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Abstract

Limitations of many Brain Machine Interface (BMI) systems using invasive electrodes include 

reliance on single neurons and decoding limited to kinematics only. This study investigates 

whether force-related information is present in the local field potential (LFP) recorded with deep 

brain electrodes using data from 14 patients with Parkinson’s disease. A classifier based on 

logistic regression (LR) is developed to classify various force stages, using 10-fold cross 

validation. Least Absolute and Shrinkage Operator (Lasso) is then employed in order to identify 

the features with the most predictivity. The results show that force-related information is present in 

the LFP, and it is possible to distinguish between various force stages using certain frequency-

domain (delta, beta, gamma) and time-domain (mobility) features in real-time.

I Introduction

An important objective of Brain-Machine Interface (BMI) research is to improve neural 

control of limb prostheses to help people with movement disorders (e.g. Parkinson’s 

disease), or those affected by amputation or paralysis (e.g. due to stroke, amyotrophic lateral 

sclerosis). The majority of previous BMI systems have relied on neural spiking for decoding 

movement related information from cortical areas of the brain. The problem with spike 

recordings is the lack of longevity due to either dying of neurons or change in the micro-

movement [1]. Local Field Potentials (LFP) recorded have demonstrable longevity [2]. Few 

studies have used LFP for decoding movement related information in monkeys and human 

subjects [3]. However, most decode kinematics (position and velocity of limbs) without 

attempting to decode the forces causing the movement or used in gripping [4]. The aim of 

this study is to investigate whether force-related information is present in the LFP, and 

whether it is possible to distinguish between various stages of manual gripping (i.e. force 

onset, force development, and force release) using a classification algorithm. Furthermore, 

the study also aims to identify the key features in the LFP that provide the most force-related 

information in the LFP. In this study, we have used data from 14 subjects with Parkinson’s 

disease.
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II Methods

Figure 1 shows an overview of the various steps undertaken in the study. In this section, we 

will describe how the data were acquired (Experimental Paradigm & Recordings), how 

various force stages were identified (Labelling of Force Stages), the various features that 

were extracted both in time-domain and frequency domain (Feature Extraction) and finally 

the classification algorithm employed while using a feature reduction technique with cross 

validation to identify the key features (Classification & Validation).

A Experimental Paradigm & Recordings

Patients were presented with a series of visual cues (a light emitting diode turning on for 5 

seconds) and instructed to squeeze a force dynamometer as hard and as fast as possible for 

the duration of the light being on. About half of the visual cues were accompanied with loud 

auditory stimuli, delivered via headphones, although patients were still advised to focus on 

the visual cue alone. On average, a total of 20 trials were collected in each experimental run, 

using either hand. For each patient, the experiment was undertaken with both hands, in turns. 

Recordings were undertaken 3-6 days after surgery, first after overnight withdrawal of 

antiparkinsonian medication, and then ~1 hour after the usual dose of medication. The LFPs 

were recorded using either a D360 amplifier (Digitimer Ltd) in combination with a 1401 

A/D converter (Cambridge Electronic Design), or a TMSi porti (TMS international). Using 

adjacent contacts of each deep brain stimulation electrode targeting the subthalamic nucleus 

(STN, part of basal ganglia in the brain), bipolar LFPs (0-1, 1-2, 2-3) were recorded, 

providing 3 bipolar channels each for the right and left STN. This paradigm is explained in 

greater detail in [5].

A total of 14 patients with Parkinson’s disease gave informed consent and took part in the 

study, amounting to 1,101 trials. The study was approved by the local ethics committees at 

recording sites in Oxford and London, UK. All the signals were acquired using Spike 2 

software (Cambridge Electronic Design), which were later imported into Matlab 2013b 

(Mathworks Inc) for subsequent analysis. For each patient, a separate experiment was 

conducted for each hand, with and without medication so that there were a total of 56 

recording sessions. The breakdown of trials according to medication (whether prior to 

medication (No Medication) or after a dose of L-Dopa (ON Medication)), stimuli type 

(visual only (V) or visual accompanied by auditory signal (AV)), and whether left hand or 

right hand is given in Table 1.

B Preprocessing

All the patients’ data were first imported into Matlab, and resampled to 512 Hz to ensure 

uniformity across the dataset. For each trial, a 9-second epoch was extracted with 2 seconds 

before the light turned on, and 7 seconds after this. The LFP from the 3 bipolar channels on 

each side (0-1, 1-2, 2-3) was subsequently convolved with a complex Morlet wavelet [6]. 

Convolution with an appropriate wavelet enabled the transformation of the time-domain LFP 

signal into a time-frequency signal, allowing us to determine power in various frequency 

bands over time. In the wavelet transform, we used a linear frequency scale ranging from 3 
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Hz to 200 Hz (198 frequency points) and a variable number of cycles (4 to 10, as a function 

of frequency).

C Labelling of Force Stages

Figure 2 shows a typical force profile, as measured by the force dynamometer with the 

various stages automatically determined using a heuristic algorithm. The force onset was 

determined by searching forward, starting from stimuli onset until a threshold, 

thresholdonset, was exceeded for at least 15 samples. The thresholdonset was determined 

using equations (1-3) where f(x) refers to the force value at time = x, and mean(y), std(y) 

refer to the mean and standard deviation of y respectively. The time values were expressed in 

milliseconds (ms), and f(−1200: −200) refers to the force value from 1200 ms to 200 ms 

before the stimuli.

(1)

(2)

(3)

Next, the maximum value of force was determined, by searching for the maximum force 

value during the trial (time = 0 ms to time = 5000 ms). Subsequently, the time when the 

patient released force was determined by searching forward from time = 3000ms until the 

force value remained below a threshold, thresholdrelease for at least 15 samples. The 

thresholdrelease was determined using equations (4-6).

(4)

(5)

(6)

This identified the various force segments: Forcepre–onset (a second before stimulus onset 

until the onset of force shown in blue), Forceonset–max (from onset of force until the force 

maximum, shown in red), Forceholding (from maximum force until the point of force release 

shown in green), and Forcerelease (from the point of force release until a fixed point at the 

end of the trial, shown in magenta) as illustrated in Figure 2.
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D Feature Extraction

A 256 millisecond long sliding window, with an overlap of 16 milliseconds was used in 

order to extract various frequency-domain and time-domain features. In order to exploit 

information from all channels, the features were extracted from the 3 bipolar channels on 

each side and then averaged, for a given sliding window.

Frequency-domain features—Power in ten different frequency bands ranging from 3 

Hz to 200 Hz was identified as potential frequency domain features. Similar to the approach 

adopted in [7], we identified 10 distinct frequency bands: delta (3-4 Hz), theta (4-8 Hz), 

alpha (8-14 Hz), beta1 (14-20 Hz), beta2 (20-30 Hz), gamma1 (30-50 Hz), gamma2 (50-90 

Hz), gamma3 (90-120 Hz), gamma4 (120-150 Hz), and gamma5 (150-200 Hz). Before 

extraction of power in these bands, a baseline normalization was performed on each trial 

using equations (7-8) where tfnormk is the normalized time-frequency function of the kth 

trial, trialmean is the mean of N trials for a single patient, and tfk (−2000: −550, f) is the time-

frequency function of the kth trial from 2000 ms to 500 ms before stimulus onset, at a 

frequencyf.

(7)

(8)

The baseline normalization allowed us to express any force-related changes in the LFP as a 

percentage change with respect to the pre-stimulus LFP, thereby removing the effects of any 

background activity and allowing comparison across sides and patients.

Time-domain features—Hjorth [8] proposed three metrics characterizing the amplitude/

time pattern of electroencephalograms. These were anticipated to capture statistical 

properties of the LFP signal in each time-window, which might otherwise not be captured by 

frequency band power. The three proposed metrics were activity (a measure of the variance 

of the signal, equivalent to the total power in the frequency domain), mobility (a measure of 

the standard deviation of the slope of the original signal relative to the standard deviation of 

the signal which is equivalent to the standard deviation of the power spectrum along the 

frequency axis), and complexity (a measure of the smoothness of the signal with reference to 

the ‘softest’ signal, i.e. sine wave, computed using the standard deviation of the second 

derivative) [8].

E Classification & Validation

In this work, we used a logistic regression based classification to differentiate between two 

classes, a special case of generalized linear model which is easily interpretable and one of 

the most widely used classification algorithms in machine learning [9]. In the two class 
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classification problem, one class is typically labelled as 0, while the other class is labelled as 

1. The hypothesis function used in logistic regression is given in equation (7) where xn and 

Ɵn are the nth normalized feature and parameter respectively, and g(y) is a sigmoid function 

(equation 8) thereby forcing the weighted linear combination of different features to range 

from 0 to 1 lending itself to be interpreted as probability.

(7)

(8)

Each of the xn features was normalized to zero mean and unit variance. The main component 

of a classification algorithm is determining the parameters in the hypothesis function that 

minimize a cost function. The cost function for logistic regression is shown in equation (9), 

where m is the total number of training points. The cost function outputs a large value when 

the predicted value, hƟ(x) is very different from the true class value,y, and a very small 

output when the predicted value is close to the true class value.

(9)

One technique to reduce the large feature space and make the model more interpretable is 

appropriate regularization. In regularization, an additional term is added to the cost function 

which is dependent only on the estimated parameters to guard against overfitting by 

penalizing for large parameter values. In this study, we used the l1 norm parametrized by λ 

 as the regularization parameter. The advantage of using the l1 norm as 

opposed to other forms of regularization terms (e.g. l2 norm used in ridge regression) is that 

it results in sparse solution i.e. forces the less important features to 0. The amount of 

regularization is controlled by λ and by iterating through different values of lambda, we can 

generate a large number of models with varying degree of regularization. With increasing λ, 

increasing number of features will be forced to 0 and vice versa. This technique is called 

LASSO (least absolute shrinkage and selection operator) [10], and helps to determine the 

important features for a classification task.

To ensure generalization, we used a 10-fold cross validation, using a single fold for testing 

each time while using the remaining 9 folds for training. We selected the optimal model 

during LASSO by plotting the cross validation error on the testing set along with error bars, 

and finding the model with the highest λ which was within 1 standard error of the point of 

minimum cross validation error, the “1SE” rule [11]. This is effectively equivalent to 

choosing the most regularized model (the simplest model) which is within 1 standard error 

of the minimum error.
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III Results

Figure 3 shows the mean time-frequency plot (normalized with baseline) from a single 

recording session of a patient. There is increased power in the low frequency band, a 

reduction of power in the beta band, and increased power in the gamma band beginning soon 

after the stimulus onset (t = 0 ms).

We aimed to investigate whether we could correctly distinguish various force stages using 

LFP recorded from electrodes targeting the STN. These were detection of force onset 

(Forcepre–onset vs Forceonset–max) labelled as “Pre vs Dev”, force development versus force 

constant (Forceonset–max vs Forceholding) labelled as “Dev vs Stab” and force development 

versus force release (Forceonset–max vs Forcerelease) labelled as “Dev vs Rel”. We also aimed 

to identify the key features employed in these classification tasks.

Figure 4 shows the training and testing accuracy using a Receiver Operating Characteristic 

(ROC) curve for a single patient, while attempting to distinguish Forcepre–onset from 

Forceonset–max, using a 10-fold cross validation and a logistic regression based classifier 

(without regularization). We used a similar approach to compute the AUC (Area Under the 

Curve) for each of the classification tasks, across all 14 patients. For each patient, there were 

2 contralateral sessions without medication and 2 with medication, and similarly 4 ipsilateral 

sessions. This afforded a total of 112 sessions with 28 in each situation (ipsilateral or 

contralateral with or without medication). Table 2 shows the mean and the 25th and 75th 

percentile AUC in each situation across the population and Figure 5 shows the same for both 

training and testing, along with error bars. These results show that the classification 

performance using LFP from the contralateral STN was consistently better than that using 

LFP from the ipsilateral STN. In addition, the performance of the classification tasks did not 

depend on medication. It was slightly easier to distinguish between Forcepre–onset and 

Forceonset–max, and between Forceonset–max and Forceholding as opposed to distinguishing 

between Forceonset–max and Forcerelease.

Lastly, using the LASSO approach, we identified the key features for each of the 

classification tasks using data from all the patients, as shown in Table 3. The features are 

listed in a descending order, based on the magnitude of Ɵ corresponding to each feature.

IV Discussion & Conclusion

We showed that there is indeed force information present in the LFP, and it is possible to 

distinguish between various force stages using a machine learning approach. This study also 

found that in addition to the frequency bands (delta, beta and gamma), mobility is also an 

important feature that can usefully be incorporated in any BMI system aiming to control 

force using the STN LFP. We are not aware of any previous work that has classified various 

force stages using LFP but the classification results with AUC as high as 0.8 across patients 

with Parkinson’s disease are promising. Furthermore, the classification task was based on 

using a short sliding window, suggesting that it is possible to decode force-related 

information from LFP with minimal latency, in real time. Future work will investigate 
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whether it is possible to predict the absolute value of force from the LFP (regression) during 

various tasks rather than to predict only a finite number of stages (classification).
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Figure 1. 
Overview of the methods employed
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Figure 2. 
A typical force profile, with various stages automatically determined with a heuristic 

algorithm
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Figure 3. 
Mean time-frequency plot of a single patient on medication, averaged across all the trials 

with AV stimuli
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Figure 4. 
ROC curve to distinguish between Forcepre–onset and Forceonset–max , for a single patient 

using a 10-fold cross validation and a logistic regression based classification technique 

(Training AUC: 0.949, Testing AUC: 0.921)
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Figure 5. 
Mean AUC in various situations across all patients for “Pre vs Dev”, “Dev vs Stab”, and 

“Dev vs Rel” using a logistic regression based classifier with 10-fold cross validation
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Table 1
Number of Trials in Total Across all the 14 Patients, in Various Situations

V, Left AV, Left V, Right AV, Right

No Medication 127 138 123 152

ON Medication 127 159 121 154
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Table 2

Mean (25th – 75th percentile) AUC across all patients using a logistic regression based 
classifier with 10-fold cross validation under various situations

Without medication On medication

Ipsilateral Contralateral Ipsilateral Contralateral

Pre vs Dev 0.778 (0.69-0.85) 0.821 (0.76-0.90) 0.796 (0.73-0.86) 0.821 (0.76-0.91)

Dev vs Stab 0.764 (0.68-0.88) 0.806 (0.74-0.86) 0.779 (0.71-0.84) 0.804 (0.72-0.87)

Dev vs Rel 0.738 (0.67-0.81) 0.765 (0.72-0.86) 0.737 (0.66-0.79) 0.765 (0.70-0.85)
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Table 3
Important features identified in each of the classification task, using LASSO

Important Features identified with LASSO

Pre vs Dev Mobility, Gamma2, Beta1, Beta2, Gamma1

Dev vs Stab Mobility, Delta, Beta1, Alpha, Gamma2

Dev vs Rel Mobility, Delta, Gamma2, Gamma1, Beta2
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