Skip to main content
. 2016 Sep 21;4(1):1600152. doi: 10.1002/advs.201600152

Table 3.

Summary of TiO2 nanotubes based materials in photoelectrocatalytic water splitting

Photocatalyst Light intensity Electrolyte Photocurrent (mA cm–2) IPCE and water splitting rate Ref.
TiO2 NTAs 150 mW cm–2 Xe lamp 1 M KOH + 0.5 M H2SO4 7.0 η = 4.39% at –5.4 VSCE 86
2.53 mL cm–2 h–1
TiO2 NTAs 110 mW cm–2 350 W Xe lamp 1 M KOH + 0.5 M H2SO4 4.95 at 0 VSCE η = 4.13% at –0.64 VSCE 248
97 μmol cm–2 h–1
TiO2 NTAs with two‐step anodization 10 mW cm–2 500 W Xe lamp 10 v% KOH + 90 v% EG 0.67 at 0.5 VRHE η = 9.75% 292
0.08 mL cm–2 h–1 at 0.5 VRHE
TiO2 NTAs with three‐step anodization 300 W Xe lamp 2 M Na2CO3 + 0.5 M EG 24 420 μmol cm–2 h–1 at –0.3 VSCE 265
TiO2 NTAs 110 mW cm–2 350 W Xe lamp 1 M KOH + 0.5 M H2SO4 5.8 at 0 VSCE η = 4.49% at –0.46 VSCE 266
122 μmol cm–2 h–1
TiO2 NTAs 100 mW cm–2 300 W Xe lamp 1 M KOH 1.55 at 0.6 VAg/AgCl η = 1.13% 267
0.57 mL cm–2 h–1 at 0.6 VAg/AgCl
TiO2 NTAs fabricated in HCl electrolytes 100 mW cm–2 AM 1.5 HCl + H2O2 + EG 0.65 η = 0.42% 391 μL cm–2 h–1 269
Black TiO2 NTAs 100 mW cm–2 AM 1.5 1 M NaOH 3.65 at 0.23 VAg/AgCl IPCE = 80% at 360 nm 273
η = 1.20% at 0.23 VAg/AgCl
SrTiO3/TiO2 NPs/TiO2 NTAs 320 mW cm–2 300 W Xe lamp 0.5 M KOH and 0.5 M EG 1.91 at 0.3 VSCE IPCE = 100% at 325 nm 58
314.9 μmol cm–2 h–1 at 0.3 VSCE
Pd/TiO2 NTAs 320 mW cm–2 300 W Xe lamp 2 M Na2CO3 + 0.5 M EG 26.8 at 0.9 VSCE IPCE = 100% at 330 nm 135
592 μmol cm–2 h–1 at 0.9 VSCE
Pt/TiO2 NTAs 30 mW cm–2 (λ > 400 nm) 0.1 M Na2SO4 + 1 M EG 0.046 at 0 VAg/AgCl 120 μmol cm–2 h–1 at 0 VAg/AgCl 188
Carbon QDs/TiO2 NTAs 100 mW cm–2 AM 1.5 0.25 M Na2S + 0.35 M Na2SO3 1.0 at 0 VAg/AgCl IPCE = 28% at 410 nm 205
14.1 μmol cm–2 h–1 at 0 VAg/AgCl
CdSe/CdS/TiO2 NTAs 100 mW cm–2 AM 1.5 10 v% EG + 90 v% Na2S 10 at 0.5 VSCE η = 9.47% 257
10.24 mL cm–2 h–1 at 0.5 VSCE
Au/RGO/TiO2 NTAs Visible light (λ > 400 nm) 1 M KOH 0.224 at 1.23 VRHE IPCE = 5.8% at 580 nm 275
45.0 μmol cm–2 h–1 at 1.23 VRHE
CdS/TiO2 NTAs 300 W Xe lamp (λ > 400 nm) 0.2 M Na2S 0.25 at 0.5 VSCE 0.34 ml cm–2 h–1 at 0.5 VSCE 276
TiO2 NTAs 113 W cm–2 10 v% KOH+ 90 v% EG 6.6 at 0 VSCE 4.4 mL cm–2 h–1 at 0.5 VSCE 289
TiO2 NTAs 35 mW cm–2 (350< λ <450 nm) 0.5 M H2SO4 8.1 mA IPCE = 25% at 344 nm 290
0.152 mmol h–1
TiO2 NTAs 150 mW cm–2 350 W Xe lamp 1 M KOH + 0.5 M H2SO4 5.5 η = 3.51% at –0.6 VSCE 291
93.6 μmol cm–2 h–1 at –0.61 VSCE
Pd QDs/TiO2 NTAs 35 mW cm–2 solar light 0.5 M KOH + 0.1 M glucose 1.1 at –0.3 VSCE 27.5 μmol cm–2 h–1 at –0.3 VSCE 293
Fe/TiO2 NTAs 100 mW cm–2 Xe lamp 1 M NaOH 1.32 at 1.5 VAg/AgCl 10 μL cm–2 h–1 at 1.5 VAg/AgCl 294
Au/TiO2 NTAs Visible light (λ > 400 nm) 0.1 M EDTA‐2Na +0.2 M Na2SO4 1.7 4.5 μmol cm–2 h–1 295
S/TiO2 NTAs 100 mW cm–2 150 W Xe lamp 0.1 M KOH 2.92 at 1.0 VAg/AgCl IPCE = 43% at 350 nm 296
IPCE = 2.4% at 500 nm at 1.0 VAg/AgCl
Polypyrrole/TiO2 NTAs 100 mW cm–2 AM 1.5 1 M KOH 3.48 at 0.23 VAg/AgCl IPCE = 92.5% at 300 nm 297
28.8 μmol cm–2 h–1 at 0.23 VAg/AgCl
ZnO/TiO2 NTAs 100 mW cm–2 Xe lamp 1 M NaOH 1.24 at 1.5 VAg/AgCl 11 μL cm–2 h–1 at 1.5 VAg/AgCl 298
C/N/TiO2 NTAs 3.12 mW cm–2 Hg lamp H2O 3.0 at 1.0 VSCE 11 mmol cm–2 h–1 at 1.0 VSCE 299
Au/TiO2 NTAs 150 W Xe lamp 0.5 M Na2SO4 0.039 at 0.5 VAg/AgCl η = 0.045% at 0.1 VSCE 300
WO3/TiO2 NTAs 100 mW cm–2 200 W Xe lamp 1 M KOH 0.62 at 0.2 VAg/AgCl 1.07 mL cm–2 h–1 at 0.2 VAg/AgCl 301
N/Ni/TiO2 NTAs 100 mW cm–2 150 W Xe lamp 1 M KOH 2.52 at 0 VAg/AgCl η = 1.12% at –0.52 VAg/AgCl 302
Ti3+/TiO2 NTAs 100 mW cm–2 AM 1.5 1 M KOH 3.05 at 1.23 VRHE η = 1.66% at 0.78 VRHE 303
IPCE = 82.8% at 350 nm
RGO/Ti3+/TiO2 NTAs 100 mW cm–2 500 W Xe lamp 1 M KOH 1.44 at 1.23 VRHE IPCE = 96.2% at 350 nm at 1.23 VRHE 304
Al2O3/TiO2 NTAs 300 mW cm–2 AM 1.5 1 M KOH 0.9 at 0.5 VAg/AgCl IPCE = 70% at 360 nm at 0.5 VAg/AgCl 305
N/C/H–TiO2 NTAs 100 mW cm–2 AM 1.5 1 M KOH 3.6 at 0.23 VAg/AgCl IPCE = 64.5% at 330 nm at 0.23 VAg/AgCl 306
CdSe/TiO2 NTAs Visible light (λ > 400 nm) 1 M NaOH 0.14 at 0 VAg/AgCl IPCE = 0.45% at 550 nm at 0 VAg/AgCl 307
Ag2S/TiO2 NTAs 25 mW cm–2 (λ > 385 nm) 0.5 M Na2S 0.84 at 0 VAg/AgCl IPCE = 20% at 600 nm at 0 VAg/AgCl 308
WO3/TiO2 NTAs 100 mW cm–2 0.1 M H2SO4+1 MeOH 3.5 at 1.6 VAg/AgCl IPCE = 50% at 370 nm at 1.6 VAg/AgCl 309
Hydrogenated TiO2 nanotubes 100 mW cm–2 AM 1.5 1 M NaOH containing 1 wt% of EG 0.65 at 0 VAg/AgCl η = 0.30% 310
IPCE = 74% at 370 nm at 0 VAg/AgCl
W/TiO2 NTAs 75 mW cm–2 300 W Xe lamp 0.1 M Na2S + 0.02 M Na2SO3 3.06 at 1.0 VSCE η = 7.3% 311
24.97 μmol cm–2 h–1 at 1.0 VSCE
WO3/TiO2 NTAs 800 W m–2 150 W Xe lamp 1 M KOH containing 1 wt% of EG 2.4 at 0.6 VSCE 22 mL cm–2 h–1 at 0.6 VSCE 312
Hierarchical TiO2 NTAs 87 mW cm–2 300 W Xe lamp 1 M KOH +10 v% EG 1.78 at 1.23 VAg/AgCl η = 1.84% 313
0.87 mL cm–2 h–1 at 1.23 VAg/AgCl
C/K/TiO2 NTAs Visible light (λ > 400 nm) 1 M KOH 5.0 at 0.3 VSCE η = 2.5% 314
10.98 μL cm–2 h–1 at 0.3 VSCE
Reduced TiO2 NTAs 370 mW cm–2 (λ > 400 nm) 1 M NaOH 0.732 at 1.23 VRHE η = 1.31% at 0.4 VRHE 315
IPCE = 68.7% at 330 nm
13.75 μmol h–1 at 1.23 VRHE
Au/TiO2 NTAs Visible light (λ > 400 nm) 1 M KOH 150 at 1.23 VRHE IPCE = 7.9% at 556 nm 316
η = 1.1%
27.9 μmol h–1 at 1.23 VRHE
Pt/TiO2 NTAs 320 mW cm–2 300 W Xe lamp 2 M Na2CO3 + 0.5 M EG 24.2 at –0.3 VSCE IPCE = 87.9% at 350 nm 317
592 μmol cm–2 h–1 at –0.3 VSCE
CdS/TiO2 NTAs 100 mW cm–2 AM 1.5 1 M Na2S 4.8 η = 2.58% 318
1.12 mL cm–2 h–1