
J Med Syst (2017) 41: 37
DOI 10.1007/s10916-016-0657-4

TRANSACTIONAL PROCESSING SYSTEMS

Privacy-Preserving Integration of Medical Data
A Practical Multiparty Private Set Intersection

Atsuko Miyaji1 ·Kazuhisa Nakasho2 · Shohei Nishida3

Received: 30 June 2016 / Accepted: 1 November 2016 / Published online: 16 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Medical data are often maintained by differ-
ent organizations. However, detailed analyses sometimes
require these datasets to be integrated without violating
patient or commercial privacy. Multiparty Private Set Inter-
section (MPSI), which is an important privacy-preserving
protocol, computes an intersection of multiple private
datasets. This approach ensures that only designated par-
ties can identify the intersection. In this paper, we propose
a practical MPSI that satisfies the following requirements:
The size of the datasets maintained by the different parties is
independent of the others, and the computational complex-
ity of the dataset held by each party is independent of the
number of parties. Our MPSI is based on the use of an out-
sourcing provider, who has no knowledge of the data inputs
or outputs. This reduces the computational complexity. The
performance of the proposed MPSI is evaluated by imple-
menting a prototype on a virtual private network to enable
parallel computation in multiple threads. Our protocol is

This article is part of the Topical Collection on Transactional
Processing Systems

� Atsuko Miyaji
miyaji@comm.eng.osaka-u.ac.jp

1 Graduate School of Engineering, Osaka University,
2-1 Yamadaoka Suita, Osaka, Japan

2 Department of Machine Intelligence and Systems
Engineering, Akita Prefectural University,
84-4 Ebinokuchi, Tsuchiya, Yurihonjo, Akita, Japan

3 Japan Advanced Institute of Science and Technology,
Asahidai 1-1, Nomi-shi, Ishikawa, Japan

confirmed to be more efficient than comparable existing
approaches.

Keywords Medical data · Privacy-preserving data
integration · Private set intersection

Introduction

Medical organizations often store the data accumulated
through medical analyses. However, detailed data analysis
sometimes requires separate datasets to be integrated with-
out violating patient or commercial privacy. Consider the
scenario in which the occurrence of similar accidents can
be attributed to a particular defective product. Such defec-
tive products should be identified as quickly as possible.
However, the databases related to accidents are maintained
separately by different organizations. Thus, investigating
the causes of accidents is often time-consuming. For exam-
ple, suppose child A has broken her/his leg at school, but
it is not clear whether the accident was caused by defective
equipment. In this case, information relating to A’s injury,
such as the patient’s name and type of injury, are stored
in hospital database S1. Information pertaining to A’s acci-
dent, such as their name and the location of the swing at
the school, are stored in database S2, which is held by the
fire department. Finally, information relating to the insur-
ance claim following A’s accident, such as the name and
medical costs, is maintained in the insurance company’s
database, S3. Computing the intersection of these databases,
S1 ∩ S2 ∩ S3, without compromising privacy would enable
us to combine the separate sets of information, which may
allow the cause of the accident to be identified. Let us
consider another situation. Several clinics, denoted as Pi ,
maintain separate databases, represented as Si . The clinics

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-016-0657-4&domain=pdf
mailto:miyaji@comm.eng.osaka-u.ac.jp

37 Page 2 of 10 J Med Syst (2017) 41: 37

wish to know the patients they have in common to enable
them to share treatment details; however, Pi should not be
able to access any information about patients not stored in
their own dataset. In this case, the intersection of the set
must not reveal private information.

These examples illustrate the need for the Multiparty
Private Set Intersection (MPSI) protocol [11, 17, 18, 21].
MPSI is executed by multiple parties who jointly com-
pute the intersection of their private datasets. Ultimately,
only designated parties can access the intersection. Pre-
vious protocols are impractical, because the bulk of the
computation is a function of the number of players. One
previous study required the size of the datasets maintained
by the different players to be equal [17, 21]. Another study
[11] computed only the approximate number of intersec-
tions, whereas other researchers [18] required more than two
trusted third-parties.

In this paper, we propose a practical MPSI with the
following features:

1. The size of the datasets maintained by each party is
independent of those maintained by the other parties.

2. The computational complexity for each party is inde-
pendent of the number of parties. This is accomplished
by introducing an outsourcing provider, O. In fact, all
computations related to the number of parties are car-
ried out by O. Thus, the number of parties is irrelevant.

The remainder of this paper is organized as follows.
Previous results that are used to develop the proposed pro-
tocol are summarized in “Preliminaries”. “Previous work”
then introduces some related studies. We propose the new
MPSI in “Practical MPSI”, and present the results of its
implementation in “Implementation results”.

Preliminaries

In this section, we summarize the DDH assumption,
Bloom filter, and ElGamal encryption. We consider security
according to the honest-but-curious model [13]: all players
act according to their prescribed actions in the protocol. A
protocol that is secure in an honest-but-curious model does
not allow any player to gain information about other play-
ers’ private input sets, besides that which can be deduced
from the result of the protocol. Note that the term adversary
here refers to insiders, i.e., protocol participants. Outsider
adversaries are not considered. In fact, behavior by outsider
adversaries can be mitigated via standard network security
techniques.

Our protocol is based on the following security assumption.

Definition 1 (DDH Assumption) Let t be a security
parameter. A decisional Diffie–Hellman (DDH) parameter

generator IG is a probabilistic polynomial time (PPT) algo-
rithm that takes input 1k and outputs a description of
a finite field Fp and a basepoint g ∈ Fp with prime
order q. We say that IG satisfies the DDH assumption if
|p1 − p2| is negligible (in K) for all PPT algorithms A,
where p1 = Pr[(Fp, g) ← IG(1K); y1 = gx1 , y2 =
gx2 ← Fp : A(Fp, g, y1, y2, g

x1x2) = 0] and p2 =
Pr[(Fp, g) ← IG(1K); y1 = gx1 , y2 = gx2 , z ← Fp :
A(Fp, g, y1, y2, z) = 0].

A Bloom filter [3], denoted by BF, consists of m arrays
and has a space-efficient probabilistic data structure. The BF
can check whether an element x is included in a set S by
encoding S with at most w elements. The encoded Bloom
filter of S is denoted by BF(S).

The BF uses a set of k independent uniform hash func-
tions H = {H0, ..., Hk−1}, where Hi : {0, 1}∗ −→
{0, 1, · · · , m − 1} for 0 ≤ ∀i ≤ k − 1. The BF con-
sists of two functions: Const embeds a given set S into
BF(S), and ElementCheck checks whether an element x is
included in S. SetCheck, an extension of ElementCheck,
checks whether an element x in S′ is in S′ ∩ S (see Algo-
rithm 3). In Const (see Algorithm 1), BF(S) is constructed
for a given set S by first setting all bits in the array to 0. To
embed an element x ∈ S into the filter, the element is hashed
using k hash functions to obtain k index numbers, and the
bits at these indexes are set to 1, i.e., set BF[Hi(x)] = 1
for 0 ≤ i ≤ k − 1. In ElementCheck (see Algorithm 2),
we check all locations where x is hashed; x is considered to
be not in S if any bit at these locations is 0; otherwise, x is
probably in S.

Some false positive matches may occur, i.e., it is possible
that all BF[Hi(y)] are set to 1, but y is not in S. The false

positive rate FPR is given by FPR =
{
1 −

(
1 − 1

m

)kw
}k

≈
{
1 − e−kw/m

}k
[4]. However, false negatives are not possi-

ble, and so Bloom filters have a 100 % recall rate.

J Med Syst (2017) 41: 37 Page 3 of 10 37

Homomorphic encryption under addition is useful for
processing encrypted data. A typical homomorphic encryp-
tion under addition was proposed by Paillier [19]. How-
ever, because Paillier encryption cannot reduce the order
of a composite group, it is computationally expensive com-
pared with the following ElGamal encryption. Our protocol
requires matching without revealing the original messages,
for which exponential ElGamal encryption (exElGamal)
is sufficient [5]. In fact, the decrypted results of exEl-
Gamal encryption can distinguish whether two messages
m1 and m2 are equal, although the exElGamal scheme
cannot decrypt messages itself. Furthermore, exElGamal
can be used in (n, n)-threshold distributed decryption [9],
where decryption must be performed by all players acting
together. An exElGamal encryption with (n, n)-threshold
distributed decryption consists of three functions:

Key generation
Let Fp be a finite field, g ∈ Fp, with prime order q. Each
player Pi chooses xi ∈ Zq at random and computes yi =
gxi (mod p). Then, y = ∏n

i=1 yi(mod p) is a public key and
each xi is a share for each player to decrypt a ciphertext.

Encryption thrEnc[m] → (u, v)

Choose r ∈ Zq at random, and compute both u =
gr(modp) and v = gmyr(modp) for the input message

m ∈ Zq and a public key y. Output (u, v) as a ciphertext of
m.

Decryption thrDec[(u, v)] → gm

Each player Pi computes zi = uxi (modp). All players then
compute z = ∏n

i=1 zi(modp) jointly.1 Finally, each player
can decrypt the ciphertext as gm = v/z(modp).

ExElGamal encryption with (n, n)-threshold decryption
has the following features:

(1) homomorphic under addition:
Enc(m1) Enc(m2)= Enc(m1 + m2) for messages
m1, m2 ∈ Zp.

(2) homomorphic under scalar operations:
Enc(m)k = Enc(km) for a message m and k ∈ Zq .

Previous work

This section summarizes prior works on PSI between a
server and a client and MPSI among n players. In PSI, let
S = {s1, ..., sv} and C = {c1, ..., cw} be server and client
datasets, where |S| = v and |C| = w. In MPSI [17], we
assume that each player holds the same number of datasets.

PSI protocol based on polynomial representation The
main idea is to represent the elements in C as the roots of a
polynomial. The encrypted polynomial is sent to the server,
where it is evaluated on the elements in S, as originally
proposed by Freedman [12]. This is secure against honest-
but-curious adversaries under secure public key encryption.
The computational complexity is O(vw) exponentiations,
and the communication overhead is O(v + w). The com-
putational complexity can be reduced to O(v log logw)

exponentiations using the balanced allocation technique [1].
Kissner and Song extended this protocol to MPSI [17],
which requires O(nw2) exponentiations and O(nw) com-
munication overhead. The MPSI version is secure against
honest-but-curious and malicious adversaries (in the ran-
dom oracle model) using generic zero-knowledge proofs.

PSI protocol based on DH-key agreement The main
objective here is to apply the DH-key agreement protocol
[7]: after representing the server and client datasets as hash
values {h(si)} and {h(ci)}, respectively, the client encrypts
the dataset as {h(ci)

ri } using a random number ri and sends

1The computational complexity of z for each player can be made inde-
pendent of the number of players in various ways. For example, set
z = 1. P1 computes z = z ·z1 and sends z to P2, P2 computes z = z ·z2
and sends z to P3, and, finally, Pn computes z = z · zn and shares z

among all players. If we place all players in a binary tree, the commu-
nication complexity can be reduced, but each player’s computational
complexity is still independent of the number of players.

37 Page 4 of 10 J Med Syst (2017) 41: 37

the encrypted set to the server. The server encrypts the client
set {h(ci)

ri } and the server set {h(si)} using a random num-
ber r , which gives {h(ci)

rri } and {h(si)
r }, respectively, and

returns these sets to the client. Finally, the client evalu-
ates S ∩ C by decrypting to {h(ci)

r }. This is secure against
honest-but-curious adversaries under the DDH assumption.
The total computational complexity is O(v + w) exponen-
tiations and the total communication overhead is O(v +w).
The security of this approach can be enhanced against mali-
cious adversaries in the random oracle model [6] by using a
blind signature. However, no extensions to MPSI based on
the DH-key agreement protocol have been proposed.

PSI protocol based on BF This protocol was originally
proposed in [18]. As the Bloom filter itself reveals infor-
mation about the other player’s dataset, the set of play-
ers is separated into two groups: input players who have
datasets and privacy players who perform private computa-
tions under shared secret information. In [16], the privacy of
each player’s dataset is protected by encrypting each array
of the Bloom filter using Goldwasser–Micali encryption
[14]. In an honest-but-curious version, the computational
complexity is O(kw) hash operations and O(m) public
key operations, and the communication overhead is O(m),
where m and k are the number of arrays and hash functions,
respectively, used in the Bloom filter. The Bloom filter is
used in the Oblivious transfer extension [15, 20] and the
newly constructed garbled Bloom filter [10]. The main nov-
elty in the garbled Bloom filter is that each array requires
λ bits, rather than the single bit needed for the conventional
Bloom filter. To embed an element x ∈ S to a garbled
Bloom filter, x is split into k shares with λ bits using XOR-
based secret sharing (x = x1

⊕
...

⊕
xk). The xi are then

mapped to an index of Hi(x). An element y is queried by
subjecting all bit strings atHi(y) to an XOR operation. If the
result is y, then y is in S; otherwise, y is not in S. The client
uses a Bloom filter BF(C) and the server uses a garbled
Bloom filter GBF(S). If x is in C∩S, then for every position
i it hashes to, BF(C)[i]must be 1 andGBF(S)[i]must be xi .
Thus, the client can computeC∩S. The computational com-
plexity of this method is O(kw) hash operations and O(m)

public key operations, and the communication overhead is
O(m). The number of public key operations can be changed
to O(λ) using the Oblivious transfer extension. This is
secure against honest-but-curious adversaries if the Obliv-
ious transfer protocol is secure. Finally, some researchers
have computed the approximate number of multiparty set
unions [11].

Practical MPSI

This section presents a practical MPSI that is secure under
the honest-but-curious model.

Notation and privacy definition

In the remainder of this paper, the following notation is
used.

– Pi : i-th player, i = 1, · · · , n

– O: outsourcing provider with no knowledge of the
inputs or outputs

– Si = {si,1, si,2, · · · , si,wi
}: dataset held by Pi , where

|Si | = ωi

– ∩Sj : intersection of all n players
– thrEnc and thrDec: (n, n)-threshold exElGamal encryp-

tion and decryption, respectively
– m and k: number of arrays and hashes used in BF
– � = [�, · · · , �] (1 ≤ � ≤ n): an m-dimensional array,

where all strings in the array are set to �

– BF(Si) = [BFi[0], · · · ,BFi[m − 1]]: Bloom filter
applied to a set Si

– IBF(∪Si) = [∑n
i=1 BFi[0], · · · ,

∑n
i=1 BFi[m − 1]]:

integrated Bloom filter of n sets {Si}, where∑n
i=1 BFi[j] is the sum of all players’ arrays.

We introduce an outsourcing provider O to reduce the
computational burden on all players. The dealer has no
information about the elements of any player’s set. The pri-
vacy issues faced byMPSI with an outsourcing provider can
be informally written as follows.

Definition 2 (MPSI privacy) An MPSI scheme with an out-
sourcing provider O is player-private if the following two
conditions hold:

– Pi does not learn anything about the elements of other
players’ datasets except for the elements in ∩Sj .

– the outsourcing provider O does not learn anything
about the elements of any player’s set.

Proposed MPSI

OurMPSI consists of four phases: i) initialization, ii) Bloom
filter construction and the encryption of Pi data, iii) the
O’s randomization of thrEnc(IBF(∪Si) − n), and iv) the
computation of ∩Pi . The computation of ∩Pi consists of
three steps: a) joint decryption of an (n, n)-threshold exEl-
Gamal among n players, b) Bloom filter check, and c)
output intersection. Figure 1 shows an overview of our pro-
tocol after the initialization phase. The system parameters
of a finite field Fp and a basepoint g ∈ Fp with order
q for an (n, n)-threshold exElGamal encryption (thrEnc,
thrDec) are provided to both Pi and O. For the Bloom fil-
ter, Const(S) and SetCheck(BF,S′) are only provided to Pi ,
where the array size is m and k independent hash functions
are used.

J Med Syst (2017) 41: 37 Page 5 of 10 37

Fig. 1 Overview of our MPSI

To encrypt, randomize, or subtract a vector such as
a Bloom filter BF = [a0, · · · , am−1], each location is
encrypted, randomized, or subtracted independently:

thrEnc(BF) = [thrEnc(a0), · · · , thrEnc(am−1)],
rBF = [r0a0, · · · , rm−1am−1], or

BF − r = [a0 − r0, · · · , am−1 − rm−1]
for r = [r0, · · · , rm−1] ∈ Z

m
q .

Our protocol proceeds as follows.

Initialization:

1. Pi generates xi ∈ Zq , computes yi = gxi ∈ Zq , and
publishes yi to the other players as a public key, where
the corresponding secret key is xi .

2. Pi computes y = ∏
i yi , where y is an n-player public

key. Note that no player knows the corresponding secret
key x = ∑

xi before executing the joint decryption.

Construction and encryption of BF(Si) − 1:

1. Pi executes Const(Si) −→ BF(Si)

= [BFi[0], · · · ,BFi[m − 1]] (Algorithm 1).
2. Pi encrypts BF(Si) − 1 using thrEncy:

thrEncy(BF(Si) − 1)

=[thrEncy(BFi[0]−1), · · ·, thrEncy(BFi[m−1]−1)],
where y is an n-player public key.

3. Pi sends thrEncy(BF(Si) − 1) to O.

Randomization of thrEnc(IBF(∪Si) − n):

1. O encrypts IBF(∪Si) − n without knowing IBF(∪Si)

using an additive homomorphic feature and multiplying
by thrEncy(BF(Si) − 1) as follows:

thrEncy(IBF(∪Si) − n) =
n∏

i=1

thrEncy(BF(Si) − 1).

2. O randomizes thrEncy(IBF(∪Si) − n) as
r = [r0, · · · , rm−1] ∈ Z

m
q :

thrEncy(r(IBF(∪Si) − n)) = (thrEncy(IBF(∪Si) − n))r.

3. O broadcasts thrEncy(r(IBF(∪Si) − n)) to Pi .

Computation of ∩P i:

1. All players decrypt thrEncy(r(IBF(∪Si) − n)) jointly.
2. Pi computes SetCheck(r(IBF(∪Si)−n), Si) and obtains

∩Si .

The above protocol satisfies the correctness requirement.
This is because each array position of thrEncy(r(IBF(∪Si)−
n)) is decrypted to 1, where x ∈ ∩Si is embedded by each
hash function; however, each array position for which x �∈
∩Si is embedded by each hash function is decrypted to a
random value.

Security Proof

The security of our MPSI protocol is as follows.

Theorem 1 For any coalition of fewer than n players, MPSI
is player-private against an honest-but-curious adversary
under the DDH assumption.

37 Page 6 of 10 J Med Syst (2017) 41: 37

Proof The views of Pi and O, that is,

thrEncy(BFm,k(Si))=[thrEncy(BFi[0]), · · ·, thrEncy(BFi[m−1])],
are shown to be indistinguishable from a random vector
r = [r0, · · · , rm−1] ∈ Z

m
q . Assume that a polynomial-time

distinguisher D outputs 0 when the views are presented as
a random vector and outputs 1 when they are constructed in
MPSI, thrEnc(BFi[0]), · · · , thrEnc(BFi[m − 1]). We show
that a simulator SIM that solves the DDH assumption can
be constructed as follows.

Upon receiving a DDH challenge (g, gα, gβ, gγ), SIM
executes the following:

1. Set n-player public key y = gβ and choose random
numbers d0, ..., dm−1 and r1, ..., rm−1 from Zq .

2. Send

[(gα, gd0· gr), (gα)r1 , gd1 · (gγ)r1 , · · · ,gdm−1 · (gγ)rm−1]
as thrEncy(BFm,k(Si)) to D.

If (g, gα, gβ, gγ) is a DH-key-agreement-protocol element,
i.e., γ = αβ, then thrEncy(BFm,k(Si)) is distributed in the
same way as when constructed by the MPSI scheme. Thus,
D must output 1. If (g, gα, gβ, gγ) is not a DH tuple, then
thrEncy(BFm,k(Si)) is randomly distributed, and D has to
output 0. As a result, SIM can use the output ofD to respond
to the DDH challenge correctly. Therefore, D can answer
correctly with negligible advantage over random guessing.
Furthermore, as all inputs of each player are encrypted until
the decryption is performed, and decryption cannot be per-
formed by fewer than n players, nothing can be learned by
any player prior to decryption.

As for the views of thrEncy(r(IBFm,k(∪Si)\n)), the same
argument holds. Therefore, for any coalition of fewer than n

players, MPSI is player-private under the honest-but-curious
model.

Efficiency

Although many PSI protocols have been proposed, to the
best of our knowledge, relatively few have considered the
multiparty scenario [11, 17, 18, 21]. Our target is multiparty
private set intersection, and the final result must be obtained
by all players acting together, without a trusted third-party
(TTP). Among previous MPSI protocols, the approach in
[11] computes only the approximate number of intersec-
tions, and that in [18] requires more than two TTPs. In

contrast, [21] follows almost the same method as [17] and
thus has a similar complexity. The only difference exists in
the security model. Hence, we only compare our scheme
with that of [17].

The computational and communication efficiency of the
proposed protocol and [17] are compared in Table 1. These
approaches are secure against honest-but-curious adver-
saries without a TTP under exElGamal encryption (DDH
security) and Paillier encryption (Decisional Composite
Residue (DCR) security), respectively.

Our MPSI uses the Bloom filter for the computations
performed by Pi and the integrations performed by the O.
The use of a Bloom filter eliminates the restriction on set
size. Thus, in our MPSI, the set size of each player is
flexible. However, Pi’s computations consist of Bloom fil-
ter construction, joint decryption, and Bloom filter check.
Neither the computations related to the Bloom filter nor
the joint decryption depends on the number of players,
as shown in “Preliminaries”. In summary, the computa-
tional complexity of operations performed by Pi is O(ωi).
All player-dependent data are sent to O, who integrates∏n

i=1 thrEncy(IBF(∪Si)) without decryption. As a result,
the computational complexity of operations performed by
O is O(nω).

Implementation results

Implementation

To investigate the behavior and performance of our MPSI
protocol, we implemented a prototype in C++ using the
GNU Multi-Precision (GMP) library (version 5.1.3) and
OpenSSL (version 1.0.1f). GMP is used for large-integer
arithmetic and random number generation in the exEl-
Gamal encryption. To instantiate hash functions for the
Bloom filter, we used SHA-1 in OpenSSL: Hi(x) :=
sha1(si ‖ x) mod m, where si is a unique salt. This trunca-
tion of the hash functions is based on the recommendation of
the National Institute of Standards and Technology (NIST)
[8]. Each executable communicates through TCP. We used
Boost.Asio C++ 1.54.0 for the TCP socket.

The C++ prototype has two executables: one for the play-
ers and one for the outsourcing provider. The prototype
can work in either pipeline or parallel mode. In pipeline
mode, the computation and communication threads are

Table 1 Efficiency of [17] and
the proposed protocol [17] Ours

Computational complexity O(nω2) Pi : O(ωi), O : O(nω)

Communication overhead O(nω) Pi : O(ω + n), O : O(nω)

Restriction on set size |S1| = . . . = |Sn| none

Protected values Si(∀i ∈ [1, n]) Si , |Si |(∀i ∈ [1, n])

J Med Syst (2017) 41: 37 Page 7 of 10 37

separated. Thus, computation and data transmission are pro-
cessed in parallel when possible. Pipeline mode allows each
executable to start immediately without waiting for the com-
pletion of all previous computations. Parallel mode extends
the pipeline mode by multiplying the number of computa-
tion threads in each executable. The most expensive process
of our protocol is Bloom filter encryption and decryption. In
parallel mode, the encryption and decryption computation is
conducted in multiple threads. This significantly improves
the performance of our protocol.

Evaluation

All experiments were performed on the Google Compute
Engine (GCE). GCE is a cloud computing system that deliv-
ers virtual machines running in Google’s data centers. In
our experiments, each executable was calculated on a single
virtual machine. We used the Ubuntu 14.04 LTE operating
system with Intel Xeon 2.50 GHz CPUs. Each CPU core
was assigned 3.75 GB of memory. Every virtual machine
was connected to a virtual private network. The bandwidth
between two virtual machines was approximately 2.0 Gbps,
although our protocol used less than 10 Mbps.

The time required for Bloom filter construction, encryp-
tion, decryption, randomization procedures, and MPSI com-
putation was measured. However, the measurements do not
include initialization and finalization, e.g., parsing com-
mand lines, reading and writing CSV files, TCP socket setup
and shutdown, and public key exchange. Each player input
a database set of size 26–214. We measured the performance
for n = 4, 8, 16 and tested the security parameters for
80-bit, 112-bit, 128-bit, 196-bit, and 256-bit security. Each
security parameter is half of the bit size of q. The evaluation
of the security parameter is based on the NIST guidelines for
key management [2], as summarized in Table 2. We chose a
false positive rate FPR = 0.65 %, as was adopted in [18].

First, we report the runtimes in pipeline mode. The per-
formance measurements are presented in Tables 3 and 4
(Figs. 2, 3, 4, and 5). To measure each executable time sepa-
rately, we excluded the wait time for communication. From
Table 3, it is clear that the runtime scales almost linearly

Table 2 Security parameter and group size

security parameter |p| |q|

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

All numbers shown in the table are in bits

Table 3 Pipeline mode performance (80-bit security)

n exe Set size

26 28 210 212 214

4 O 0.65 2.69 10.4 36.7 151

P 0.82 3.39 13.4 54.1 214

8 O 0.76 2.95 12.4 44.4 178

P 0.90 3.75 15.7 60.3 241

16 O 0.90 3.64 15.8 56.4 225

P 1.30 4.71 19.2 76.1 307

All times in the table are in seconds

Table 4 Pipeline mode performance (set size = 26)

n exe Security parameter (bit)

80 112 128 192 256

4 O 0.61 2.74 8.29 57.2 275

P 0.87 4.28 11.1 85.7 417

8 O 0.72 2.95 7.84 58.1 277

P 1.43 4.38 10.8 86.9 417

16 O 0.90 3.41 9.09 61.4 284

P 1.30 5.18 12.0 91.8 433

All times in the table are in seconds

Table 5 Breakdown of runtime (set size = 26, n = 4)

exe Process Security parameter (bit)

80 112 128 192 256

O (A) 0.61 2.74 8.29 57.2 275

P (B) 0.50 2.67 6.79 55.8 275

(C) 0.37 1.60 4.35 29.9 142

(D) ∼ 0.01 ∼ 0.01 ∼ 0.01 ∼ 0.01 ∼ 0.01

All times in the table are in seconds

Table 6 Breakdown of runtime (set size = 26, Security parameter =
80)

exe Process Number of Players

4 8 16

O (A) 0.55 0.67 0.82

P (B) 0.45 0.44 0.44

(C) 0.34 0.43 0.67

(D) ∼ 0.01 ∼ 0.01 ∼ 0.01

All times in the table are in seconds

37 Page 8 of 10 J Med Syst (2017) 41: 37

Fig. 2 Outsourcing provider, 80-bit security

with the set size. It is also apparent that the player’s run-
time increases in accordance with n. This is because, in
our implementation, each player performs the joint decryp-
tion process independently. However, the joint decryption
process can be distributed by the players so that the compu-
tational complexity remains constant with respect to n. The
outsourcing provider’s runtime obeys scales with the com-
putational complexity, namely, O(nω). The breakdown of
runtimes is presented in Tables 5 and 6.

The processes described in the table are as follows:

– Outsourcing provider
– (A) Randomization of thrEnc(IBF(∪Si) − n)

– Player
– (B) Construction and encryption of BF(Si) − 1
– (C) Joint decryption of thrEncy(r(IBFm,k(∪Si) − n))

– (D) SetCheck(r(IBF(∪Si) − n), Si) and obtains ∩Si

Clearly, the time consumption is dominated by the
encryption and decryption of the Bloom filter array.

The performance measurements in parallel mode are
presented in Table 7 (Fig. 6). We fixed the security param-
eter at 80-bit security and measured the total runtime,

Fig. 3 Player, 80-bit security

Fig. 4 Outsourcing provider, set size = 26

Fig. 5 Player, set size = 26

Table 7 Parallel mode performance (80-bit security)

CPU core Set size

26 28 210 212 214

1 1.02 3.89 15.0 82.9 297

2 1.49 2.83 8.72 33.0 131

4 1.33 2.22 6.14 22.6 87.1

All times in the table are in seconds

Fig. 6 Parallel mode performance (80-bit security)

J Med Syst (2017) 41: 37 Page 9 of 10 37

Table 8 Performance comparison (80-bit security)

Protocol Set size

26 28 210 212 214

Kissner and Song’s (n = 4) 0.50 3.06 50.6 1051 N/A

Our protocol (n = 4) 1.02 3.89 15.0 82.9 297

Kissner and Song’s (n = 8) 0.92 6.41 92.0 1491 N/A

Our protocol (n = 8) 1.50 3.05 19.4 83.2 355

Kissner and Song’s (n = 16) 2.10 13.9 190 3246 N/A

Our protocol (n = 16) 1.98 7.29 28.7 112 450

All times in the table are in seconds

including the computation time and the wait time for com-
munication. Although the total runtimes are not exactly
proportional to the number of CPU cores, there is a sig-
nificant improvement in the multi-core environment. As
the time consumption of our protocol is dominated by the
encryption and decryption of the Bloom filter array, these
processes can easily be implemented in parallel. We believe
this property is one of the most important advantages of our
protocol.

Comparison

We compared our protocol with Kissner and Song’s MPSI
protocol [17]. We implemented Kissner and Song’s MPSI
protocol with PARI in C++ for the comparison. All mea-
surements were conducted in pipeline mode. The results are
presented in Table 8 (Figs. 7, 8 and 9).

The results show that our protocol is faster than Kiss-
ner and Song’s MSPI protocol when n = 4 and the
set size is greater than 28, when n = 8 and the set
size is greater than 26, and when n = 16 and the set
size is greater than 24. Furthermore, although Kissner and
Song’s MSPI protocol crashed with a set size of 214, these
results reveal that the time consumption of their protocol

Fig. 7 n = 4

Fig. 8 n = 8

is approximately proportional to the square of the set size.
As in our protocol, Kissner and Song’s MSPI protocol
uses the (n, n)-threshold scheme, so it does not require
a conspiracy assumption. However, their protocol is not
scalable with respect to either the set size or number of
players.

Conclusion

This paper has described a practical MPSI in which some
of the computations are outsourced to a third-party. As
none of the information of Si, |Si |(∀i ∈ [1, n]) is revealed
to the third-party, this function can be safely outsourced.
Our scheme satisfies that the following requirements: any
restrictions on the sets are eliminated, meaning that the set
size of each player can be flexibly chosen; and the compu-
tational burden on each player is independent of the number
of players.

Importantly, our scheme can be applied to the efficient
integration of medical and related data maintained by differ-
ent organizations without violating any privacy constraints.
We confirmed that the computational complexity is inde-
pendent of the number of organizations from which data are
being integrated.

Fig. 9 n = 16

37 Page 10 of 10 J Med Syst (2017) 41: 37

Acknowledgments The authors express our gratitude to anony-
mous referees for invaluable comments. This work is supported
in part by a Grant-in-Aid for Scientific Research (C)(15K00183)
and (15K00189) and the Japan Science and Technology Agency,
CREST, and Infrastructure Development for Promoting International
S&T Cooperation.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Azar, Y., Broder, A. Z., Karlin, A. R., and Upfal, E., Balanced
allocations. SIAM J. Comput. 29(1):180–200, 1999.

2. Barker, E., Barker, W., Burr, W., Polk, W., and Smid, M.: Nist
special publication 800-57: Recommendation for key management
– part 1: General(revision 3). Technical report, National Institute
of Standards and Technology (NIST), 2012.

3. Bloom, B. H., Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13(7):422–426, 1970.

4. Broder, A., and Mitzenmacher, M., Network applica-
tions of bloom filters: A survey. Internet Math. 1(4):485–
509, 2004.

5. Cramer, R., Gennaro, R., and Schoenmakers, B., A secure and
optimally efficient multi-authority election scheme. Eur. Trans.
Telecommun. 8(5):481–490, 1997.

6. De Cristofaro, E., Kim, J., and Tsudik, G., Linear-complexity pri-
vate set intersection protocols secure in malicious model. In: ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 213–231. Springer,
2010.

7. De Cristofaro, E., and Tsudik, G., Practical private set intersection
protocols with linear complexity. In: FC 2010, volume 6052 of
LNCS, pages 143–159. Springer, 2010.

8. Dang, Q., Nist special publication 800-107: Recommendation for
applications using approved hash algorithms(revision 1). Techni-
cal report, National Institute of Standards and Technology (NIST),
2012.

9. Desmedt, Y., and Frankel, Y., Threshold cryptosystems. In:
CRYPTO 1989, volume 1462 of LNCS, pages 307–315. Springer,
1989.

10. Dong, C., Chen, L., and Wen, Z., When private set intersection
meets big data: An efficient and scalable protocol. In: ACMCCS
2013, pages 789–800. ACM, 2013.

11. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., and
Tillmanns, J., Privately computing set-union and set-intersection
cardinality via bloom filters. In: ACISP 2015, volume 9144 of
LNCS, pages 413–430. Springer, 2015.

12. Freedman, M. J., Nissim, K., and Pinkas, B., Efficient private
matching and set intersection. In: EUROCRYPT 2004, volume
3027 of LNCS, pages 1–19. Springer, 2004.

13. Goldreich, O., Secure multi-party computation. Manuscript. Pre-
liminary version, 1998.

14. Goldwasser, S., and Micali, S., Probabilistic encryption. J. Com-
put. Syst. Sci. 28(2):270–299, 1984.

15. Ishai, Y., Kilian, J., Nissim, K., and Petrank, E., Extending obliv-
ious transfers efficiently. In: CRYPTO 2003, volume 2729 of
LNCS, pages 145–161. Springer, 2003.

16. Kerschbaum, F., Outsourced private set intersection using homo-
morphic encryption. In: ACMCCS 2012, pages 85–86. ACM,
2012.

17. Kissner, L., and Song, D., Privacy-preserving set operations. In:
CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer,
2005.

18. Many, D., Burkhart, M., and Dimitropoulos, X., Fast private set
operations with sepia. Tech. Rep. 345, 2012.

19. Paillier, P., Public-key cryptosystems based on composite degree
residuosity classes. In: EUROCRYPT 1999, volume 1592 of
LNCS, pages 223–238. Springer, 1999.

20. Rabin, M. O., How to exchange secrets with oblivious transfer.
Tech. Memo, TR-81, 1981.

21. Sang, Y., and Shen, H., Efficient and secure protocols for privacy-
preserving set operations. ACM Trans. Inf. Syst. Secur. 13(1):9:1–
9:35, 2009.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Privacy-Preserving Integration of Medical Data
	Abstract
	Introduction
	Preliminaries
	Key generation
	Encryption
	Decryption

	Previous work
	PSI protocol based on polynomial representation
	PSI protocol based on DH-key agreement
	PSI protocol based on BF

	Practical MPSI
	Notation and privacy definition
	Proposed MPSI
	Security Proof
	Efficiency

	Implementation results
	Implementation
	Evaluation
	Comparison

	Conclusion
	Acknowledgments
	Open Access
	References

