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Abstract

Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver 

function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to 

high variability in potential liver toxicity with similar doses. This work investigates three treatment 

planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-

treatment liver function and local-function-based radiosensitivity with dose; one considers only 

dose. Each model optimizes different objective functions (varying in complexity of capturing the 

influence of dose on liver function) subject to the same dose constraints and are tested on 2D 

synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized 

equivalent uniform dose (ℓEUD) (conventional ‘ℓEUD model’), the so-called perfusion-weighted 
ℓEUD (fEUD) (proposed ‘fEUD model’), and post-treatment global liver function (GLF) (proposed 

‘GLF model’), predicted by a new liver-perfusion-based dose-response model. The resulting 

ℓEUD, fEUD, and GLF plans delivering the same target ℓEUD are compared with respect to their 

post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, 

used as a measure of local function, is computed using DCE-MRI. In cases used in our 

experiments, the GLF plan preserves up to 4.6%(7.5%) more liver function than the fEUD (ℓEUD) 

plan does in 2D cases, and up to 4.5%(5.6%) in 3D cases. The GLF and fEUD plans worsen in 

ℓEUD of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver 

perfusion information can be used during treatment planning to minimize the risk of toxicity by 

improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD 

model optimization is computationally inexpensive and often achieves better GLF than ℓEUD 

model optimization does, the GLF model directly optimizes a more clinically relevant metric and 

can further improve fEUD plan quality.
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1. Introduction

Stereotactic body radiation therapy (SBRT) has become a popular method of treatment for 

liver cancer for its efficacy in local tumor control (Liu et al 2013, Wahl et al 2015). SBRT is 

generally used to treat small tumors (approximately 5 cm or less in diameter) due to the risk 

of normal tissue toxicity when treating larger volumes to high doses. High dose from 

treatment, patients’ sensitivity to radiation, and their pre-treatment liver function all affect 

the likelihood of radiation-induced liver disease (RILD). The latter two factors are patient 

attributes that are not reflected in computed tomography (CT) scans typically used to 

characterize patient geometry for treatment planning. In this paper, we focus on 

incorporating pre-treatment liver function into treatment planning decisions, motivated by 

the following considerations. The liver is well-known to function in a parallel-like fashion 

(Jackson et al 1995), e.g. a certain portion of the liver may be removed or damaged without 

losing overall function. However, local liver function is not uniform, and initial function as 

well as which functional portions are damaged influences the post-treatment global liver 

function. This implies the need to take into consideration during treatment planning (1) 

spacial features of a dose distribution, which would prioritize sparing of high-functioning 

portions of the liver, and (2) liver tissue dose response.

There has been ongoing work exploring use of physiological imaging to consider organ 

function and/or tumor aggression information in treatment planning (e.g. brain target 

radiosensitivity from dynamic susceptibility contrast-enhanced MRI (Chen et al 2007), lung 

target proliferation rate from fluorine-18-fluorodeoxyglucose PET (Das et al 2004, Feng et 
al 2009), liver function from 99mTc-sulphur colloid (SC) SPECT/CT (Bowen et al 2015), 

and lung function from various imaging modalities (Seppenwoolde et al 2002, Ireland et al 
2007)). Bowen et al (2015) segmented high-functioning liver into regions binned by 

intervals of SC uptake and redistributed dose by scaling the mean dose of each of these 

regions according to SC uptake in the objective function. Ireland et al (2007) segmented 

functional lung using 3He MRI and compared treatment plans from minimizing the volume 

receiving at least 20 Gy in the total lung versus total functional lung. Seppenwoolde et al 
(2002) showed potential of using voxel-based cost functions and classifying patients by 

perfusion pattern. Two advantages of using voxel-based information are the ability to view 

the relevant organ approximately as a continuous body, as opposed to (manually) 

segmenting it into disjoint functional and nonfunctional structures (e.g. as in Bowen et al 
(2015) and Ireland et al (2007)), and to use functional imaging information directly, which is 

operationally better suited for adaptive planning. In these previous works, all approaches 

used surrogates for post-treatment organ function and do not consider organ dose-response 

behavior in the optimization. Zhang et al (2010) examined lung dose response and observed 

that post-treatment reduction in perfusion plateaus beyond a particular dose threshold, i.e. 

damage becomes saturated; the liver dose-response model from Wang et al (2016) reflects 

similar behavior.

In this paper, we propose two new treatment planning approaches aimed at better preserving 

liver function without compromising tumor coverage or exceeding acceptable limits to other 

critical structures. In particular, we propose replacing the traditional objective of minimizing 

linearized equivalent uniform dose (ℓEUD) to the liver with ones that account for liver 
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function: (1) perfusion-weighted ℓEUD (fEUD) that avoids delivering dose to highly-

perfused liver by explicitly incorporating voxel-based pre-treatment liver perfusion into a 

treatment planning model, resulting in a problem that is convex and can be efficiently solved 

to global optimality, and (2) post-treatment global liver function (GLF) that explicitly 

captures global liver function using a model of liver dose-response based on pre- and post-

treatment perfusion, resulting in a problem that is nonconvex and can be solved to local 

optimality. To measure liver function, our study uses voxel-based pre-treatment liver 

perfusion, computed from Dynamic-Contrast Enhanced MRI (DCE-MRI). Cao et al (2013) 

have shown portal venous perfusion to be a good indicator of both local and global liver 

function.

The rest of this paper is organized as follows. In section 2, we formalize the three models 

used and describe both 2D (sythensized data) and 3D (real patient data) instances that we 

used to test these models. In section 3, we present and compare resulting dose distributions 

obtained from each of the models. In section 4, we show how the fEUD and GLF models 

produce alternative dose distributions to the ones obtained by the ℓEUD model, and in 

particular show the potential benefits of each alternative dose distribution. We conclude the 

paper in section 5.

2. Methods

2.1. Notation and treatment criteria

We discretize the relevant areas of the patient anatomy into a finite set of voxels V, and 

discretize the beams, whose orientation is chosen a priori by a dosimetrist, into a finite set of 

beamlets N. Let S be the set of structures, Vs be the set of voxels in structure s∈S, with V 
=∪s∈S Vs, and D ∈ R|N|×|V| be the dose deposition matrix, where an entry Dij is the dose 

deposited in voxel j∈V from beamlet i∈N at unit intensity. In our treatment planning model, 

the decisions include xi, i∈ N, which is the intensity of beamlet i, and zj, j∈V, which is the 

(physical) dose delivered to voxel j computed as

Given dose distribution z ∈ R|V|, the generalized equivalent uniform dose (gEUD) 

(Niemierko 1999), a biological criterion, can be used to evaluate a dose distribution to a 

structure s∈S with voxel set Vs. The gEUD to a structure s∈S is defined as

(1)

where as is a structure-specific parameter (Li et al 2012). For computational efficiency, we 

use a piecewise-linear approximation of the gEUD, namely, the linearized equivalent 
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uniform dose (ℓEUD) (Thieke et al 2002), which is a convex combination of the mean and 

maximum dose, or of the mean and minimum dose, for structures where we are concerned 

with overdosing or underdosing, respectively:

where  is also structure-specific. We note that, in optimization models, typically 

 is bounded from above to avoid hot spots (e.g. if s is a critical structure) and 

 is bounded from below to ensure sufficient coverage and avoid any cold spots 

(e.g. if s is a target). From an optimization perspective, both of these ℓEUD-bounding 

constraints are convex, and therefore tractable.

2.2. Optimization models

Using the treatment criteria discussed above, our treatment planning optimization model 

minimizes an objective function based on dose, subject to dose constraints for various 

structures. The model is as follows:

(2)

(3)

(4)

(5)

(6)

Here, in (3), ℓEUD to the planning target volume (PTV), denoted , is bounded 

below by the parameter , which is typically the prescription dose. In our 

experiments, we only consider cases with one target, but more constraints of this type can be 

added to represent multiple targets. In (4), the parameters  denote upper bounds on 

 to the remaining critical structures s∈S\ {Liver, PTV}. Constraints in (5) link 

dose and beamlet intensity variables. Inequalities in (6) provide lower and upper bounds on 
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beamlet intensities. Solutions to these models are treatment plans consisting of beamlet 

intensities x that deliver resulting dose distributions z, which together satisfy constraints (3)–

(6). The function being optimized in (2) reflects an objective related to the liver dose; the 

standard approach is to minimize —we will refer to the model with this 

objective as the ℓEUD model. Note that in the ℓEUD model, the objective function gives 

uniform weight to the dose to each voxel in the liver, i.e. it considers every voxel as equally 

important to spare. In the following sections, we propose two alternative liver objectives: the 

first of these objectives reflects relative importance of liver voxels by considering their 

relative perfusion level to discourage dose to highly-perfused liver; the other objective 

accounts for voxel-based dose response that considers ‘damage-resistant’ and ‘damage-

saturated’ dose thresholds (global liver response is then the sum of appropriate terms over 

voxels).

2.3. Perfusion avoidance model

As previously mentioned, we can use liver perfusion maps computed from DCE-MRI as an 

indicator of local and global liver function (Cao et al 2013). We denote the perfusion vector 

for the liver by , where the jth component of f is the perfusion level of voxel 

j∈VLiver. Liver perfusion values range from  to over . In this paper, we 

assume there is no uncertainty in these measurements, e.g. due to noise or image 

registration. Letting  be a vector-valued function g(f) = (g1(f),
…,g|VLiver|(f)), we define each component gj(f), j∈ VLiver, as the relative importance of 

voxel j among all liver voxels, given perfusion vector f. In this work, we consider gj(·) that 

only depend on fj, and we require each gj(·) to be non-decreasing in fj. This gives greater 

importance to highly-perfused voxels, which we most want to preserve. In our selection of 

g(·), we reflect the findings of previous studies (Cao et al 2008, Wang et al 2016) that there 

exists a perfusion threshold below which voxels do not have any functional value. Although 

there is not a consensus on the value of this threshold, in the following we use  as a 

compromise between suggested values. Similarly, we assume that voxels with values 

measured over  do not have higher function than those at , as in 

Pandharipande et al (2005) and Cao et al (2006). Thus, values are rounded accordingly and 

the effective range of perfusion considered is [30, 100]. These values are then shifted down 

to [0, 70] to further distinguish voxels with higher function from ones with lower function. 

Based on these considerations, we use

(7)

in our experiments. To incorporate perfusion information into treatment planning, we use a 

so-called ‘perfusion-weighted ℓEUD’ (denoted fEUD), which is similar to the functional 

EUD described, e.g. by Miften et al (2004) and used by Seppenwoolde et al (2002) to reduce 

dose to high-functioning lung. We define fEUD to the liver by weighting the dose to each 

liver voxel by the voxel’s relative importance:
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(8)

(note: ). We refer to the optimization model (2)–(6) with 

 used as the objective in (2) as the perfusion avoidance model, or simply 

the fEUD model. The fEUD model is similar to Bowen et al’s approach of differentiating 

functional liver regions by intervals of 99mTc-sulphur colloid SPECT uptake and then 

minimizing a weighted sum of mean doses to each of the differentiated regions. However, 

we do not segment the liver by perfusion ranges and instead differentiate function at the 

voxel level.

Although we also introduce a liver dose-response model to optimize post-treatment global 

liver function in the next section, we include  in our experiments since it 

essentially reflects preference for delivering less dose to higher-perfused voxels, in order to 

show the potential benefits of a perfusion-conscious model. Moreover, because of the convex 

piece-wise linear structure of this objective function, the resulting optimization model is 

linear and can be solved much more efficiently than the more complex global liver function 

model.

2.4. Global liver function preservation model

The perfusion avoidance model described in the previous section may not fully capture 

characteristics of normal liver dose response. We thus propose an alternative optimization 

model, with an objective function designed to reflect post-treatment global liver function. 

The model was developed using liver perfusion dose-response data from an Institutional 

Review Board-approved study. The study consisted of 24 patients who were treated with 

variable fractionation schemes and imaged using DCE-MRI at the following time points: 

pre-treatment, after 60% of planned treatment, and 1 month post-treatment. In the analysis, 

physical dose was converted to EQD2 (equivalent dose in 2 Gy fractions) to account for the 

variable fractionation.

Our model of perfusion-based post-treatment global liver function has two components. The 

first is a perfusion-based model of global liver function. According to Wang et al (2016), 

given perfusion value fj at voxel j, the corresponding so-called probability of function, p, for 

this voxel is computed as

(9)

where F0.5 is the perfusion value at which the voxel functions with a likelihood of 50%, and 

n is a steepness parameter. Due to the nature of the logistic function, voxels with poor/high 

perfusion have similarly poor/high function probability, implying two perfusion thresholds: 

Wu et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one below which all voxels have no function, and another above which all voxels are simply 

considered fully functioning, a behavior consistent with the weights used in the fEUD 

objective. Given the probability of function for each liver voxel, global liver function 

(assuming a parallel structure) can be computed as follows (see Wang et al (2016)):

(10)

where γ is the probability threshold under which voxels do not contribute to global liver 

function and ṼLiver = {j ∈ VLiver : p(fj) > γ}.

The second component of our model captures the impact of dose on liver voxel perfusion. In 

the following, we use superscripts ‘pre’ and ‘post’ to denote pre- and post-treatment 

measurements. Previous lung studies indicate a potential dose threshold beyond which 

damage is saturated, i.e. no more function is lost (Zhang et al 2010). To consistently reflect 

these thresholds for our liver response model, we assume a logistic form. Let 

 be a vector-valued function, with  given by:

(11)

where D50 is the EQD2 dose required to reduce initial perfusion by 50%, k determines the 

steepness of the curve, and

(12)

where  is the alpha-beta ratio of structure s, and T is the total number of fractions. The 

parameters of this model were found from logistic fitting from the study’s patient 

population.

Combining (10) and (11) we can express post-treatment global liver function in terms of 

EQD2 and pre-treatment perfusion:

(13)
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and, substituting (11), we obtain a model for post-treatment global liver function 

GLFpost(z;fpre) as a function of physical dose z and pre-treatment perfusion fpre:

(14)

Each term in the above summation (corresponding to voxel j) represents the post-treatment 

probability of function given dose zj and pre-treatment perfusion .

We illustrate the shape of several terms in the sum (13), which reflect probability of 

function, in terms of EQD2, for voxels with various pre-treatment perfusion levels (solid 

curves), in figure 1. There are two important dose thresholds concerning post-treatment 

function: below the dose-damage threshold no significant function is lost, and above the 

dose-saturation threshold no additional function is lost. The terms in the sum (14), if plotted 

with physical dose as the independent variable instead of EQD2, have similar S-shapes but 

are steeper due to the different scaling of the independent axis. For implementation 

purposes, we approximate each term of (14) by a simpler logistic function; details of the 

approximation are discussed in the next section. Note that since GLF should be maximized, 

to fit into our optimization framework, we (equivalently) minimize its additive inverse.

2.4.1. A simple logistic approximation of GLF—To simplify implementation, we 

approximate GLFpost(z;fpre) with the following simpler function :

(15)

where . To derive this simplification, each term in the 

summation (14) (corresponding to voxel j) is replaced by a simple logistic function

where  is the pre-treatment probability of function of voxel j (computed using (9)), z̄j is 

the dose that results, for this voxel, in reduction of pre-treatment function by 50%, and σj is 

the slope of the corresponding term in (14) at z̄j (z̄j is also approximately the point of change 

in the sign of curvature in the corresponding term in (14)). Note that the values of these 
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parameters are based on pre-treatment perfusion , and in particular, that the steepness 

parameter σj reflects the sensitivity of the voxel, i.e. the magnitude of its response to dose. 

Also, in (15) we include all voxels whose pre-treatment probability of function exceeds γ, 

with minimal impact on the resulting values. The dotted curves in figure 1 illustrate the 

approximation (with the formulae adjusted to the EQD2 dose scale).

We refer to the optimization model (2)–(6) with  used as the objective in 

(2) as the global liver function preservation model, or simply the GLF model.

2.5. Experiment

In sections 2.2–2.4, we proposed an optimization model (2)–(6) with three options for 

objective function (2):  of (8), and  of 

(15). To test the effectiveness of considering varying degrees of function information during 

optimization, we compared dose distributions obtained from these three models (we refer to 

these dose distributions as the ℓEUD, fEUD, and GLF plans, respectively) for the same set of 

treatment parameters (i.e. the bounds  that appear on the right-hand sides of (3) and 

(4)). Thus, the set of constraints was identical in the three models and the only difference 

was the objective function used in (2). All treatment planning performed for the purpose of 

the current study was retrospective.

Both radiation therapy simulation imaging and perfusion data were obtained from patients 

enrolled in a prospective study approved by an institutional review board. Plan setup and 

dose coefficient (Dij) calculations were done in the University of Michigan’s in-house 

treatment planning software packages, UMPlan and UMOpt (Kim et al 1995, Kessler et al 
2005).

To evaluate dose to the PTV with gEUD in (1), it is common to use aPTV ≈ −10 (Li et al 
2012). Using the piecewise linear approximation (ℓEUD-underdose) to evaluate dose to the 

PTV, we set  so that , 

where zdelivered is a treatment plan delivered to a typical liver patient in the Department of 

Radiation Oncology at the University of Michigan. We simply used the mean dose, i.e. 

, for , as liver is widely considered to be a highly parallel organ. For all 

other structures, the maximum dose in structure s was used for , i.e. , s∈S\ 

{Liver, PTV}. The maximum intensity of any beamlet in (6) was bounded by U = 40 

(according to institutional practice) to avoid extremely high beamlet intensities that would 

result in high monitor units and inefficient treatment delivery. This constraint typically does 

not restrict solution quality as beamlet intensities rarely reach this maximum value. In (11), 

D50 = 51.7 Gy-EQD2 and k = 4.9, which were determined from model fitting. In (9), 

 and n = 6.4, both of which were obtained from Wang et al (2016). To 

compute EQD2 dose for liver, we used  and T = 5 fractions (according to 

the protocol at the University of Michigan Hospital).
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We remark that, in formulating our models, we have assumed that the liver perfusion data is 

known and not subject to uncertainty. In practice, uncertainty is undoubtedly present, in part 

due to possible measurement and registration imprecision, and can have a clinical impact. 

While this paper focuses on incorporating functional imaging and using true dose-response 

models for capturing change in organ function in treatment planning, in our future work we 

plan to test the impact of parameter uncertainty on treatment plans obtained with the models 

presented here, and extend the models to make them robust. This would involve developing 

appropriate analytical models of the uncertainty and incorporating them into the 

optimization. As our preliminary work suggests, robust versions of the models considered in 

this paper will be significantly more mathematically complex, and will require development 

of corresponding solution methods. We plan to report on the methodology and results of 

robust models in future publications.

Our implementation of all three models was done in C++, with Gurobi’s primal simplex 

method (Gurobi Optimization, Houston, TX) used to solve the linear optimization problems 

resulting from ℓEUD and fEUD models. The GLF model results in a nonconvex nonlinear 

optimization problem, which was solved using IpOpt’s primal-dual interior point method 

(Wächter and Biegler 2006) (and linear solver subroutine by HSL (2013)). All experiments 

were performed on a custom-built machine with 3.5 GHz 8-Core Intel i7-3770K processor 

and 31.4 GB memory at 3901 MHz. Although the interior point method is only guaranteed 

to find locally optimal solutions, it was warm-started with the fEUD plan to guarantee a 

treatment plan that was at least as good (in terms of GLF objective) as the fEUD plan.

2.6. Liver perfusion patterns

The patient population varies widely in terms of liver perfusion patterns. Since 3D dose 

distributions are difficult to visualize, analyzing synthesized 2D cases with specific patterns 

allows for a comprehensive illustration of where dose is effectively reduced and how this 

reduction is compensated for to maintain target coverage. We identified oft-observed 3D 

perfusion patterns from DCE-MRI in real patient cases and, for one typical 2D liver 

geometry, replicated these perfusion patterns to generate diverse problem instances. We also 

applied our models to real 3D patient cases.

The 2D liver cases had 3 structures: PTV, normal liver, and unspecified normal tissue (figure 

2). Figure 3 shows the 5 perfusion patterns investigated within the same geometry. On the 

left are axial views of liver perfusion maps, color-coded by level of perfusion, that were 

observed in clinical cases; on the right are the synthesized cases where the PTV voxels 

(crosses) are contoured and the surrounding liver voxels (dots) are color-coded with respect 

to their perfusion-based relative importance (g) values, see (7). The unspecified normal 

tissue is not shown.

Table 1 summarizes parameter values used in the models for the 2D cases. We note that the 

upper bound for the normal tissue, , is given (in physical dose) as 80 Gy in order to 

allow the fEUD and GLF models to focus on improving solely the dose distribution in the 

normal liver. However, when applying the models to real patient data, all bounds on 

Wu et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 to critical structures are based on clinical practice at the University of Michigan 

Hospital.

We also considered five typical 3D patient cases. Table 2 summarizes parameter values used 

for all 3D cases. Lastly, in the 3D cases, 14 non-coplanar beams were used in order to allow 

flexibility to produce an appreciable alternative dose distribution (in the 2D cases, nine 

beams were used).

3. Results

In this section we show the potential benefits and limitations of treatment plans obtained by 

the ℓEUD, fEUD, and GLF models. First, we discuss results for the sythensized 2D cases to 

provide intuition on differences in the resulting dose distributions. These examples also 

show which perfusion patterns have the most to gain from the models that use functional 

imaging information. Then, we discuss results for five representative real 3D patient cases.

In computing liver ℓEUD, we only concern ourselves with pre-treatment functional liver and 

denote it as s = fLiver:

(16)

3.1. 2D liver cases

We compare the  (as in (16)) achieved by the fEUD and GLF plans in table 3. We 

present GLF values of the three plans in table 4 and in figure 4, along with pre-treatment 

GLF for each case. We use the ‘true’ expression for GLF defined in (14) to calculate post-

treatment global liver function values. Recall that, for each case, the solution process for the 

non-convex GLF model is warm-started with the solution of the fEUD model; after the 

numerical optimization reaches a pre-specified time limit (we use 30 h), we report either the 

algorithm output or its warm-start input, whichever achieves higher post-treatment GLF, as 

the GLF plan.

The values reported in table 4 include the pre-treatment (Pre-Tx) GLF and post-treatment 

(Post-Tx) GLF from the 3 plans (GLF, fEUD, ℓEUD). As expected, the GLF plan achieved 

the best GLF among the three plans. However, fEUD plans achieved varying improvement 

in GLF over ℓEUD plans. Although in our experiments the fEUD plan typically achieved a 

better GLF than the ℓEUD plan did, we warn the reader that this may not always be the case: 

the ℓEUD plan may achieve a better GLF than an fEUD plan in very select perfusion patterns 

(e.g. consider a liver perfusion pattern with alternating radial strips of high and poor 

perfusion, each rooted at the PTV).

We highlight two patterns, P1 (figure 5(a)) and P3 (figure 6(a)), for their noticeable and 

limited differences, respectively, in GLF achieved by the fEUD plan over the ℓEUD plan. 

Figures 5 and 6 provide a visual comparison of the ℓEUD, fEUD, and GLF plans for each of 

these two cases, and their impacts on liver function. The dose difference between the ℓEUD 
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and GLF plans to each liver voxel is shown in figures 5(b) and 6(b), and the dose difference 

between the fEUD and GLF plans to each liver voxel is shown in figures 5(c) and 6(c).

3.2. Clinical (3D) liver cases

In this section we present results of applying the ℓEUD, fEUD, and GLF models to five real 

patient cases. We compare the  (as in (16)) achieved by the ℓEUD, fEUD, and GLF 

plans in table 5. GLF values are presented in table 6 and figure 7. Since these patient cases 

have perfusion patterns that are analogous to certain 2D patterns, we discuss in detail only 

patient case 1 (PC1), which is an example where the perfusion map led to an appreciable 

decrease in dose to high-functioning liver using the fEUD model, and an increase in global 

liver function using the GLF model. Using Eclipse (Varian Medical, Palo Alto, CA) to 

visualize dose distributions, we show in figures 8(a)–(c) the same axial view from the ℓEUD, 

fEUD, and GLF plans, respectively. In the background is an axial CT of the patient: the PTV 

is contoured in pink, and the liver is contoured in orange. The liver is represented separately 

in figure 8(d) by its gray-scale DCE-MRI perfusion map, which is also overlaid on the axial 

CTs (figures 8(a)–(c)). Bright/dark coloring represent high/poor perfusion. To see the change 

in dose at each voxel, we show two dose wash differences (fEUD plan minus ℓEUD plan, and 

GLF plan minus ℓEUD plan) in figures 8(e) and (f), where lighter color intensities 

correspond to larger dose differences, and hot/cold colors correspond to positive/negative 

dose differences.

4. Discussion

Although it is unknown which values of GLF are clinically acceptable, the GLF model does 

produce treatment plans that retain the most liver function compared to the fEUD and ℓEUD 

models. This is done by delivering dose exceeding the damage saturation threshold to fewer 

high-functioning voxels. We first discuss the results of 2D cases. Table 3 shows that, for 

most cases, the fEUD and GLF plans achieve comparable  as the ℓEUD plan 

(albeit dependent on the specific perfusion pattern). Moreover, the plans are guaranteed to 

achieve adequate target coverage, which is enforced by constraint (3). In certain cases, 

although there is a notable increase in  in the GLF plan from the ℓEUD plan, there 

is also notable gain in GLF (see figure 4). From the dose wash differences, we observe that 

applying the fEUD and GLF models may be more effective in reducing dose to highly-

perfused liver for particular perfusion patterns than for others. Specifically, the fEUD model 

follows the intuition that patterns P1, P2, and P4 have more beam paths to the target that are 

composed of low functioning liver voxels than patterns P3 and P5 do. In figures 5(b) and (c), 

we see that voxels with the higher perfusion mostly receive less dose, but in order to 

maintain target coverage, this dose is compensated for by boosting voxels with poor 

perfusion. However, for pattern P3, observe that although the fEUD plan achieves almost no 

improvement in post-treatment GLF over the ℓEUD plan (figures 6(b) and (c) look similar 

due to subtracting similar plans, and consequently so do figures 6(d) and (e)), the GLF plan 

is able to better preserve additional parts of high-functioning liver and therefore achieves 

higher post-treatment GLF. Figures 5(c) and 6(c) contrast how the GLF and fEUD objectives 

prioritize where dose is deposited. The GLF plan achieves better GLF than the fEUD plan 
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by delivering additional dose (red) to both a small region of high-functioning voxels, which 

are damage-saturated already in the fEUD plan, and large regions of the low-functioning 

voxels, which contribute little to global function. Thus, accounting for the two dose 

thresholds in the liver response allows a reduction in physical dose of up to 30 Gy (blue) in a 

large region of the high-functioning liver.

Figure 9 shows how the GLF plan is able to achieve better GLF than the fEUD plan does. 

The line plot represents the dose-response of the pre-treatment high-functioning liver (the 

parameters for this dose-response are derived from using the average pre-treatment function 

of these voxels). The threshold we considered as high-functioning was probability of 

function ≥ 0.5, i.e. perfusion ≥F0.5. Liver voxels are then grouped into bins by dose for each 

plan (bin size of 10 Gy-EQD2, with all voxels beyond the damage-saturation threshold of 50 

Gy-EQD2 grouped into a single bin) and each bin is represented in the figure by circles, 

where the diameter of each circle reflects the number of voxels in that bin (thin circles 

correspond to the fEUD plan while thick circles correspond to the GLF plan). The GLF plan 

delivers dose beyond the damage-saturation threshold to fewer voxels compared to the fEUD 

plan, and instead delivers tolerable amounts of dose (e.g. 15–20 Gy-EQD2) to more voxels 

to achieve comparable target coverage. Since tolerable amounts of dose insignificantly affect 

post-treatment function, the resulting post-treatment GLF is higher.

Although the differences in dose distributions from 3D patient cases are not as conspicuous 

as those from the 2D cases, we observe analogous behavior. Qualitatively, patient case 1 has 

a 3D perfusion map analogous to the 2D perfusion pattern P1 in figure 3(a): large clusters of 

various perfusion surrounding the tumor. Figures 8 and 10 show this analogous benefit of 

using a GLF objective. In particular, comparing figures 8(a)–(c), we observe that the bright-

green 30 Gy iso-dose line (typically, where damage saturates) is pushed further in toward the 

PTV and covering less functional liver in the GLF plan, while more highly-perfused liver is 

covered by the 30 Gy line in the fEUD and ℓEUD plans. Moreover, using the ℓEUD plan as 

the baseline plan, the dose wash difference in figure 8(f) (GLF–ℓEUD plan) shows a larger 

reduction in dose to the posterior region of the liver, which is the highest-functioning portion 

(as seen in figure 8(d)), compared to the dose wash difference in figure 8(e) (fEUD–ℓEUD 

plan).

Our current model considers voxel-based organ function information. A next step is to 

consider function at a higher level by preserving not only individual high-functioning liver 

voxels, but also so-called ‘highly functional subvolumes of liver,’ i.e. contiguous groups of 

voxels—identifying such subvolumes would supplement existing dose-based evaluation 

criteria. Another direction is to make our model robust by accounting for uncertainty in 

functional imaging data, e.g. from image registration errors and the perfusion measurements 

themselves. Finally, since response parameters are currently population-based, we intend to 

further individualize planning through an adaptive framework by anticipating, part-way 

through treatment, patient-specific radiosensitivity with patient-specific response parameters 

(such response models have also been developed in Wang et al (2016)).

Wu et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Conclusion

We developed methods to explicitly incorporate voxel-level liver function information into 

SBRT treatment planning. The fEUD model can often effectively generate an alternative 

dose distribution that reduces dose to highly-perfused voxels and increases dose to poorly-

perfused voxels (not necessarily by the same amount), while achieving the same target 

linearized equivalent uniform dose and satisfying dose limits to other critical structures. 

Although this model is computationally inexpensive in comparison to the GLF model, 

minimizing fEUD is only a surrogate for maximizing post-treatment global liver function 

and is not a uniformly good surrogate. Though computationally more expensive, the GLF 

model directly optimizes expected post-treatment global liver function, a more clinically-

relevant metric. The results of this work suggest a need to further investigate numerical 

methods that more efficiently optimize nonconvex objective functions such as GLF. 

Although these models are effective for certain types of perfusion patterns, future work 

consists of quantitatively identifying perfusion patterns that may indicate patient benefit 

from planning treatment with the fEUD or GLF models.
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Figure 1. 
Comparison between examples of true local response (solid) and simple logistic 

approximation (dotted) varied by pre-treatment perfusion levels.
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Figure 2. 
Geometry of 2D liver case (axial view). The small contour represents the boundary of the 

PTV voxels and is surrounded by normal liver voxels. The large contour represents the 

boundary of the patient and contains normal tissue voxels that are not shown.
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Figure 3. 
Commonly encountered perfusion patterns on DCE-MRI (left); synthesized 2D liver cases 

with PTV in gray and surrounding liver voxels color-coded by relative importance (i.e. gj(fj)) 

values (right). (a) Pattern P1: large clusters of high and poor perfusion. (b) Pattern P2: small 

regions of high perfusion. (c) Pattern P3: high perfusion around tumor. (d) Pattern P4: poor 

perfusion around tumor and high elsewhere. (e) Pattern P5: high perfusion throughout.
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Figure 4. 
Pre- and post-treatment GLF achieved by ℓEUD, fEUD and GLF plans on 2D cases. (Note: 

all cases have some deficit in function at the beginning of treatment.)
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Figure 5. 
Visualization of pre- and post-treatment liver function maps and dose wash differences for 

2D liver perfusion pattern P1: there is noticeable reduction in dose to high-functioning 

regions using either fEUD or GLF objective. Figure (a), figures (d)–(f) are function maps; 

figures (b) and (c) are dose wash differences. (a) P1 Pre-Tx function (0.729). (b) Dose wash 

difference: GLF–ℓEUD. (c) Dose wash difference: GLF–fEUD. (d) Post-Tx function (0.480, 

ℓEUD plan). (e) Post-Tx function (0.509, fEUD plan). (f) Post-Tx function (0.555, GLF 

plan).
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Figure 6. 
Visualization of pre- and post-treatment liver function maps and dose wash differences for 

2D liver perfusion pattern P3: there is noticeable reduction in dose to high-functioning 

regions using GLF objective but limited difference using fEUD objective. Figure (a), figures 

(d)–(f) are function maps; figures (b) and (c) are dose wash differences. (a) P3 Pre-Tx 

function (0.769). (b) Dose wash difference: GLF–ℓEUD (c) Dose wash difference: GLF–

fEUD. (d) Post-Tx function (0.521, ℓEUD plan). (e) Post-Tx function (0.524, fEUD plan). (f) 

Post-Tx function (0.558, GLF plan).
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Figure 7. 
Pre- and post-treatment GLF achieved by ℓEUD, fEUD, and GLF plans on 3D cases. (Note: 

all cases have some deficit in function at the beginning of treatment.)
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Figure 8. 
Dose distributions, and their differences, for ℓEUD, fEUD, and GLF plans illustrated for 

patient case 1. (a) EUD plan, Post-Tx GLF 0.448. (b) fEUD plan, Post-Tx GLF 0.459. (c) 

GLF plan, Post-Tx GLF 0.504. (d) Perfusion map of liver (grayscale: light = high; dark = 

low), Pre-Tx GLF 0.689. (e) Dose wash difference (fEUD–ℓEUD) overlaid on perfusion 

map. (f) Dose wash difference (GLF–ℓEUD) overlaid on perfusion map.
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Figure 9. 
Distribution of voxels with high pre-treatment function by dose-bins of 10 Gy-EQD2 (one 

bin for dose-saturated voxels) along post-treatment function line-plot; 2D case P1.
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Figure 10. 
Distribution of voxels with high pre-treatment function by dose-bins of 10 Gy-EQD2 (one 

bin for dose-saturated voxels) along post-treatment function line-plot; patient case 1.
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Table 1

Parameter values used in models for the 2D cases.

Structure s

PTV 0 α− = 0.84 60 (Rx dose)

PTV 0 α+ = 0 80

NORMLIVER 1 α+ = 1.0 Objective function

NORMAL TISSUE 2 α+ = 0 80
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Table 2

Parameter values used in models for the 3D casesa.

Structure (s)

NORMLIVER α+ = 1.0 Objective function

PTV α− = 0.84 60

PTV α+ = 0 80

CORD α+ = 0 25

LTKIDNEY α+ = 0 27.3

RTKIDNEY α+ = 0 27.3

STOMACH α+ = 0 27.5

HEART α+ = 0 32

DUODENUM α+ = 0 30

BOWEL α+ = 0 30

ESOPHAGUS α+ = 0 27.5

a
Approximated lower and upper bounds based on clinical practice at University of Michigan Hospital.
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Table 3

 achieved by fEUD and GLF plans on 2D cases.

Perfusion patterns ℓEUD plan fEUD plan GLF plan

P1: Large clusters of high and poor perfusion 18.9 19.0 21.6

P2: Small regions of high perfusion 8.6 6.9 10.7

P3: High perfusion around tumor 18.7 18.7 20.8

P4: Poor perfusion around tumor 14.5 14.5 17.0

P5: High perfusion throughout 6.5 5.8 10.2
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Table 4

Pre- and post-treatment GLF achieved by ℓEUD, fEUD and GLF plans on 2D cases.

Perfusion patterns Pre-Tx GLF plan fEUD plan ℓEUD plan

P1: Large clusters of high and poor perfusion 0.729 0.555 0.509 0.480

P2: Small regions of high perfusion 0.926 0.922 0.908 0.890

P3: High perfusion around tumor 0.769 0.558 0.524 0.521

P4: Poor perfusion around tumor 0.608 0.564 0.545 0.545

P5: High perfusion throughout 0.923 0.714 0.675 0.675
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Table 5

 achieved by ℓEUD, fEUD, and GLF plans on 3D cases.

Patient Case ℓEUD Plan fEUD Plan GLF Plan

PC1 20.3 19.4 21.7

PC2 6.3 5.7 8.3

PC3 6.9 7.0 8.0

PC4 5.8 5.4 5.4

PC5 6.5 5.8 10.2
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Table 6

Pre- and post-treatment GLF achieved by ℓEUD, fEUD, and GLF plans for 3D cases.

Patient case Pre-Tx GLF Plan fEUD Plan ℓEUD Plan

PC1 0.689 0.504 0.459 0.448

PC2 0.585 0.572 0.567 0.565

PC3 0.712 0.661 0.647 0.645

PC4 0.383 0.359 0.359 0.353

PC5 0.285 0.276 0.268 0.262
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