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Abstract

Thermal ablation is increasingly utilized in the treatment of primary and metastatic liver tumors, 

both as curative therapy and as a bridge to transplantation. Recent advances in high-powered 

microwave ablation systems have allowed physicians to realize the theoretical heating advantages 

of microwave energy compared to other ablation modalities. As a result, there is a growing body 

of literature detailing the effects of microwave energy on tissue heating, as well as its effect on 

clinical outcomes. This article will discuss the relevant physics, review current clinical outcomes 

and then describe the current techniques used to optimize patient care when using microwave 

ablation systems.
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Introduction

Primary liver cancer is the 6th most common malignancy worldwide with approximately 

782,000 new cases and 745,000 deaths annually (1). Hepatocellular carcinoma (HCC) 

accounts for 85% of all primary liver malignancies. In addition, the liver is a common site 

for metastatic disease, particularly from gastrointestinal primaries such as colorectal cancer. 
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Current treatment guidelines recommend surgical resection or transplantation as the gold-

standard for treating patients with very early-stage or early-stage HCC (2,3). Resection is 

also considered standard of care for select patients with liver metastases. However, the 

majority of patients who are diagnosed with liver malignancies are not eligible for resection 

or transplantation due to inadequate functional liver function, multifocal or advanced 

disease, prohibitive tumor location or the presence of medical co-morbidities (4). As a result, 

thermal ablation is becoming increasingly utilized in the treatment of primary and metastatic 

liver tumors, both as destination therapy and as a bridge to transplantation.

The goal of thermal ablation is to heat malignant tissues to temperatures that can induce 

immediate coagulative necrosis (typically over 60 °C). A complete treatment encompasses 

the target tumor plus a 5-10 mm margin (analogous to a surgical margin) while sparing 

healthy parenchyma and vulnerable non-target structures (5). However, effective treatment 

can be difficult to achieve in the liver where high tissue perfusion and large blood vessels 

can act as a “heat-sinks” near the ablation zone (6). Such heat sinks can lead to sub-lethal 

temperatures and sparing of malignant cells, thereby increasing the likelihood of local tumor 

progression (LTP) (7). Optimal treatment is therefore a function of appropriate device 

placement, sufficient energy delivery, and verification of ablative margins.

During radiofrequency (RF) ablation, the most common thermal ablation modality 

worldwide, electrical current is passed through the tumor and adjacent tissues to generate 

heat (8). As tissue temperature rises beyond cytotoxic levels, desiccation precipitates a high 

electrical impedance that disrupts the electrical circuit (9). Passive thermal conduction 

facilitates heat distribution into the peripheral ablation zone. While RF ablation has 

demonstrated good results against liver tumors up to 3 cm, the combination of inefficient 

heating physics in conventional RF ablation systems and highly-vascularized tissue has 

made effective treatment of liver tumors over 3 cm challenging (10).

Microwave (MW) ablation does not suffer from the same limitations. Microwave systems 

utilize an alternating electromagnetic field at 915 MHz or 2.45 GHz that is capable of 

propagating readily through a variety of biologic material, including charred and desiccated 

tissue (11). Heat is generated as the alternating field interacts with tissue water and ions, 

leading to larger ablation zones than RF ablation in well-perfused organs (12). Despite these 

theoretical advantages, treatment of large liver tumors was not possible with early generation 

MW ablation devices due to issues with antenna shaft heating that precluded higher power 

delivery or extended treatments (13). More recently developed microwave systems are 

characterized by more efficient antennas and shaft cooling with either water or gas that 

enables greater power delivery (14–16).

This manuscript will review the relevant physics related to MW ablation and their effects on 

tissue heating. We will then review the current clinical outcomes from existing clinical MW 

ablation trials. Lastly, we will address how physicians leverage the most recent MW 

advances and technologies to improve clinical outcomes.
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Physics of Microwave Heating

During microwave ablation, a coaxial antenna is used to deliver high-frequency 

electromagnetic fields (915 MHz or 2.45 GHz) into the target tumor. The rapidly alternating 

electric field causes water and other polar molecules to rotate in an attempt to realign with 

the electric field. This realignment process generates kinetic energy in the tissue, raising 

temperatures well over 100 °C and causing tissue near the antenna to desiccate and char 

(11). Electromagnetic fields from MW energy are capable of continuous transmission 

through this desiccated and charred tissue. As a result, MW ablation systems can create 

larger ablation zones than RF systems, even in the presence of large and fast-flowing blood 

vessels (12,17).

The rapid and efficient heating of MW ablation systems causes local tissue changes that 

have not been previously appreciated with other ablation modalities. Such changes include 

water vaporization, tissue contraction and large-scale desiccation. These changes can be 

observed on CT and ultrasound imaging. An understanding of these changes is important 

when evaluating MW ablations, both immediately after the procedure and on follow-up 

imaging.

Water Vaporization

The ability to generate temperatures well above 100 °C causes water in the tissue to undergo 

a rapid phase change into water vapor (17,18). Water vapor disperses by pressure gradients 

from the center of the ablation zone, where the heat generation is highest, to the periphery of 

the ablation zone, either in the liver parenchyma or nearby vasculature. During this time, 

bubbles in the ablation zone create backscatter that can be appreciated on B-mode 

ultrasound imaging (19). The distribution of hyperechoic bubbles closely approximates that 

of the developing ablation zone (5). Therefore, the creation and subsequent growth of MW 

ablations should be monitored in real-time using ultrasound imaging (at least on the side of 

the ultrasound transducer). Water vapor can also be observed on CT during or immediately 

after the MW ablation. On CT, the water vapor appears as a low attenuation area against the 

background liver parenchyma. Optimizing imaging tools to monitor the creation and 

movement of water vapor during microwave ablation is currently an active area of research 

(20–22).

Tissue Contraction

One metric of technical success during thermal ablation is to determine whether or not the 

volume of ablated tissue exceeds that of the target tumor plus the desired ablative margin 

(5). Ablation device vendors often supply data sheets detailing the anticipated size of an 

ablation zone given a specific time and power setting. Physicians use these data sheets to 

treat a target tumor of a certain size with the settings suggested by vendors. However, the 

majority of these data sheets are compiled from data collected in normal ex vivo animal 

tissue, which lacks both perfusion and tumors. As a result, these data sheets may not be 

particularly illustrative for human tumors (23).
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One explanation for this lack of concordance between ex vivo models and results in human 

tumors is the large amount of tissue contraction observed during MW ablation. Tissue 

contraction is more pronounced during MW ablation compared to other thermal ablation 

modalities, which produce comparatively lower tissue temperatures and less water vapor 

(9,17). Ablation zone measurements performed on post-ablation imaging or specimen 

dissection that do not account for tissue contraction may underestimate the true volume of 

tissue destruction by up to 50% (14,18,24). This finding likely extends to ablation vendors’ 

power-time tables, where the ablation sizes are also likely under-estimated. Understanding 

the potential for error using these tables can prevent over-treatment of tumors located near 

critical non-target structures.

Current Literature on Treating Primary and Secondary Liver Cancer

Adoption of microwave ablation systems has previously been limited by technical problems 

associated with suboptimal power handling, large antenna diameter, antenna shaft heating 

and unpredictable heating patterns. Despite these limitations, the results of clinical MW 

ablation studies have historically compared favorably with those of RF ablation. In a recent 

meta-analysis, RF ablation and MW ablation had similar 1-5 year overall survival, disease-

free survival, local recurrence rate, and adverse events. However, MW ablation demonstrated 

a superior 6-year overall survival (25). As MW ablation technology has advanced and our 

understanding of MW energy delivery has improved, MW ablation systems have become 

increasingly utilized in interventional oncology practices.

Primary Liver Cancer

The largest clinical experience using MW ablation to treat HCC comes from China, in part 

due to early adoption of MW ablation systems available only in Asia. That multi-center 

study of 1007 patients with primary liver cancer showed a technical success of 97.1% 

(1276/1363) and a local tumor progression rate of 5.9% (78/1363) with a mean follow-up 

time of 17.3 months (range, 3-68.9 months). The 1-, 3- and 5-year overall survival rates were 

91.2%, 72.5% and 59.8%, respectively (26). In the United States, a large multicenter trial 

involving 455 patients with both primary and secondary liver cancers demonstrated a 

primary technique effectiveness rate of 97.0% (839/865) and overall local tumor progression 

rate of 6.0%. In that study, MW ablation was used to treat 139 HCCs and the LTP rate was 

10.1% for HCC specifically. Tumor size greater than 3 cm was a significant predictor for 

decreased recurrence-free survival (27).

According to the Barcelona Clinic Liver Cancer (BCLC) guidelines, a single HCC less than 

5 cm in diameter or three HCCs that are each less than 3 cm in diameter should be treated 

with curative intent using an ablative technique as long as there are no extrahepatic 

metastases or portal vein invasion. For HCCs that meet these criteria, primary technique 

effectiveness is high (93-99%) and LTP rates are low (5.2-10.2%) (26,28,29). A summary of 

overall survival rates and local tumor progression from multiple studies can be found in 

Table 1.

The recent introduction of high-powered microwave ablation devices and multiple-antenna 

strategies have allowed physicians to treat tumors larger than 3 cm or those that fall outside 
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of the BCLC early-stage criteria (Figure 1) (30). For example, a recent single-center study 

of 75 patients treated with a high-powered, gas-cooled multiple-antenna microwave ablation 

system showed primary technique effectiveness of 93.7% in tumors 4 cm or smaller, and 

75% in tumors greater than 4 cm, with only minor complications (31). Reported local tumor 

progression rates are higher for tumors larger than 3 cm while overall survival rates have 

been comparable between the two groups (32,33).

Liver metastases

Microwave ablation of liver metastases is reserved for patients who are not candidates for 

surgical resection or have failed other therapies. A consensus guideline was developed 

recently to address the indications for MW ablation in these cases (3). The liver metastasis 

should be less than 3 cm in diameter but may reach up to 5 cm depending on anatomical 

location (Figure 2). Clinical studies focusing on MW ablation of metastatic liver disease are 

limited and usually grouped with primary liver cancer data (34). Clinical outcome studies for 

metastatic liver disease after ablation have been similar to those of primary disease, with 

local tumor progression rates ranging from 9.6-14.5% (35–37). Overall survival rates are 

difficult to compare with surgical results as patients referred for ablation are generally not 

surgical candidates and often have significant medical co-morbidities.

Combination Therapies

Transcatheter arterial chemoembolization (TACE) has been the preferred treatment option 

for patients with intermediate stage HCC. Unfortunately, recurrence rates associated with 

TACE monotherapy for intermediate stage HCC remain higher than both resection and 

ablation (38,39). There is an increasing interest in combining TACE with ablation to reduce 

the risk of residual or recurrent tumor at the treatment site. While the precise indications are 

presently unclear, the authors have considered combined embolization and ablation 

approaches for patients with larger tumors (>3-4 cm), infiltriative tumors or tumors that are 

poorly visualized on CT and ultrasound. Hepatic blood flow can be reduced with TACE to 

increase the rate of heating and MW ablation size. Furthermore, the chemotherapeutic agent 

mixed with lipiodol is hypothesized to increase the sensitivity of tumor cells to elevated 

temperatures, enhancing the efficacy of the ablation (40). Recent studies have demonstrated 

that patients with large, unresectable HCC experienced significantly longer survival with 

combination therapy using both MW and TACE when compared with patients who had 

undergone either TACE or MW alone (41,42). There are limited data comparing different 

combined embolization and ablation strategies. One recent study showed similar safety and 

efficacy when comparing TACE-RF and TACE-MW for the treatment of HCC (43).

Complications

Microwave ablation has a safety profile similar to that of RF ablation in the liver (35,44,45). 

Two large, retrospective MW ablation studies from Italy and China showed complication 

rates of 2.6% and 2.9% respectively (46,47). Major complications have included bile duct 

injury, hemorrhage, liver abscess, colon perforation, skin burns and tumor seeding. Low-

grade fever and post-procedural malaise are common syndromes immediately after ablation 

(48). The advent of shaft cooling mechanisms has substantially reduced the risk of 
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inadvertent anatomical burns along the probe track. In one study, complication rates dropped 

form 3.9% to 1.6% after the introduction of water-cooled antennas (46). Improvements in 

shaft cooling, either with water or gas, will continue to minimize complication rates (15).

Bowel perforation is a rare but potentially catastrophic complication that can result from 

unintended thermal damage to bowel in proximity to the target tumor. Retrospective studies 

with MW ablation report an incidence ranging from 0.1-0.7% (46,47). Risk factors for 

bowel perforation from thermal damage include previous abdominal surgery or chronic 

cholecystitis leading to fibrotic adhesions between the bowel and liver. Increasing 

experience with MW ablation and utilizing either hydrodissection or laparoscopic approach 

can virtually eliminate these complications.

Vascular injuries also remain a concern with the high heating rates associated with MW 

ablation (49,50). Physicians need to consider the risk between aggressive treatment to 

achieve an adequate ablative margin and reduce rates of local tumor progression while 

minimizing the risk for hepatic infarcts or intra-hepatic hematomas. The majority of vascular 

damage results in asymptomatic thrombosis in smaller hepatic vasculature (31,47). Vessel 

patency during microwave ablation is likely related to a combination of blood vessel flow, 

vessel size and the amount of energy deposited into the tissue (6). In vivo studies have 

shown that vessels smaller than 3 mm in diameter encompassed by the ablation zone are 

likely to thrombose during MW ablation (51). Additional pre-clinical studies suggest that 

hepatic arteries, which serve as the main blood supply to HCC, are less likely to thrombose 

due to their high flow states (52).

Current Techniques for Treating Liver Cancer using Microwave Ablation 

Systems

Image Guidance

Percutaneous microwave ablations can be performed using ultrasound and/or CT for 

imaging guidance. The two modalities are complementary and often used together to assess 

technical success and treatment efficacy during follow-up. Ultrasound has the advantage of 

real-time guidance for targeting, applicator placement and monitoring the development of 

the ablation zone (Figure 3). This can be especially helpful given that applicator placement 

is not confined to the axial plane. Ultrasound contrast agents can also be used to increase the 

conspicuity of the tumors during applicator placement and to assess for residual tumor 

immediately after ablation (53,54). Contrast-enhanced ultrasound imaging allows for 

vascular enhancement patterns to be evaluated in real-time. The higher temporal resolution 

compared to other imaging modalities increases sensitivity to post-ablation patency of 

nearby tumor vasculature, indicative of residual viable tumor. The safety profile of 

ultrasound contrast agents has also been well-documented, making it a safer imaging 

modality for patients with impaired renal function. However, there are limitations with 

ultrasound, particularly with regards to its dependence on user experience and penetration 

depth in overweight patients.
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Real-time fusion imaging can also be used, particularly if tumors are not visible by US or 

contrast-enhanced ultrasound (55). Fusion imaging involves overlaying or displaying side-

by-side real-time US images onto a previously-acquired CT or MRI during the ablation 

procedure (56). Changes in US transducer positioning or imaging are reflected on the CT or 

MR, giving physicians a more accurate view of the heating zone in relation to the nearby 

anatomy. Liver tumors smaller than 3 cm in diameter and difficult to identify with US alone 

may be targeted more easily via fusion imaging and reduce the chances of incomplete 

ablations (57,58).

After the ablation procedure, an immediate post-procedure biphasic CT for HCC and 

hypervascular metastasis, or a single phase CT for CRC metastasis should be performed to 

assess for complications and residual tumor or incomplete ablation coverage. This exam can 

function as a baseline study for follow-up imaging studies when evaluating for local tumor 

progression, either with contrast-enhanced CT or MRI (59).

Hydrodissection

High-powered microwave ablation systems can create ablation zones exceeding 4 cm with 

internal temperature exceeding 150 °C, especially systems with multiple-antenna capability 

(15,31,60). These high temperatures and large sizes can inadvertently damage non-target 

structures, especially in peripheral hepatic tumors that often lay adjacent to the bowel, 

abdominal wall or diaphragm. Thermal damage to these structures can cause significant 

post-procedural pain, while bowel injuries can lead to life-threatening perforation and sepsis 

(47).

The most common method to minimize the risk of these complications is to utilize physical 

displacement strategies. This involves injecting fluid such as 5% dextrose or 0.9% saline into 

an adjacent potential space, pushing the ablation zone away from the vulnerable structure 

(61,62). A drawback of using these low-viscosity fluids is a propensity to diffuse away from 

the injection site towards a dependent location before the ablation procedure is complete. In 

such cases, one option of maintaining that barrier is to continuously infuse fluid during the 

entirety of the case. However, this can lead to fluid overload and abdominal distension 

requiring paracentesis or follow-up surveillance.

Recently several authors have been investigating other displacement substances such as 

hyaluronic acid or polaxamer gel that have a longer dwell time at or near the injection site. 

Hyaluronic acid, packaged as a highly viscous gel, has been used to separate bowel from the 

liver surface during ablation to prevent more superficial liver ablations (63). Thermo-

reversible polaxamer gels, designed to increase in viscosity at high temperatures, have 

shown promising results in pre-clinical studies (64). Polaxamer gel can be doped with 

contrast agents to appear more visible during imaging for antenna guidance and ablation 

monitoring (65,66). Improving the gel's pharmacokinetics and stability presents an 

opportunity for investigation and its adoption will minimize the risk for burns to non-target 

anatomy.
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Laparoscopic Approach

The majority of existing clinical literature describing laparoscopic ablations have utilized RF 

as opposed to MW ablation technology (67–69). However, the principles of thermal 

ablations in laparoscopy remain the same. Laparoscopic approaches can be utilized to 

identify safe antenna insertion paths to avoid critical structures near the liver such as the 

bowel or diaphragm (70,67). Furthermore, laparoscopy can provide access for intraoperative 

ultrasound imaging, which improves lesion detection and more accurate antenna positioning. 

Early laparoscopic studies using RF ablation on small, early-stage HCCs has been associated 

with similar survival rates compared to surgical resection, albeit with higher rates of local 

tumor progression (69). Comparison studies between laparoscopic and percutaneous 

ablations have shown that a laparoscopic approach is associated with a decreased rates of 

LTP in subcapsular tumors by allowing for more aggressive treatment without risk of 

burning adjacent organs, diaphragms and abdominal wall (10). As a result, select institutions 

have recommended laparoscopic ablations are the first-line treatment for patients with 

subcapsular liver tumors (68).

Energy Delivery Optimization

The primary reason for local tumor progression is the failure to create an ablation zone that 

completely covers the tumor and a margin (71). In many cases, multiple overlapping 

ablations may be required to create the necessary ablation zone size. Overlapping ablations 

can be created in different ways: 1) Multiple insertions of a single antenna to create 

overlapping ablation zones in a sequential manner or 2) Multiple antennas ablating 

simultaneously to create a confluent ablation zone. Sequential antenna applications 

performed by repositioning a single antenna can be technically challenging. Prior ablations 

create charring, bleeding, tissue contraction and gas bubbles, which can make visualization 

of the remaining tumor and margins difficult. Simultaneous antenna activation using 

multiple antennas has been demonstrated to create larger, rounder and more confluent 

ablation zones in a fraction of the time due to the higher heating rate compared to 

sequentially activated antennas (60). This effect was seen even when controlled for total 

energy delivery over the ablation period.

Recent investigations have also focused on the method of energy delivery. Pulsing a higher 

peak-power through a single antenna can help overcome heat-sinks and create larger ablation 

zones than delivering the same energy using a lower, continuous power (72,73). A more 

recent in-vivo study found that peak power delivery, rather than ablation time or duty cycle, 

was the chief determinant in overcoming blood perfusion, highlighting the importance of 

utilizing high-powered MW ablation systems (74). Conversely, treatment using low powers 

for long periods of time may be considered sub-optimal for creating sufficient necrosis in 

highly-perfused tissue such as the liver. The pulsing concept can also be extended into 

multiple-antenna applications when multiple generators are not available(75).

Protecting non-target structures using antenna orientation

The size and shape of an ablation zone and its position relative to the antenna depend not 

only on the input power and ablation time, but also on the design of the antenna. Ablation 

zones grow radially outward from the antenna. The distance that an ablation zone extends 
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beyond the tip of the antenna will vary for different systems and antenna designs; however, 

ablation zones generally extend only a few millimeters beyond the tip of the antenna. During 

antenna placement, orienting the antenna to point toward a non-target structure in close 

proximity to the tumor can help minimize the risk of unintended thermal damage to that 

structure.

Antenna Design

Early generation microwave ablation system were limited by inefficient antennas that 

created elongated ablation zones with a “comet tail” shape (16). More recent antenna 

designs are now available to create more focal, shorter ablation zones that are centered more 

toward the tip of the antenna (14,76–78). Such antennas are particularly helpful when 

treating small or peripheral tumors. In addition, tissue-specific antennas tuned to the 

dielectric properties of different soft tissues have been developed to improve the efficiency 

of power delivery (11,79,80). With the current array of antennas and systems available, the 

historical deficiencies of low power delivery and elongated ablations have been nearly 

eliminated. A more in-depth discussion on the historical development of modern microwave 

antenna design is also discussed in this issue (REF).

Conclusion

Microwave ablation systems generate heat at a faster rate and create larger ablation zones 

compared to radiofrequency ablation systems. Over the last 15 years, gradual technological 

improvements and an improved understanding of MW energy delivery have led to better 

control of the ablation zone and improved outcomes in treating early stage HCC and CRC 

metastases. The recent introduction of high-powered microwave ablation systems has begun 

to draw interest as a viable treatment option against tumors larger than 3 cm in diameter. 

Patient safety and outcome data from multi-institutional ablation studies have also begun to 

be published, and novel strategies to improve patient safety as well as reduce local tumor 

progression rates are appearing in the clinical literature.
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Figure 1. 
84-year old female with a history of cirrhosis and hepatitis C. A) Contrast-enhanced 

computed tomography (CECT) image demonstrates an arterial-enhanced lesion in segment 

IV measuring 4.0 cm (arrow). B) Lesion was treated with the placement of a single cooled 

microwave antenna at 40 W for 15 minutes. C) 24-hour post-procedural CECT demonstrates 

the presence of a thick hypervascular peri-ablation halo (triangles). This finding can be seen 

from the hyperemic reaction that regularly develops around an ablation zone. D) Four-year 

follow-up of an arterial-phase (left) and portal-venous phase (right) CECT demonstrates 

contraction of the ablation zone (arrow) with no evidence of enhancement.
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Figure 2. 
67-year old female with liver metastasis from colorectal cancer. A) Pre-ablation magnetic 

resonance (MR) imaging (left) of liver lesion (arrow) and CEUS (right) confirming presence 

of 13 by 14 mm liver lesion (arrow) B) The lesion was treated with a single water-cooled 

antenna at 50 W for 6 minutes (left). Post-ablation image demonstrating hyper-echoic region 

measuring 34 mm by 37 mm, representing the ablation zone (right). The goal is to create 

ablation margins > 1 cm beyond tumor boundary. C) Post-ablation B-mode ultrasound (left) 
and CEUS (right) showing the ablation zone (anechoic) with the presence of the 

hypervascular peri-lesional halo. D) CECT (left) and CEUS (right) demonstrating ablation 

zones that encompass the entire lesion measuring 32 by 42 mm.
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Figure 3. 
79-year old male with a history of cirrhosis and hepatitis C and prior treatment with surgery 

and radiofrequency ablation for HCC. A) CECT (left) and CEUS (right) image 

demonstrating an arterially-enhanced liver lesion (yellow arrows). B) Ultrasound image 

showing single gas cooled-antenna (arrowhead) being guided into the HCC (left) and after 

being treated at 50 W for 5 minutes (right). This ultrasound image shows progression of 

treatment via rapid generation of gas inside the liver tissue (arrow). C) On post-procedural 

B-mode (left) and CEUS (right) (24-hour post-ablation), the image shows presence of 

central hypo-echoic area corresponding to the lesion treated, surrounded by a hyper-echoic 

area which corresponds to the inflammatory region of the ablation zone. D) 24-hour post-

ablation arterial phase CECT (left) and portal-venous phase CECT (right) showing ablation 

zone encompassing the lesion (arrows).
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