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Abstract

Background: With the advancement in high-throughput technologies, researchers can simultaneously investigate
gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis
methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise,
however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues,
one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual.

Results: We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported
and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of
two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed
significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those
genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package

showed better performance.

Conclusion: The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering
both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical
questions. The iGC package’s source code and manual are freely available at https://www.bioconductor.org/packages/

release/bioc/html/iGC.html.
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Background

Genomic and transcriptomic data obtained from high-
throughput technologies, such as microarray or next-
generation sequencing have been widely utilized to
elucidate the etiology and molecular mechanisms of
multiple diseases [1, 2]. Genome-wide gene expression
(GE) analysis can not only help to reveal the pathogenic
process in a disease [3, 4] but also identify diagnostic
and predictive biomarkers [5, 6]. However, the low
reproducibility of identified biomarkers poses a major
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challenge in translating them into practical applica-
tions. One possible strategy to increase the reproduci-
bility is to perform an integrated analysis of GE and
copy number alteration (CNA; also called copy number
variation) [7-10]. Previous studies have demonstrated
that it is essential to identify prognostic biomarkers in
independent datasets [11, 12]. The most popular
method for integrating GE and CNA data from inde-
pendent sources is to use a Venn diagram [12-15]. In
this method, gene sets showing significant changes in
GE are overlapped with gene sets showing significant
changes in CNA. The Venn diagram method has two
major drawbacks. First, because significant changes in
GE and CNA are identified in the two platforms separ-
ately, their union does not guarantee that the changes
happen simultaneously in the same patient. Therefore,
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the changes in GE are not directly driven by CNAs,
which thwarts the purpose of the integrated analysis.
Second, the union set of genes is usually not robust, to
the extent that even a small change in a parameter may
lead to dramatically different gene pools. To address
these issues, we developed a new package to identify
differentially expressed genes driven by CNAs from
samples with both GE and CNA data. That is, for each
gene, the samples are classified into different groups
based on their CNA status, and Student’s t-test with
unequal variance is then performed on the GE level.
The results of the analyses of two real datasets and one
published study demonstrated that the proposed ap-
proach is able to identify CNA-driven differentially
expressed genes [16].

Implementation

In order to perform an integrated analysis of GE and
CNA (iGC), we developed a new package written in R.
The overall flowchart is summarized in Fig. 1. Initially,
for each gene, the samples are divided into three groups
based on CNA status: CNA-gain (G), CNA-loss (L) and
neutral (N), meaning no change in copy number. For a
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gene to be classified as G or L, the ratio of the number
of samples with CNAs to the total number of samples
must be larger than a given threshold. Lastly, statistical
tests are performed at the GE level (G versus L+N
groups or L versus G + N groups) based on whether the
CN of the gene of interest is increased or decreased.
Briefly, input data can be directly imported from The
Cancer Genome Atlas (TCGA) [17] and the Gene Ex-
pression Omnibus (GEO) [18]. Notably, all GE and CN
data from different individuals must be normalized to
the common baselines before performing the analysis
with the iGC package. Multiple data formats are sup-
ported by specifying custom reader functions. Initially,
input CN segments are mapped to the human genome
and a threshold is given to define CNA-gain and CNA-
loss (default values are set as 2.5 for gain and 1.5 for
loss). To focus on dysregulated genes in the general
population, only genes showing CNAs in at least 20% of
the samples will be analyzed further. This threshold can
be changed by the user. For the remaining genes, their
GE levels are evaluated by Student’s ¢-test with unequal
variance. False discovery rate, p-value and associated
statistics are summarized in output files. The iGC
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package can accept gene expression data from different
experimental platforms as long as the basic assumptions
of Student’s t-test are not violated. Gene set enrichment
analysis can be directly performed on the output files
[19]. More details and examples can be found in the
additional files.

Simulation study and performance comparison with the
SIM [20] package

To compare the performance of iGC and SIM, a set of
simulated CN and GE data was analyzed by both pack-
ages concurrently. The mvtnorm package in R was uti-
lized to generate simulated data. Previous studies have
indicated the frequencies of CNA in the human genome
can range from 5-50% [16, 21], and thus we set the
CNA frequency of the simulated data to 30%. Further-
more, a study in breast cancer has demonstrated that
only approximately 12% of the GE changes can be ex-
plained by their associated CNAs [22]. Therefore, the
parameters for the simulation study were set as follows.
The CN of a gene with CNA follows the normal distri-
bution ~ N (3,0.2), whereas the CN of a gene without
CNA follows the normal distribution ~ N (2,0.2). The GE
levels of a gene with CNA follow the distribution ~N
(5,0.2), whereas the expression of a gene without CNA
follows the distribution ~ N (2.5,0.2). Four conditions of
the Pearson correlation between GE and CN were simu-
lated to mimic the different levels of correlation. The
Pearson correlations for the four conditions were 0.7-1,
0.3-0.7, 0-0.3 and 0 and each condition contains the same
number of genes. To evaluate the consistency, two num-
bers of genes were tested: 100 and 300. Thus, each condi-
tion has 25 and 75 genes while the total number of genes
is 100 or 300, respectively. We defined the genes with the
highest correlation (r=0.7-1) as true positive data and
the other three conditions as true negative data. Four
sample sizes were simulated to mimic different numbers
of patients are analyzed: 50, 100, 200 and 300. One
thousand simulations were run in each package for
each combination of sample size and gene number.
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Results and Discussion

Simulation study

The performance statistics of the two packages are sum-
marized in Table 1. Notably, the sensitivity values from
iGC in all scenarios ranged from 0.63-0.84 and the
median values were around 0.7, whereas the sensitivity
values from SIM ranged from 0.18-0.36. Moreover, the
specificity values from iGC were all higher than 0.86,
and most of them were higher than 0.9. On the other
hand, the specificity values from SIM were all less than
0.8. Therefore, the simulation data demonstrated that
the iGC package is effective in identifying genes showing
high correlation between their GE and CN. In addition,
the p-values of the genes in the four groups showing dif-
ferent Pearson correlation coefficients are illustrated in
Fig. 2. Notably, at each sample size, the p-values of the
genes reported from the iGC package decreased as their
correlation became higher (Fig. 2a and c¢). On the con-
trary, the p-values of the genes from SIM showed no
change at higher correlation values (Fig. 2b and d). In
conclusion, the simulation data demonstrated that the
iGC package is able to discriminate genes showing
high correlation between their CN and GE from genes
showing moderate or low correlation.

Analyses of two real microarray datasets

To demonstrate the usage of the iGC package, two
publicly available microarray datasets were analyzed.
The first dataset was collected from the TCGA data-
base and included 523 breast cancer and 58 normal
samples [23]. The second dataset was released from
Memorial Sloan-Kettering Cancer Center and included
193 lung adenocarcinoma patients [24]. Both datasets
contain paired GE and CN data from the same indi-
vidual. Default parameters shown in the “Implementa-
tion” section were utilized here. Student’s ¢-test with
unequal variance was used to identify differentially
expressed genes (P<0.001) that were significantly
associated with CNA.

Table 1 The performance of the iGC and SIM packages in different scenarios

Scenario Gene number Sample size iGC sensitivity iGC specificity SIM sensitivity SIM specificity
(mean + sd) (mean + sd) (mean +sd) (mean + sd)

1 100 50 0.6293 +£0.075 0.8764 +0.025 02582+0.1118 0.7527 £0.0373
2 100 100 0.7283 £ 0.0651 0.9094 + 0.0217 03503 +0.0817 0.7834+0.0272
3 100 200 0.807 £ 0.0562 0.9357+£0.0187 0.3766 + 0.0834 0.7922 +£0.0278
4 100 300 0.8436 £ 0.0531 0.9479+0.0177 0.3982 +0.0831 0.7994 +0.0277
5 300 50 0.6326 £ 0.0426 0.8775+0.0142 0.2058 +0.0592 0.7353 £0.0197
6 300 100 0.7287 +0.0372 0.9096 + 0.0124 0.2735+0.0475 0.7578 £ 0.0158
7 300 200 0.8053 +0.0328 0.9351+0.0109 0.2553 +£0.0454 07518 £0.0151
8 300 300 0.8415+0.0313 0.9472 +£0.0104 02431 +£0.0425 0.7477 £0.0142




Lai et al. BMIC Bioinformatics (2017) 18:35 Page 4 of 9

a iGC result - 100 genes b SIM result - 100 genes
$ ] oxonmnnienor e ene0nanons 0e000000000000 10 o Do0D U
FHHHEHHH R s
8 -
8
o 3
3 E
[ o
2 a § <
§ ]
g | i iR
B © 50 samples % _| © 50 samples
+ 100 samples + 100 samples
<& 200 samples < 200 samples
@ 300 samples = 300 samples
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of Gene Number of Gene
C iGC result - 300 genes d SIM result - 300 genes
$ -
8 -
8
‘S_ i
o 3
§. |
§ |
ﬁ i m g s @ ;
v © 50 samples - _| © 50 samples
+ 100 samples § + 100 samples
© 200 samples <& 200 samples
@ 300 samples =@ 300 samples
T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Gene Number of Gene
Fig. 2 The distributions of p-values obtained from the iGC and SIM packages under different scenarios. Four sample sizes were simulated (N = 50,
100, 200 and 300) along with two numbers of genes were simulated (N =100 for (a) and (b), N =300 for (c) and (d)). Four groups with different
Pearson correlation coefficients between CN and GE are illustrated using different colors: red, r=0; blue, r = 0-0.3; green, r=0.3-0.7; orange, r=0.7-1.
Each group has the same number of genes and the four groups are sorted based on the Pearson correlation coefficients

Comparison of iGC and Venn diagram approaches in the For each gene, the average GE levels of the cancerous
TCGA dataset of breast cancer samples in the different CNA groups (G, L, N) were cal-
The top three significant genes with CN gain or loss culated by subtracting the GE levels obtained from the
identified in the TCGA dataset are shown in Table 2. normal samples. Obviously, the three genes showing CN
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Table 2 The top three significant genes with copy number gain or loss in the TCGA dataset

Genes GE mean gain GE mean loss ~ GE mean neutral ~ GE mean diff. ~ CNA prop. gain ~ CNA prop. loss  t-test FDR®
GNPAT (G) 0.372 -1.048 —-0.200 0.601 0.558 0.015 3.01E-61 343E-58
SETDB1 (G) 0.505 NA —0.056 0.562 0.556 0 4.55E-58 2.60E-55
ANGEL2 (G) 0.588 —-0.664 0.032 0.577 0.549 0.013 130E-55  4.93E-53
GSTM1 (L) 0.588 -0.961 0.026 —1.281 0310 0409 1.02E-33 5.10E-31
TOX (L) -2.599 -3.237 —2455 -0.777 0.023 0337 1.64E-19 4.10E-17
LYN (L) 0.224 —-0.134 0.279 -0410 0.034 0314 4.16E-19  6.92E-17

GE gene expression, CNA copy number alteration, Diff difference, Prop proportion, FDR false discovery rate, NA not available

®Genes were ordered based on the FDR values

gain had higher average GE values in the corresponding
cancerous samples, whereas the three genes with CN
loss had lower average GE values (Table 2). Among the
identified genes shown in Table 2, previous studies
demonstrated that SETDB1 [25, 26], GSTM1 [27, 28]
and LYN [29] were located in the CNA regions in breast
cancer patients. To compare the results obtained from
the iGC package with that from Venn diagram, we did
both analyses in the TCGA dataset.

The genes showing CN gain and loss in at least 20%
of the samples were analyzed further, which resulted in
2110 genes. Subsequently, Student’s ¢-test with unequal
variance was performed between cancer and normal
samples to identify differentially expressed genes. A
total of 2070 differentially expressed genes were se-
lected (P < 107'®). The Venn diagram approach reported
263 genes were in common among the genes with
CNAs and differential expression. Alternatively, the iGC
package identified 218 genes in common (P < 107*%). The
two approaches simultaneously identified 78 genes,

suggesting the similarity of the methods, at this stage, is
30-35%. Next, the Pearson correlation coefficients were
calculated to evaluate the correlation between GE and CN
in four groups of genes: the whole set of genes on the
microarray, the subset of genes located in the CNA re-
gions in >20% of the samples, the CNA-driven genes iden-
tified by iGC, and the CNA-driven genes identified by the
Venn diagram approach (Fig. 3). For the whole set of
genes in the TCGA sample and the subset of genes
located in CNA regions, most of the correlations are
between -0.2 and 0.2, suggesting their GE levels are not
correlated with CNAs. Although the Venn diagram ap-
proach does have a higher proportion of genes with posi-
tive correlations, its primary peak of distribution still
centers on zero. In contrast, the genes identified by the
iGC approach have either positive or negative correla-
tions, and very few genes with zero correlation are identi-
fied by the iGC approach. Genes identified by the iGC
approach had significantly higher correlation values, as
shown in Fig. 3b, suggesting its effectiveness to identify
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Fig. 3 Pearson correlation coefficients between GE and CN in the TCGA breast cancer dataset in (a) a Gaussian density plot and (b) a boxplot. Four
conditions were evaluated: ) the whole set of genes on the microarray, I) the subset of genes located in the CNA regions, Ill) the genes identified by
the Venn diagram method, and IV) the genes identified by the iGC package (P < 0.001)
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CNA-driven genes. However, the Venn diagram approach
cannot provide the ranking of identified genes, making it
difficult to select genes for advanced analyses.

To further compare the two approaches, Fisher’s exact
tests were performed for each gene by classifying the
581 TCGA samples as cancerous or normal. A total of
3683 genes were identified by the Fisher’s exact test, and
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the iGC and Venn diagram approaches were performed
on them. The iGC approach identified 546 significant
genes (P < 0.001) whereas the Venn diagram approach re-
ported 393 genes based on 2070 differentially expressed
genes (P < 107'®). The two approaches reported 141 genes
in common, indicating 25-35% similarity. However, some
important genes showing correlation between GE and CN
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Fig. 4 The correlation between GE and CN for the gene GSTM1 in the TCGA breast cancer dataset, presented as (a) a scatter plot and (b) a boxplot. L,
CN loss; N, no gain or loss in CN; G, CN gain
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Fig. 5 Pearson correlation coefficients between GE and CN in the lung adenocarcinoma dataset in (@) a Gaussian density plot and (b) a boxplot.
Three conditions were evaluated: ) the whole set of genes on the microarray, Il) the subset of genes located in the CNA regions, and Ill) the
genes identified by the iGC package (‘P < 0.001). Conditions IV and V were split from condition Ill, where IV) contained genes with positive
correlations between GE and CNA and V) contained genes with negative correlations

were missing from the results of the Venn diagram ap-
proach. For example, GSTM1, which showed CNAs in
70% of the samples, including 30% with CNA gains and
40% with CNA losses, was only identified by the iGC
package. The paired GE and CN of GSTM1 is shown
in Fig. 4. A moderate correlation between GE and CN
(Pearson correlation coefficient, r = 0.46, R?=0.2073,
P=22 x 107'°) is shown in Fig. 4a, and expression
levels differed among the three groups based on CNA
status (Fig. 4b).

The genes identified by the iGC package showed sig-
nificant correlation between GE and CN, indicating the
iGC package is able to identify differentially expressed
genes driven by CNAs. It is worth mentioning that the
iGC package cannot identify genes showing CNA in all
samples because no appropriate control exists for per-
forming comparisons in such a situation. Lastly, some
genes showing negative correlation between GE and CN

(Fig. 3b) may result from other, non-CNA-related regu-
latory mechanisms [30-33].

Analysis of a microarray dataset of lung adenocarcinoma

In addition to the breast cancer dataset, the iGC ap-
proach was applied to 193 lung adenocarcinoma samples
with paired GE and CN microarrays, which were re-
leased from Memorial Sloan-Kettering Cancer Center
[24]. Similar to the findings in the breast cancer samples,
correlations between GE and CN in the whole set of hu-
man genes and in the subset of genes located in the
CNA regions in the lung cancer sample were centered
on zero (Fig. 5a). Although the correlations of the genes
identified by the iGC approach showed no significant
differences from the set of whole human genes or the
subset of genes in the CNA regions (Fig. 5b), the Gaussian
density plot of them illustrated that two peaks centering
on 04 and -0.4 can be observed (Fig. 5a). That is, the

Table 3 The three most significant genes with copy number gain or loss in the lung adenocarcinoma dataset

Genes GE mean gain GE mean loss GE mean neutral GE mean diff. CNA prop. gain CNA prop. loss t-test FDR?

EIFTAX (G) 8798 9.029 8.060 0731 0275 0.005 4.23E-21 1.21E-18
RAP2C (G) 7.599 NA 7093 0.505 0.285 0.000 3.33E-12 4.78E-10
ALAS2 (G) 5.765 NA 6.213 —0.448 0.347 0.000 1.64E-11 1.18E-09
RPS4YT (L) NA 6.507 9472 —2.965 0.000 0383 6.16E-28  1.54E-26
TTTY15 (L) 5.988 4463 4955 -0.510 0.010 0420 1.51E-17 1.88E-16
PRKY (L) 6.408 4.800 5.154 -0.363 0.005 0.358 781E-17 6.51E-16

GE gene expression, CNA copy number alteration, Diff difference, Prop proportion, FDR false discovery rate, NA not available

“Genes were ordered based on the FDR values
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genes identified by the iGC approach had either positive
or negative correlation. When the iGC genes were divided
into two groups based on the direction of their correl-
ation, significant differences were observed (Fig. 5b). To
focus on the purpose of integration of GE and CN, only
genes with positive correlations were subjected to further
analyses. The three most significant genes with CN
gain or loss are shown in Table 3. Similar to the results
obtained from the TCGA patients, Among them,
somatic mutations in EIF1AX have been reported in
cancer [34, 35]. In addition, previous studies have indi-
cated that ALAS2 and TTTY15 are associated with
cancer [36, 37].

Thus, those genes that have positive correlation
between GE and CNA identified by the iGC package
were categorized condition IV (n = 78), and genes that have
negative ones were categorized as condition V (n=55).
The genes of conditions IV and V showed significantly
higher absolute correlation values (P <1.94E-37 and
P < 4.61E-47 respectively), indicating that our iGC pack-
age is capable of identifying differentially expressed genes
driven by CNAs.

Conclusions

The iGC package is capable of identifying differentially
expressed genes driven by CNAs. In addition to microarray
datasets, next-generation sequencing data can be analyzed
in the iGC package. We believe that such approaches con-
sidering individual changes in both the genome and the
transcriptome will become more popular concurrent with
the advancement in high-throughput technologies.

Availability and requirements

e Project name: iGC (Additional files 1, 2 and 3)

e Project home page: http://bioconductor.org/
packages/iGC/

e Operating system (s): Platform independent

e Programming language: R

e Other requirements: R (> = 3.2.0), Bioconductor
(>=3.2), plyr, data.table

e License: GNU GPLv2

¢ Any restrictions to use by non-academics: None

e The two microarray datasets [17, 24] analyzed in
this study are in the public domain and the raw
files can be retrieved from their original websites.

Additional files

Additional file 1: The source codes and example data of the package
iGC in R. (GZ 2818 kb)

Additional file 2: The tutorial of the package iGC. (PDF 129 kb)
Additional file 3: The introduction page of the package iIGC. (HTML 96 kb)
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