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Background. Peroxisome proliferator-activated receptor-𝛼 (PPAR-𝛼) is closely associated with the development of cardiac
hypertrophy. Previous studies have indicated that bezafibrate (BZA), a PPAR-𝛼 agonist, could attenuate insulin resistance and
obesity. This study was designed to determine whether BZA could protect against pressure overload-induced cardiac hypertrophy.
Methods. Mice were orally given BZA (100mg/kg) for 7 weeks beginning 1 week after aortic banding (AB) surgery. Cardiac
hypertrophy was assessed based on echocardiographic, histological, and molecular aspects. Moreover, neonatal rat ventricular
cardiomyocytes (NRVMs) were used to investigate the effects of BZA on the cardiomyocyte hypertrophic response in vitro. Results.
Our study demonstrated that BZA could alleviate cardiac hypertrophy and fibrosis in mice subjected to AB surgery. BZA treatment
also reduced the phosphorylation of protein kinase B (AKT)/glycogen synthase kinase-3𝛽 (GSK3𝛽) and mitogen-activated protein
kinases (MAPKs). BZA suppressed phenylephrine- (PE-) induced hypertrophy of cardiomyocyte in vitro. The protective effects
of BZA were abolished by the treatment of the PPAR-𝛼 antagonist in vitro. Conclusions. BZA could attenuate pressure overload-
induced cardiac hypertrophy and fibrosis.

1. Introduction

Cardiac hypertrophy is defined as an increase in cardiomy-
ocyte size, interstitial fibrosis, and cardiac dysfunction [1, 2].
Cardiac hypertrophy can lead to ventricular arrhythmias
and increase the incidence of fatal cardiovascular events
[3]. The precise mechanisms regulating cardiac hypertrophy
remain unclear. However, accumulating evidence indicates
that protein kinase B (AKT)/glycogen synthase kinase-3𝛽
(GSK3𝛽) and mitogen-activated protein kinases (MAPKs)
play key roles in the development of cardiac hypertrophy [4].

AKT was activated in the heart after hypertrophic stim-
uli. Moreover, AKT overexpression induced a remarkable
increase in cardiomyocyte cell size [5, 6]. AKT also resulted
in the inactivation of GSK-3𝛽 and contributed to the process
of cardiac hypertrophy [7, 8]. MAPKs were also closely asso-
ciated with the development of the hypertrophic response. It
has been reported that extracellular signal-regulated kinase
(ERK) and P38 are activated in hypertrophic hearts and that

inhibition of the activation of ERK and P38 might alleviate
the hypertrophic response [9–11]. Therefore, finding drugs
that can inhibit these prohypertrophic signaling pathways is
of great importance.

Peroxisome proliferator-activated receptors (PPARs) are
the nuclear receptor superfamily of ligand-activated tran-
scription factors [12]. PPAR-𝛼, which is highly expressed in
the heart, could regulate the homeostasis of lipid metabolism
[13, 14]. Previous studies have found that cardiac PPAR-𝛼
deficiency results in myosin dysfunction, with a pronounced
decrease in cardiac contractile function and an increase in
oxidative damage [15, 16]. Bezafibrate (BZA), a PPAR-𝛼 ago-
nist, has been used widely in the treatment of hyperlipidemia
and could also attenuate hepatic steatosis and modulate
insulin resistance and obesity [17]. Moreover, results of
previous research have indicated that the PPAR-𝛼 agonist
suppressed the activation of AKT in noncardiomyocytes
[18]. However, whether BZA can affect cardiac hypertrophy
has not been clearly studied. This study was designed to
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Table 1: Primers used in the study.

Gene Species Sequence (5󸀠-3󸀠)

GAPDH Mouse Forward ACTCCACTCACGGCAAATTC
Reverse TCTCCATGGTGGTGAAGACA

ANP Mouse Forward ACCTGCTAGACCACCTGGAG
Reverse CCTTGGCTGTTATCTTCGGTACCGG

𝛼-MHC Mouse Forward GTCCAAGTTCCGCAAGGT
Reverse AGGGTCTGCTGGAGAGGTTA

𝛽-MHC Mouse Forward CCGAGTCCCAGGTCAACAA
Reverse CTTCACGGGCACCCTTGGA

BNP Mouse Forward GAGGTCACTCCTATCCTCTGG
Reverse GCCATTTCCTCCGACTTTTCTC

Collagen I Mouse Forward TGGTACATCAGCCCGAAC
Reverse GTCAGCTGGATAGCGACA

Collagen III Mouse Forward GTCAGCTGGATAGCGACA
Reverse GAAGCACAGGAGCAGGTGTAGA

CTGF Mouse Forward TGTGTGATGAGCCCAAGGAC
Reverse AGTTGGCTCGCATCATAGTTG

IL-1𝛽 Mouse Forward CCGTGGACCTTCCAGGATGA
Reverse GGGAACGTCACACACCAGCA

MCP-1 Mouse Forward TGGCTCAGCCAGATGCAGT
Reverse CCAGCCTACTCATTGGGATCA

TNF-𝛼 Mouse Forward CATCTTCTCAAAACTCGAGTGACAA
Reverse TGGGAGTAGATAAGGTACAGCCC

Bax Mouse Forward TGAGCGAGTGTCTCCGGCGAAT
Reverse GCACTTTAGTGCACAGGGCCTTG

Bcl-2 Mouse Forward TGGTGGACAACATCGCCCTGTG
Reverse GGTCGCATGCTGGGGCCATATA

investigate the effects of BZAon cardiac hypertrophy induced
by pressure overload as well as to reveal the underlying
mechanisms.

2. Materials and Methods

All animal experimental procedures were approved by the
Guidelines for the Care and Use of Laboratory Animals of
the Chinese Animal Welfare Committee and the guidelines
of Renmin Hospital.

2.1. Reagents. BZA was acquired from Sigma (B7273, purity
> 98%). Phenylephrine (PE, P1240000) was obtained from
Sigma-Aldrich. Anti-PPAR-𝛼 (sc-9000) and anti-PCNA (sc-
7907) were purchased from Santa Cruz Biotechnology.
The following first antibodies were purchased from Cell
Signaling Technology: anti-AKT (#4691), anti-phospho-
AKT (#4060), anti-GSK3𝛽 (#9315), anti-phospho-GSK3𝛽
(#9323P), anti-ERK (#4695), anti-phospho-ERK (#4370P),
anti-P38 (#9212P), anti-phospho-P38 (#4511P), anti-AMPK𝛼
(#2603P), and anti-phospho-AMPK𝛼 (#2535). Anti-GAPDH
(#ab8245), anticalcineurin (CaN) (#ab90540), and anti-
NFAT1 (#ab2722) were obtained from ABCAM. Anti-𝛼-
actinin was acquired from Millipore. The secondary anti-
bodies were purchased from LI-COR Biosciences. The

PPAR-𝛼 antagonist (GW6471, G5045), PPAR-𝛽/𝛿 antago-
nist (GSK0660, G5797), and PPAR-𝛾 antagonist (GW9662,
M6191) were all purchased from Sigma-Aldrich. All other
chemicals were of analytical grade.

2.2. Animals andTreatment. MaleC57BL/6mice (8–10weeks
old) were purchased from the Institute of Laboratory Animal
Science, CAMS & PUMC (Beijing, China), and fed in an
environment with controlled temperature and humidity. The
mice had the full ability to freely access water and food in
a 12 h light-dark cycle. After one week, all the animals were
randomly divided into 4 groups: sham + vehicle, sham +
BZA, AB + vehicle, and AB + BZA. The dose of BZA used
in our study was determined according to a previous article
[19]. Mice were given BZA dissolved in saline (100mg/kg,
17:00 every day) for 7 weeks beginning 1 week after the AB
surgery. Mice in the control group were subjected to the same
volume of saline. Details of the AB surgery were described
in a previous article [20]. After seven weeks of treatment,
the echocardiographic examinations were performed. Then,
all the animals were euthanized before their hearts were
collected and weighed.

2.3. Echocardiography Analysis andHemodynamics Detection.
Echocardiographic parameters were obtained according to
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Figure 1: Echocardiographic and hemodynamic parameters in mice subjected to BZA (100mg/kg). (a) Echocardiographic parameters (𝑛 =
10–13). (b) Hemodynamic parameters in the indicated groups (𝑛 = 8). Compared with sham + vehicle, ∗𝑃 < 0.05. Compared with AB +
vehicle, #𝑃 < 0.05.

our previous article [21]. AMyLab 30CV (Esaote SpA, Genoa,
Italy) equipped with a 10 MHz linear array ultrasound trans-
ducer was used. The left ventricular end-systolic diameter
(LVSD) and end-diastolic diameter (LVDD) were detected
at the papillary level in M-mode tracing with a sweep speed
of 50mm/s. To measure the changes in the hemodynamics
parameters, a microtip catheter transducer (SPR-839, Millar
Instruments, Houston, TX, USA) was inserted into the
carotid artery until it was in the left ventricle to monitor the
pressure signals and heart rate continuously with an ARIA
pressure-volume conductance system [22].

2.4. Histological Analysis. Hearts were arrested in 10% KCL
and fixed with 10% formalin.Then, they were embedded with
paraffin and cut transversely. Haematoxylin-eosin (HE) and
picrosirius red (PSR) techniques were used for histological
analysis. After staining, we used a digital analysis system
(Image-Pro Plus, version 6.0; Media Cybernetics, Bethesda,
MD, USA) to evaluate the cross-sectional area (CSA) of the
myocytes and the percentage of collagen.We outlined at least
200 myocytes in each group.

2.5. Western Blot Analysis. RIPA buffer was used to extract
the protein from the hearts. Total and nucleus protein were
extracted as previously described [23, 24].The concentrations

of the proteins were detected using the BCA Protein Assay
Kit (cat. number 23227; Thermo Fisher Scientific, Waltham,
MA, USA). Then, the proteins were fractionated on the 10%
SDS-PAGE and transformed onto the PVDF membrane (cat.
number IPFL00010; EMD Millipore, Billerica, MA, USA).
Subsequently, they were incubated with different primary
antibodies overnight prior to incubation with secondary
antibodies for 1 h. Finally, the membranes were analyzed and
quantified using the Odyssey Infrared Imaging System (LI-
COR Biosciences, Lincoln, NE, USA).

2.6. Real-TimePolymerase ChainReactionAnalysis. TheRNA
was extracted from the frozen hearts via TRIzol (cat. number
15596026; Invitrogen Life Technologies, Carlsbad, CA, USA).
The cDNA was synthesized from 1 𝜇g RNA from each group
using the Prime Script RT Reagent Kit (cat. number RR047Q;
TAKARABIOTECHNOLOGY (DALIAN)CO, LTD).Quan-
titative analysis was conducted using the LightCycler 480
SYBER GreenMaster Mix (cat. number 04896866001; Roche
Diagnostics GmbH). All details about the primers are pre-
sented in Table 1.

2.7. Cell Culture and Staining. Neonatal rat ventricular
myocytes (NRVMs) were isolated as described previously
[25]. The NRVMs were cultured with Dulbecco’s Modified
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Figure 2: BZA suppressed cardiac hypertrophy in vivo. (a) Gross heart (𝑛 = 4). (b)The results of the HW/BW and HW/TL ratio (𝑛 = 12–15).
(c) The cross-sectional areas in the sham and AB groups with and without BZA (𝑛 = 4). (d) The mRNA levels of ANP, BNP, 𝛼-MHC, and
𝛽-MHC (𝑛 = 6).

Eagle Medium/Nutrient Mixture F-12 Ham (DMEM/F12)
with 10% fetal bovine serum (FBS) (GIBCO, 10099), 1%
streptomycin (100mg/ml; GIBCO, 15140), and penicillin
(100U/ml). We used bromodeoxyuridine (0.1mM) to pre-
vent fibroblast growth. The purity of the cardiac myocytes
was assessed by positive staining with antibodies 𝛼-actinin.
The cells were first seeded onto six-well culture plates for 48 h
with both DMEM and 10% FBS and then only supplied with
0.5% DMEM for 12 h. Finally, phenylephrine (50𝜇mol) was
added to the media to stimulate the cell with and without the
BZA. Immunofluorescence staining was used to analyze the
myocyte surface. To stain the cells, the NRVMs were fixed
with 4% formaldehyde and infiltrated with 0.1% Triton X-
100. Subsequently, the cells were stained with anti-𝛼-actinin
(1 : 100 dilution) before being incubatedwithAlexa Fluor 568-
goat anti-mouse secondary antibody (Invitrogen, A11017).

Image-Pro Plus 6.0 software was used to examine the cell
areas.

2.8. Statistical Analysis. All data are expressed as the mean ±
SD. The data were analyzed using one-way ANOVA. Tukey’s
test was used to conduct post hoc analyses. 𝑃 < 0.05 was
believed to indicate statistical significance.

3. Results

3.1. BZA Improved Cardiac Function in Mice Subjected to
AB Surgery. The mice subjected to AB surgery developed
deteriorated cardiac function, as evidenced by the increase
in LVDD and the reduction in left ventricular fractional
shortening (LVFS) and ejection fraction (LVEF) (Figure 1(a)).
To investigate the effect of BZA, the mice were given BZA
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Figure 3: BZA suppressed cardiac fibrosis in vivo. (a)The histologicmanifestation of PSR in both left ventricular and vascular fibrosis (𝑛 = 4).
(b) The collagen level of the sham and AB groups in the presence and absence of BZA treatment (𝑛 = 4). (c) The mRNA level of collagen I,
collagen III, and connective tissue growth factor (CTGF) (𝑛 = 6).

dissolved in saline (100mg/kg, 17:00 every day) for 7 weeks
beginning 1 week after AB surgery. These echocardiographic
changes improved after BZA treatment. Pressure overload
also resulted in amarked reduction in cardiac contractility, as
measured by dP/dT max and dP/dT min (Figure 1(b)). BZA
treatment restored impaired cardiac contractility (Figures
1(a)-1(b)).

3.2. BZA Attenuated Cardiac Hypertrophy Induced by AB
Surgery. The mice subjected to AB surgery exhibited a
significant hypertrophic response compared with the sham
group, as illustrated by the increase in heart weight/body
weight (HW/BW), heart weight/tibia length (HW/TL), and
CSA (Figures 2(a)–2(c)).However, the hypertrophic response
in the mice subjected to BZA treatment was significantly
reduced. These results were corroborated by the analysis of
atrial natriuretic peptide (ANP), brain natriuretic peptide
(BNP), 𝛼-myosin heavy chain (𝛼-MHC), and 𝛽-myosin
heavy chain (𝛽-MHC) (Figure 2(d)).

3.3. BZA Blocked Cardiac Fibrosis. As observed in the mice
subjected to AB surgery, the collagen deposition in both
the interstitial and perivascular spaces increased (Figures
3(a)-3(b)). In addition, the mRNA levels of collagen I,
collagen III, and connective tissue growth factor (CTGF)
obviously increased in the AB group (Figure 3(c)). How-
ever, these pathological changes were alleviated after BZA
treatment.

3.4. BZA Inhibited MAPKs and AKT/GSK3𝛽 Signal Pathways
in Response to Hypertrophic Stimuli. As shown in Figure 4,
the protein level of PPAR-𝛼 was downregulated after AB
surgery. Moreover, as a PPAR-𝛼 agonist, BZA could upregu-
late the decreased PPAR-𝛼. Pressure overload resulted in the
elevated phosphorylation of AKT and GSK3𝛽. Conversely,
BZA treatment suppressed the activated AKT/GSK3𝛽 path-
way. In addition, PPAR-𝛼 activated by BZA could diminish
the phosphorylation of ERK but not P-P38. There was no
significant difference in P-AMPK𝛼 between the AB + vehicle
and AB + BZA groups.
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Figure 4: The effect of BZA on AKT/GSK3𝛽, AMPK𝛼, and MAPK signal pathways. The relative quantitative results of PPAR-𝛼, P-AKT,
P-GSK3𝛽, P-ERK, P-P38, and P-AMPK𝛼 in the four groups (𝑛 = 6).

3.5. BZA Attenuated Cardiomyocyte Hypertrophy in the Pres-
ence of Phenylephrine In Vitro. To further understand the
effect of BZA on hypertrophy, NRVMs were subjected to PE
to induce hypertrophy of myocytes in vitro (Figure 5). As
expected, BZA decreased the increased cell areas and hyper-
trophic markers. Although the PPAR-𝛼 antagonist (GW6471,
20𝜇mol) did not affect the cell area at baseline, GW6471
abolished the protection of BZA against hypertrophy, as
indicated by the cell areas and ANP level (Figure 5). PPAR-
𝛽/𝛿 (GSK0660, 1 𝜇mol) and PPAR-𝛾 (GW9662, 10 𝜇mol)
antagonists had no effect on the BZA-mediated protection
(Figure 6).

3.6. BZA Had No Significant Effect on the CaN/NFAT-1 Signal
Pathway, Inflammation, andApoptosis. As shown in Figure 7,
we measured the protein levels of the CaN/NFAT-1 signal
pathway. There was no significant difference in CaN and
NFAT-1 between the AB + vehicle and AB + BZA groups in
terms of the cytoplasm and nucleus. Moreover, BZA also had

no significant influence on the mRNA levels of Bax and Bcl-
2. Regarding the inflammatory response, the mRNA levels of
monocyte chemoattractant protein-1 (MCP-1) were slightly
downregulated under BZA treatment, whereas interleukin-
1𝛽 (IL-1𝛽) and tumor necrosis factor-𝛼 (TNF-𝛼) were not
significantly affected by the BZA treatment.

4. Discussion

Our research demonstrated that BZA can inhibit cardiac
hypertrophy in vivo and in vitro. BZA alleviated cardiac
fibrosis induced by pressure overload. In addition, the phos-
phorylation of AKT/GSK𝛽 andMAPKs signal pathways were
downregulated after BZA treatment. BZA also diminished
PE-induced myocytes hypertrophy. The effects were abol-
ished by the PPAR-𝛼 antagonist in vitro.

As an energy metabolic regulator, PPAR-𝛼 can modulate
cardiacmetabolism substrate conversion in cardiac hypertro-
phy, heart failure, and ischemic heart disease [26]. Results of
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Figure 5: BZA blocked the process of cardiomyocyte hypertrophy in vitro. (a) The viability of neonatal rat ventricular cardiomyocytes
stimulated by phenylephrine (𝑛 = 6). (b) The ANP levels in the presence of BZA and phenylephrine at different concentrations (𝑛 = 6).
(c)The representative exhibition of a cardiomyocyte under immunofluorescence staining (𝑛 = 6). (d)The average cell area of cardiomyocytes
(𝑛 = 6).

previous research have illustrated that PPAR-𝛼 has various
functions, including extracellular matrix remolding and the
inflammatory response. Absence of PPAR-𝛼 resulted in a
more pronounced hypertrophic response and deteriorated
cardiac function accompanied by enhanced expression of
markers of inflammation and extracellular matrix remodel-
ing [27]. Activation of PPAR-𝛼 improved cardiac function
in diabetic cardiomyopathy [28, 29]. PPAR-𝛼 agonists can
block cardiac hypertrophy induced by endothelin-1 [30, 31].
Consistent with the findings of these studies, our results

also demonstrated that BZA attenuates cardiac hypertrophy
in vivo and in vitro. However, a divergent perspective was
that mice with cardiac overexpression of PPAR-𝛼 developed
spontaneous cardiomyocyte hypertrophy [32]. In previous
research, the protein levels of PPAR-𝛼 were more abundant
(15–135-fold) in the hearts of transgenic animals than in their
nontransgenic littermates. In our study, PPAR-𝛼 was slightly
activated by BZA, which may explain the discrepancies
between different studies. Previous studies also reported that
the effects of PPAR agonists on the heart are mediated by
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Figure 6:The effects of different PPAR isoforms antagonists under BZA treatment when stimulated with phenylephrine. (a)The average cell
area of cardiomyocytes when treated with different kinds of PPAR isoforms with both phenylephrine and BZA (𝑛 = 6). (b) The average cell
area of cardiomyocytes with a lone inhibitor (𝑛 = 6).

non-PPAR effects. Fenofibrate was found to exert deleterious
pleiotropic myocardial actions in PPAR-𝛼-deficient mice
[33]. Inconsistent with the findings of previous studies, our
study demonstrated that the protective effects of BZA on
cardiomyocyte hypertrophy can be blocked by the PPAR-𝛼
antagonist rather than the PPAR𝛽/𝛿 and PPAR-𝛾 inhibitor,
implying that BZA attenuates cardiac hypertrophy via PPAR-
𝛼. This finding suggests that the excessive rate of myocardial
fatty acid uptake coupled with reduced glucose utilization
may result in excessive lipid accumulation in the heart and
exaggerated cardiac remolding. There are reasons to believe
that BZA treatment simply recovers the energy balance to the
normal condition, which prevents the progression of cardiac
hypertrophy.

Previous research has illustrated that the overexpression
of AKT results in obvious cardiac hypertrophy, with a
significant increase in cardiomyocyte size [34]. Moreover, the
hypertrophic response can be alleviated in AKT knockout
mice [35]. The results of our lab work indicate that inhibi-
tion of AKT/GSK3𝛽 obviously attenuates pressure overload-
induced cardiac hypertrophy [36]. Fenofibrate, a PPAR-𝛼
agonist, was previously found to alleviate renal ischemia-
infusion injury and glucose-induced matrix deposition via
the AKT pathway [37, 38]. Moreover, fenofibrate alleviated
endothelin-1-induced cardiomyocyte hypertrophy by inhibit-
ing the phosphorylation of AKT and GSK3𝛽 [39]. Consistent
with the findings of these studies, our data also revealed
that AKT/GSK3𝛽were downregulated under BZA treatment,
implying that AKT/GSK3𝛽 played a role in the cardiopro-
tection mediated by BZA. ERK was activated in response to
hypertrophic stimuli in neonatal cardiomyocytes. Moreover,
the pharmacological inhibition of ERK significantly impeded
the hypertrophic response [40]. It has been reported that
PPAR-𝛼 activation could ameliorate aldosterone-induced
cardiac remodeling in adult rat ventricular myocytes, partly
by inhibiting the phosphorylation of ERK [41]. In our study,

the phosphorylation of ERK was significantly downregu-
lated with BZA treatment after AB surgery. P38 was also
closely associated with cardiac hypertrophy [42].The specific
P38 inhibitor or negative P38 mutant expression attenuated
cardiomyocyte growth in response to hypertrophic stimuli,
whereas overexpression of P38 resulted in a hypertrophic
response [43, 44]. Previous research indicated that the acti-
vation of PPAR-𝛼 reduced P-P38 to alleviate renal injury
[45]. However, a divergent perspective was that PPAR-𝛼
suppressed melanogenesis via upregulation of P-P38 [46].
Inconsistent with the findings of these studies, our results
indicated that BZA had no obvious effect on the level of P-
P38. The reason for the inconsistent results is that P38 plays
different roles in different pathological processes.

Acting as an energy sensor, AMPK𝛼 has been most
widely investigated in energy metabolism in both physio-
logical and pathological conditions [47]. Our previous work
demonstrated that activation of AMPK𝛼 can alleviate the
hypertrophic response [48, 49]. Moreover, it has been shown
that PPAR-𝛼 can enhance the phosphorylation of AMPK𝛼 to
reduce reticulum stress induced by the palmitate in human
cardiac cells [50]. Unexpectedly, no significant difference in
AMPK𝛼 was observed after BZA treatment in the AB group
in our study, implying that AMPK𝛼 does not contribute to the
protective role of BZA in cardiac hypertrophy.

Previous research has demonstrated that CaN-NFAT
plays a significant role in the development of cardiac hyper-
trophy and that overactivation of PPAR-𝛼 might inhibit
the nuclear translocation of NFAT-1 from the cytoplasm to
the nucleus [39, 51]. However, our study discovered that
there was no significant difference in the protein level of
CaN/NFAT-1 between the AB + vehicle and AB + BZA
groups. Inflammatory biomarkers were upregulated under
the hypertrophic response. Early studies had discovered that
activation of PPAR-𝛼 could inhibit inflammatory activation
and reduce the activity of macrophages in the development
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Figure 7: The effect of BZA on the CaN/NFAT1 signal pathway, inflammation, and apoptosis. (a) The protein level of CaN/NFAT1 in both
cytoplasm and the nucleus (𝑛 = 6). (b) The mRNA level of IL-1𝛽, MCP-1, and TNF-𝛼 under BZA treatment (𝑛 = 6). (c) The mRNA level of
Bax and Bcl-2 (𝑛 = 6).
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of atherosclerosis [52, 53]. Our results revealed that only
MCP-1 was slightly downregulated under BZA treatment.
In addition, cell apoptosis was detected in our study. The
mRNA levels of both Bax and Bcl-2 remained approximately
unchanged under BZA treatment. All of these results imply
that the protective effect of BZA was not mediated by
CaN/NFAT1, inflammation, and apoptosis pathways.

Fibrosis, another crucial pathophysiological process in
cardiac remolding, is characterized by the accumulation
of collagen and the deposition of extracellular matrix. A
previous study demonstrated that PPAR-𝛼 KO mice exhibit
progressive cardiac fibrosis and aggravated cardiac hypertro-
phy [50]. Chen et al. [54] found that activation of PPAR-𝛼
attenuated liver fibrosis induced by a methionine choline-
deficient diet. Moreover, Suk et al. [55] demonstrated that
BZA inhibits fibrogenesis in a murine steatohepatitis model.
Consistentwith the findings of these studies, we observed that
BZA treatment attenuates AB-induced cardiac fibrosis. The
activation of PPAR-𝛼 caused by BZA treatment may be the
underlying mechanism that mediates antifibrotic effects.

In conclusion, our study demonstrated that BZA can
protect against cardiac hypertrophy induced by pressure
overload. BZA also suppressed the activation of AKT/GSK3𝛽
and ERK in hypertrophic hearts. BZA alleviated PE-induced
hypertrophy of cardiomyocytes via PPAR-𝛼. Our study pro-
vides experimental evidence for the application of BZA in the
treatment of cardiac hypertrophy.
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