytosis are thought to occur 

through interference of the αvβ3 integrin of phagocytes (20). However, high levels of 

HMGB1 can also induce pyroptosis in macrophages through a RAGE-dependent mechanism 

(31). In these assays, we have chosen to focus on clearance of a gram-negative bacterium, 

which is a common nosocomial pathogen (36). However, our findings may be specific to E. 
coli and potentially may not be extrapolated to other forms of nosocomial infection; 

furthermore, it is not explicitly clear if impaired phagocytosis can be causally linked to the 

development of infection in this setting. In addition, the concentrations of recombinant 

HMGB1 used in the in vitro assays are substantially higher than measured concentrations in 

vivo. Although similar to concentrations used in other published studies (35), the need to use 

higher doses of recombinant protein to elicit an effect likely represents key differences in 

structure and function between recombinant and endogenous proteins. Nevertheless, the 

biological potential for stored RBCs to modulate macrophage function through HMGB1 

adds to the body of biochemical evidence that defines the storage lesion.

In summary, we described the release of HMGB1 from RBC units throughout the duration 

of storage in a process largely dependent upon the leukocyte fraction. The accumulated 

HMGB1 was shown to be biologically active and impaired macrophage function and 

resulted in impaired microbial clearance in a two-hit model of trauma/hemorrhage and E.coli 
infection. These findings add to the growing body of literature regarding the effect of RBC 

storage, with particular emphasis on the role of the leukocyte. Release of inflammatory 

mediators such as HMGB1 may play a role in innate immune activation following RBC 

transfusion (11) and could have implications in the development of infectious and 

inflammatory complications. Strategies to remove HMGB1 from stored RBC could reduce 

the impact of massive transfusion on immune function. A dedicated study of the clinical 

outcomes of stored RBC transfusion in the setting of trauma and massive hemorrhage is 

warranted given the clinical controversy surrounding the effects of RBC storage.
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Figure 1. Supernatant from older RBC units impairs macrophage phagocytosis and cytokine 
production
Murine peritoneal macrophages were pre-treated with either media alone, fresher (day 5) 

RBC supernatant, or older (day 42) RBC supernatant prior to exposure to an inoculum of E. 
coli. Treatment with older RBC supernatant resulted in a decreased clearance of E. coli as 

reflected by an increase in the colony forming units (CFU) (A). Pre-exposure to stored RBC 

supernatant reduced the cytokine gene expression of IL-6 (B) and TNFα (C) in 

macrophages in response to an LPS challenge as measured by RT-PCR fold change relative 

to the housekeeping gene, GAPDH. Clearance of bacteria was confirmed to occur through 
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phagocytosis by quantifying the percent internalization of fluorescent labelled E.coli after 

treatment with D5 or D42 supernatant compared to control (media internalization arbitrarily 

set at 100% to display differences relative to media control). *p<0.002, **p<0.001. 

N=pooled data of 3 separate experiments with 3 replicates per group for all assays.
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Figure 2. Transfusion of older human RBC supernatant impairs in vivo clearance of E. coli 
following murine trauma and hemorrhagic shock as well as clearance by human macrophages
Mice were subjected to a polytrauma model including hemorrhagic shock and resuscitation 

with either LR or stored human RBC supernatants (SN). Following trauma, E.coli was 

placed into the peritoneal cavity to mimic an infectious insult, and the clearance of bacteria 

was assessed by harvesting peritoneal washings. All three experimental groups had a 

significant increase in residual (non-cleared) E. coli compared to sham. Resuscitation with 

older (day 42) RBC supernatant led to a marked increase in CFU (indicating a decrease in 

bacterial clearance) compared to LR (A). There was no difference in survival between 

groups in the model (B). (C) Human-monocyte derived macrophages were pre-treated with 
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media, D5 SN, or D42 SN prior to exposure to E.coli and clearance was assessed as 

described. *p<0.05. N=15 mice (5 animals per group, results pooled from 3 separate 

experiments), **p<0.0001. N=26 per group (6 replicates from 4 separate experiments).
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Figure 3. HMGB1 accumulates in stored RBC units
Concentration of HMGB1 was measured by ELISA in the supernatant of leukoreduced and 

non-leukoreduced RBC supernatant preparations from fresher (storage day 5) and older 

(storage day 42). Large quantities of HMGB1 were detected within the older RBC 

supernatant as compared to fresher supernatant, although leukoreduction resulted in a 

reduction of HMGB1 by approximately 2.5 fold (A). In order to determine the cell type 

which served as a source of HMGB1 in stored RBC units, flow cytometry was performed 

utilizing antibody sort for leukocytes (anti-CD45) and RBCs (anti-CD235a). Representative 

images of FACS sorted leukocytes demonstrated a robust expression of HMGB1 (B, arrow) 

compared to isotype, while no HMGB1 was detected on permeabilized RBCs (C). 
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*p<0.0001. N=10 pooled units of RBCs per group, results run in triplicate for HMGB1 

ELISA.
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Figure 4. HMGB1 in stored RBC units regulates phagocytosis of E.coli by isolated peritoneal 
macrophages
In order to test the specific effects of HMGB1 on macrophage phagocytosis, peritoneal 

macrophages were treated with recombinant HMGB1 or albumin (BSA) as a control prior to 

exposure to E.coli. HMGB1 markedly reduced the clearance of bacteria as demonstrated by 

the increase in CFU (A). In order to specifically implicate HMGB1 as a causative agent in 

the older (storage day 42) RBC supernatant, the supernatant was treated with either a control 

antibody (isotype IgG) or a neutralizing antibody directed at HMGB1 (anti-HMGB1). 

Neutralization of HMGB1 resulted in a significant increase in E.coli clearance as 

demonstrated by a decrease in CFU relative to control antibody (B). *p<0.05. N=27 (pooled 

results of 3 separate experiments, 9 samples per group).
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