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Despite its clinical relevance and the recent recognition as a diagnostic category in the DSM-5, binge eating disorder (BED) has rarely been
investigated from a cognitive neuroscientific perspective targeting a more precise neurocognitive profiling of the disorder. BED patients
suffer from a lack of behavioral control during recurrent binge eating episodes and thus fail to adapt their behavior in the face of negative
consequences, eg, high risk for obesity. To examine impairments in flexible reward-based decision-making, we exposed BED patients
(n= 22) and matched healthy individuals (n= 22) to a reward-guided decision-making task during functional resonance imaging (fMRI).
Performing fMRI analysis informed via computational modeling of choice behavior, we were able to identify specific signatures of altered
decision-making in BED. On the behavioral level, we observed impaired behavioral adaptation in BED, which was due to enhanced
switching behavior, a putative deficit in striking a balance between exploration and exploitation appropriately. This was accompanied by
diminished activation related to exploratory decisions in the anterior insula/ventro-lateral prefrontal cortex. Moreover, although so-called
model-free reward prediction errors remained intact, representation of ventro–medial prefrontal learning signatures, incorporating
inference on unchosen options, was reduced in BED, which was associated with successful decision-making in the task. On the basis of a
computational psychiatry account, the presented findings contribute to defining a neurocognitive phenotype of BED.
Neuropsychopharmacology (2017) 42, 628–637; doi:10.1038/npp.2016.95; published online 16 November 2016
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INTRODUCTION

A hallmark of binge eating disorder (BED), recently
recognized in the DSM-5 (American Psychiatric Association,
2013) as a diagnostic category, is the lack of behavioral
control during recurrent binge eating episodes, ie, the feeling
that one cannot stop eating. As propounded by the
diagnostic criteria, excessive food intake takes place despite
psychological and physical consequences, such as feelings of
guilt, shame or remorse, and high risk for obesity and
associated maladies. To put it differently, patients suffering
from BED make disadvantageous decisions and fail to adapt
their behavior in the face of negative consequences. The first
few behavioral studies are in accordance with the idea of
decision-making impairments in BED (Danner et al, 2012;
Davis et al, 2010; Svaldi et al, 2010; Voon et al, 2015).
Healthy individuals guide their decisions by values learnt

via prediction errors (PEs) generated from observed

outcomes, indicating that an outcome is better or worse
than expected. These PEs are defined as ‘model-free’ because
they neglect the structure of the environment and simply
lead to a repetition of previously reinforced actions, but only
allow for slow adaptation in dynamic environments (Daw
et al, 2005; Dayan and Daw, 2008). When decisions made in
the past have indeed turned out to be rewarding, individuals
can exploit this experience for maximal gain. As is in
everyday life, environmental conditions are frequently
probabilistic and dynamic, challenging the individual to
explore new alternatives at the right time (Cohen et al, 2007;
Daw et al, 2006; Frank et al, 2009; Hare, 2014). Interestingly,
PEs do not only exist for options actually chosen, but can
also process information on alternative choice options: this
results in more complex PEs incorporating ‘what might have
been’, that is, inference about unchosen options and their
fictitious outcomes (Boorman et al, 2009; Bromberg-Martin
et al, 2010; Glascher et al, 2009; Hampton et al, 2006;
Lohrenz et al, 2007). Thus, concurrent tracking of chosen
and unchosen decision options enables flexible goal-directed
behavior and helps to balance exploration and exploitation.
Indeed, important recent studies have linked BED to

impairments in making goal-directed decisions
(Voon et al, 2015) and to biases towards exploratory behavior
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(Morris et al, 2016). However, neural learning signatures of
impaired flexible behavioral control in BED remain to be
elucidated. A key brain region for flexible goal-directed
behavior is the medial prefrontal cortex (mPFC). Studies in
healthy participants have emphasized its important role in
selecting reward goals and monitoring the value of actions (for
review see Rushworth et al, 2011). In particular, the ventro–
medial part of the PFC (vmPFC) is deemed responsible for
on-the-fly valuation processes, which rely on the incorpora-
tion of environmental structure (Glascher et al, 2009;
Hampton et al, 2006; Wunderlich et al, 2012). Intriguingly,
Hampton et al (2006) and Glascher et al (2009) reported
activation in the vmPFC to be associated with prediction error
signals incorporating task structure during flexible decision-
making. On the basis of this work, we report, to the best of our
knowledge, the first task-based functional magnetic resonance
imaging (fMRI) study investigating neural learning signatures
of impaired flexible decision-making in BED.
To this end, we adopted a computational psychiatry

approach (Montague et al, 2012; Stephan and Mathys, 2014)
to investigate mechanisms of behavioral adaptation and
associated neural signatures in BED by combining computa-
tional modeling with fMRI during a dynamic choice task. We
aimed to elucidate the hypothesized impairment in flexible
behavioral adaption of BED patients via the application of
reinforcement learning (RL-) models. Regarding fMRI data,
we first studied neural correlates of model-free prediction
errors. Second, we investigated flexible behavioral adaptation
via PEs incorporating inference about unchosen options and
expected these signals, as well as between-group differences,
to be associated with BOLD-activation in the vmPFC.

MATERIALS AND METHODS

Participants

Twenty-two BED patients and 22 healthy control subjects
(HC) were recruited. All subjects underwent the Structured
Clinical Interview for DSM IV, Axis I disorders, SCID-I (First
et al, 2001). HC who were included reported no current nor
past psychiatric disorders. Patients suffering from BED were
diagnosed according to DSM-5 criteria by a psychologist using
the German version of the structured Eating Disorder
Examination Interview (Hilbert et al, 2004). As body mass
index (BMI) is not a diagnostic criterion according to the
DSM-5, patients were included irrespective of their BMI
(Dingemans and van Furth, 2012). BED and control group did
not differ significantly with respect to BMI; the average BMI
corresponded to the definition of being overweight in both
groups (compare Table 1). Participants who were included did
not use any psychotropic medication. Owing to raw data
artifacts, fMRI data sets from two participants (n= 1 BED,
n= 1 HC) were excluded. For demographic and clinical
characteristics, see Table 1. All participants provided written
informed consent and were paid on an hourly basis. The local
Ethics committee (Medical Faculty of the University of
Leipzig) approved the study.

Neuropsychological Testing

Behavioral control has been shown to be linked to general
cognitive capacities (Otto et al, 2013, 2015; Schad et al, 2014),

which might relate to between-group differences in patient
studies (Sebold et al, 2014). Thus, participants underwent
neuropsychological testing in an independent session on the
following domains: working memory (Digit Span, Wechsler,
1955), cognitive speed (Digit-Symbol-Substitution Test,
Wechsler, 1955), reasoning (Matrices Test, Amthauer et al,
1999), verbal IQ (German vocabulary test, Schmidt and
Metzler, 1992) visual attention (Reitan Trail Making A,
Reitan, 1955) and executive functioning (Reitan Trail
Making B, Reitan, 1955) as summarized in Table 1.

Task

During fMRI, participants performed 160 trials of a decision-
making task designed to examine flexible behavioral adapta-
tion. Participants decided between two cards distinguishable
by two different abstract stimuli (Figure 1a). Maximum
response time was 1.5 s. The location of the stimuli (right vs
left) was randomized over trials. After the choice of one
stimulus by button press, the selected card was highlighted
and feedback (monetary win, 10 Eurocents vs monetary loss,
crossed 10 Eurocents) was displayed for 0.5 s. During
the inter-trial interval, a fixation cross was shown for a
variable duration (jittered and exponentially distributed,
range 1–12.5 s, mean 3.5 s). On average, trials were 4s long.
If no response occurred in time, then no outcome but
the message ‘too slow’ was presented. Mean number of
missing trials was 1.14 (SD= 2.06, maximum: 9). No signifi-
cant group difference on missing trials (meanHC= 1.05,
SDHC= 2.08; meanBED 1.23, SDBED= 2.09; p= .56) nor on
reaction times (meanHC= 0.650, SDHC= 0.08; meanBED=
0.614, SDBED= 0.08; p= 0.30) was observed.
One of the two cards had a reward probability of 80% and

a punishment probability of 20% (vice versa for the other
card). In this way, the task implied a simple higher-order
structure: reward probabilities of the two decision options
were anti-correlated; whenever card A was a good choice,
card B would be a bad choice and vice versa. Even though the
outcome for the unchosen option was never shown, from the
experienced value of one stimulus the hypothetical value of
the other stimulus (‘what might have happened’) could be
deduced by inference on the anti-correlated task-structure.
This anti-correlated task structure is similar to previous tasks
based on adaptive behavioral criteria for reversals (Glascher
et al, 2009; Hampton et al, 2006). The task required flexible
behavioral adaptation as reward contingencies remained
stable for the initial 55 trials (initial block and pre-reversal),
then, changed four times after 15 or 20 trials (middle block
and reversal) and became stable again for the last 35 trials
(last block and post-reversal). Thus, contingency reversals
were independent of participants’ choices (Figure 1b), which
resembles the task used by Behrens et al (2007) but without
varying reward probabilities (Behrens et al, 2007).
Prior to the experiment (outside the MRI scanner),

participants were instructed to opt for the card with the
higher chance of winning. Depending on their choice, they
could either win or lose 10 Eurocents per trial and the
balance was paid to them at the end of the experiment.
Participants were informed that reward probabilities
might change over the course of the main experiment.
These instruction slides did not provide details of reward
probabilities, reversals nor of the task structure. The
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instruction session included 20 training trials with a different
set of cards and without any reversal.

Behavioral Raw Data Analysis

First, correct choices were defined as choosing the stimulus
with 80% reward probability and analyzed using repeated-
measures analysis of variance (rm-ANOVA: within-subjects
factor phase (pre-reversal, reversal, and post-reversal phase),

Figure 1 Anti-correlated decision-making task. (a) Exemplary trial
sequence. Binary choice task: participants were instructed to choose the card
that they thought would lead to a monetary reward. After the participant had
selected one stimulus this card was highlighted and feedback was displayed.
Outcome stimuli were a 10 Eurocents coin (in the case of a win) and a
crossed 10 Eurocents coin (in the case of a loss). (b) One of the stimuli had a
reward probability of 80% and a punishment probability of 20% (vice versa for
the other stimulus). Reward contingencies were stable for the first 55 trials
(pre-reversal block) and also for the last 35 trials (post-reversal block). In the
intermediate block, reward contingencies changed four times (reversal block).

Table 2 Model selection: exceedance probabilities (XP) for all
models

SU SU-WL DU DU-WL iDU iDU-WL Sutton K1

Overall
(n= 44)

0.054 0.001 o0.001 0.039 0.601 0.303 o0.001

HC (n= 22) 0.035 0.005 0.003 0.112 0.321 0.522 o0.001

BED (n= 22) 0.210 0.057 0.030 0.033 0.426 0.150 0.094

Abbreviations: SU, single update; DU, double update; iDU, inidividually weighted
double update. WL indicates that the model had separate learning rates for
wins and losses. For expected posterior probabilities compare Supplementary
Table S2.

Table 1 Group characteristics

Healthy controls Binge eating patients Test statistic

Demographic characteristics

Age (22/22) M= 27.8 (SD= 4.54) M= 29.0 (SD= 9.40) t= 1.27, p= 0.57

Gender (male/female, 22/22) 7/15 6/16 χ2= 0.11 p= 0.74

Handedness according to EHI (right/both/left, 22/22) 20/0/2 17/2/3 χ2= 2.44, p= 0.30

Smokers (22/22) 8 9 χ2= 0.10. p= 0.76

BMI (22/22) M= 26.06 (SD= 4.35) M= 28.27 (SD= 6.58), t= 1.31, p= 0.20

School leaving qualification (none/compulsory basic secondary schooling/
intermediate school certificate/university entrance qualification, 22/22)

0/0/1/21 0/0/5/17 χ2= 3.09, p= 0.08

Total years of unemployment (22/22) M= 0.5 (SD= 1.05) M= 0.7 (SD= 1.68) t= 0.55, p= 0.60

Clinical characteristics

Yale Food Addiction Scale (17/22) M= 0.82 (SD= 0.63) M= 4.68 (SD= 2.21) t= 3.88, po0.001

Food-craving state (22/22) M= 27.55 (SD= 12.41) M= 41.00 (SD= 11.18) t= 7.78, po0.001

Food-craving trait (17/22) M= 78.82 (SD= 18.41) M= 158.14 (SD= 34.10) t= 8.65, po0.001

Number of objective Binge eating episodes (last 28 days) (20) M= 8.25 (SD= 3.42) -

Age of onset (14) M= 18.93 (SD= 9.01) -

Duration of disease (14) - M= 8.29 (SD= 7.01) -

Neuropsychological measurements

Reasoning (matrices) (21/22) 12.29 (SD= 2.99) 10.36 (SD= 3.55) t= 1.92, p= 0.06

Working Memory (backward digit span) (21/22) 8.38 (SD= 7.52) 7.41 (SD= 2.18) t= 1.43, p= 0.16

Visual attention (Trail Making A) Time (21/22) 21.74 (SD= 6.88) 27.24 (SD= 8.79) t= 2.27, p= 0.03

Visual attention (Trail Making A) Errors (21/22) 0 (SD= 0) 0.05 (SD= 0.22) -

Complex attention/task Switching (Trail Making B) Time (21/21) 46.70 (SD= 14.34) 69.46 (SD= 56.22) t= 1.80, p= 0.08

Complex attention/task switching (Trail Making B) errors (21/21) 0.14 (SD= 0.36) 0.57 (SD= 1.17) -

Cognitive speed (digit symbol substitution test) (21/22) 87.33 (SD= 14.54) 82.23 (SD= 13.41) t= 1.20, p= 0.24

Verbal intelligence (German vocabulary test) (21/21) 110.29 (SD= 8.83) 102.24 (SD= 11.80) t= 2.50, p= 0.02

Abbreviations: BMI, body mass index; EHI, Edinburgh Handedness Inventory.
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between-subjects factor group (BED vs HC)). Second,
switching behavior as a function of the outcome in the
preceding trial was analyzed using rm-ANOVA (within-
subject factor outcome (win vs loss), between-subjects factor
group). Third, we analyzed perseveration in the context of
loss, defined as how often participants repeated choices for
one stimulus despite two consecutive losses after having
chosen this stimulus in the two preceding trials relative to all
loss trials. Data analyses were performed using MATLAB
R2012, IBM SPSS Statistics for Windows, Version 22 and R
3.2.0 (https://cran.r-project.org/bin/windows/base/old/3.2.0/).

Computational Modeling

We used computational modeling to analyze choices and
to examine group differences in decision-making. The tested
model space included four variations of RL-models. These
models update expectations via PEs, which quantify the
mismatch between actual outcome and prediction. Model-
free PEs are only computed for chosen stimuli, although PEs
can also be computed for the unchosen stimulus (Boorman
et al, 2009; Lohrenz et al, 2007). Accordingly, the first three
RL-models applied here differ in the degree of updating
values for chosen and unchosen stimuli: (I) a model-free
learner updating values for the chosen stimulus only. This
neglects the anti-correlated task-structure. We refer to this
model as the single-update (SU) model; (II) a learner
updating values of chosen and unchosen stimuli to the same
extent, thus, using inference of the task structure. We refer to
this model as the full double-update (DU) model; (III) a
model that individually weights the degree of double-update
learning thereby accounting for inter-individual variability
regarding this type of inference via the parameter κ. We
name this the individually weighted DU (iDU) model. In
previous studies, it was suggested that behavior in probabil-
istic reversal learning tasks might be explained by a RL-
model with a dynamic learning rate (estimating learning
rates on a trial-by-trial basis, eg, Hauser et al, 2014; Krugel
et al, 2009). To test this, we additionally included the Sutton-
K1 model (Sutton, 1992), which updates the learning rate
dynamically as a function of the change in prediction errors.
For all the four RL-models, we translate values into actions

using a Softmax rule including the parameter β, which
estimates how tightly decisions are influenced by the contrast
of values between the alternatives. Higher β values indicate
that decisions are influenced more by relative value (low
decision noise), whereas with lower β estimates, decisions are
more stochastic (high decision noise). In previous studies,
this was interpreted as reflecting exploitative (low decision
noise) vs explorative (high decision noise) behavior (Cohen
et al, 2007; Daw et al, 2006). In total, seven models were
compared: SU, DU, iDU, each with one learning rate or
separate learning rates for rewards and punishments, and
the Sutton-K1 model. For equations and model fitting, see
Supplementary Information and Supplementary Table S2.

Model Selection

The aim of model selection is to define a model that accounts
best for the behavior in each group. Model evidences
(Supplementary Information) for each model and participant
were subjected to random-effects Bayesian Model Selection

(BMS, spm_BMS in SPM8, www.fil.ion.ucl.ac.uk/spm/,
Stephan et al, 2009) to determine Expected Posterior
Probabilities (PP) and Exceedance Probabilities (XP) for
each model. XPs describe the probability that PPs of one
model exceed that of another model in the comparison set.
Bayesian Model Selection was run for all subjects together
and for each group separately to account for the possibility
that the groups differ in best-fitting models.

Statistical Analysis of the fMRI data

See Supplementary Information for fMRI acquisition and
preprocessing. We applied the general linear model approach
(SPM8) for an event-related analysis. At the first level, onsets
of feedback were entered into the model and modulated
parametrically by two trial-by-trial regressors, which were
constructed by using each individual’s set of best-fitting
parameters. The following regressors were computed: (1)
model-free PESU: PEs for chosen values as computed on basis
of the SU-Model with κ= 0; (2) more complex PEDU: PEs for
chosen values were computed based on the DU-Model with
κ= 1. We computed the difference between PEDU−PESU to
account for collinearity between the two regressors (for
such an implementation also see Daw et al, 2011; Deserno
et al, 2015a, b; Wimmer et al, 2012); as chosen values
from the DU- and SU-algorithms differ in their degree
of correlation, this difference is explicitly quantified
for each individual by including the parameter κ in the
iDU-algorithm. In other words, DU- and SU learning are
nested in the iDU model. Thus, the difference regressor
quantifies to which extent inference about alternative choices
(and thus regarding the anticorrelated task structure) are
incorporated in neural correlates of PEs beyond model-free
PEs from the SU algorithm. Throughout the manuscript, this
second parametric modulator—the difference regressor—is
named PEDU.
Building on the behavioral finding of elevated stochastic

behavior in BED, each individual’s trial-by-trial choice-
probabilities from the decision-model were classified accord-
ing to whether the actual choice was indeed the one
predicted by the model to have the highest choice probability
(exploitative) or the one with a lower choice probability
(exploratory). Next, we added the onsets of cues to the first-
level model of the fMRI data described above with binary
trial-type (exploitative vs exploratory) as the first parametric
modulator and the continuous choice probabilities as the
second parametric modulator. Compare the study by Daw
et al (2006) for the same implementation of an analysis on
exploratory vs exploitative trials (Daw et al, 2006). Onset of
outcomes with PESU and PEDU remained in the model to
partial out their influence.
Missing trials were modeled separately. The six realign-

ment parameters, the first temporal derivative of the
translational realignment parameters and a further regressor
censoring scan-to-scan movement 41 mm were included in
the analysis to account for residual effects of motion.
At the second level, the contrast images of PESU and

PEDU were entered to a full-factorial ANOVA with the type
of PEs (PESU/PEDU) as the within-subject factor and group
as the between-subject factor. For contrast images regarding
exploration, an independent-sample t-test (exploratory vs
exploitative trials) was calculated. Results were accepted as
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significant at po0.05 using family-wise-error (FWE) correc-
tion for the whole brain for task effects across all
participants. Correction for multiple comparisons regarding
between-group comparisons was performed in our a priori
region of interest, the vmPFC. Therefore, an anatomical
search volume was defined according to criteria described in
Rushworth et al (2011), comprising the superior medial
frontal gyrus and the medial orbitofrontal gyrus based on
anatomical labeling (Tzourio-Mazoyer et al, 2002), truncated
dorsally at MNI z=+10 (also compare Bartra et al, 2013). See
Supplementary Figure S1 for details and a depiction of the
anatomical search volume. A significance threshold of
p-FWEo0.05 based on this anatomical search volume was
applied. As we had no regional a priori hypothesis for the
explore-exploit fMRI analysis, we took the entire map of the
whole-brain corrected F-contrast for exploration vs exploita-
tion across both groups to correct between-group compar-
isons (Figure 4 and Supplementary Table S7) and accepted
results as significant at p-FWEo0.05 based on this
functional search volume.

RESULTS

Neuropsychological Testing

We tested for differences in general cognitive capacities by
subjecting results of all neuropsychological tests (Table 1) to
a multivariate analysis of variance (MANOVA) with the
between-subject factor group. No significant effect of group
was observed (F= 1.52, p= 0.19). For an exploratory analysis
of all subscales and their relationship to task performance see
Table 1, Supplementary Table S1 and Supplementary Results.

Choice Behavior

Rm-ANOVA on correct choices, including the within-
subject factor phase (pre-reversal, reversal, and post-reversal)
and the between-subject factor group (BED vs HC), showed
main effects of phase (F(2,84)= 35.97, po0.001) and of
group (F(1,42)= 5.72, p= 0.02, Figure 2a), but no significant
phase × group interaction (F(1,84)= 0.17, p= 0.79). Switch-
ing behavior as a function of the outcome in the preceding
trial was analyzed using rm-ANOVA (within factor outcome

(win vs loss), between-subject factor group (BED vs HC)).
This revealed a main effect of outcome (F(2,42)= 288.93,
po0.001), and a main effect of group (F(1,42)= 8.75,
p= 0.005, Figure 2b), but no significant outcome × group
interaction (F(1,42)= 0.11, p= 0.74). Thus, irrespective of the
outcome in the previous trial, BED patients switched choices
more frequently. Further, an independent t-test did not
indicate any difference between groups in repeating choices
for one stimulus despite two consecutive losses after having
chosen this stimulus in the two preceding trials (meanBED=
0.11± .07, meanHC= 0.10± .07, t= 0.18, p= 0.86).

Computational Modeling: Model Selection

BMS across all participants revealed that iDU-models
provided the best account for observed choices peaking for
iDU with one learning rate (iDU XP= 0.60, iDU-WL
XP= 0.30, Table 2). Thus, we use parameters derived from
this model in all subsequent analyses. When running BMS
for both groups separately, iDU models clearly outperformed
other models for the control group, whereas results were
more ambiguous in the BED group indicating pronounced
heterogeneity in this group (Table 2).

Computational Modeling: Parameter Comparison

Independent sample t-tests with Bonferroni-correction
(adjusted p= 0.017) to compare the three modeling-derived
parameters between groups (decision parameter β, learning
rates for chosen values αc, and learning rates for unchosen
values αuc, as product of κ by αc) revealed a significant group
difference for the decision parameter β (t= 2.51, p= 0.016,
Figure 2c), but not for any other parameter (tso0.81,
ps40.42). A lower decision parameter indicates a higher
degree of stochastic choices unrelated to the current choice
value, ie, lower values in BED indicate noisier decision-
making. Importantly, when excluding two patients who were
not fit better than chance by the model (for definition see
Supplementary Information), the difference remained sig-
nificant (t= 2.14, p= 0.039). Thus, the significantly lower
decision parameter β did not simply result
from very poor fit (random choice behavior) in the
patient group.

Figure 2 Behavioral results. (a) Raw data results. Correct choices differed significantly between groups (t= 3.48, p= 0.001, left panel). (b) BED patients
showed enhanced switching behavior between the two stimuli (F= 8.75, p= 0.005). (c). Comparison of modeling parameters revealed that BED patients had a
lower decision parameter β. Lower values of β indicate a higher degree of stochastic choices unrelated to the current choice values. Hence, lower values in
BED indicate enhanced exploratory choices (t= 2.51, p= 0.016). BED, binge eating disorder; HC, healthy controls.
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Neural PE Processing: Entire Sample

We aimed to explore neural signatures of simple and more
complex PE processing in BED vs HC. Thus, we analyzed
activation associated with PEs for chosen values as a function
of SU- vs DU-learning, that is, PEs derived from the SU-
Model (PESU) vs PEs derived from the DU-Model (PEDU),
see Supplementary Table S6 and Figure 3a for results. We
observed activation at p-FWEwholebraino0.05 associated with
PESU in the bilateral ventral striatum, as well as the ventro–
medial prefrontal/orbitofrontal cortex (vmPFC/OFC), amyg-
dala, right hippocampus, right putamen, and posterior
cingulum. PEDU co-varied with activation in similar regions,
including the bilateral ventral striatum and vmPFC/OFC
(p-FWEwholebraino0.05, Supplementary Table S6). The con-
junction of PESU and PEDU reached significance peaking
in the vmPFC/OFC (p-FWEwholebraino0.05, Supplementary
Table S6).

Neural PE Processing: Group Comparison

Regarding model-free PESU processing, we did not observe
significant between-group differences based on the anato-
mical vmPFC search volume (X=− 10, Y= 60, Z=− 10,
t= 2.17, p-FWEvmPFC= 0.89). There was no significant group
difference in other regions at a liberal threshold (cluster level
k= 10, po0.001 uncorrected). To investigate between-group
differences in BOLD-activation related to more complex PE
signatures, we tested for a type of PE (PESU/PEDU) × group
interaction. On the basis of the anatomical vmPFC search
volume, this interaction was significant in vmPFC (X=− 12,

Y= 40, Z=− 6, t= 4.00, p-FWEvmPFC= 0.04). As a post hoc
contrast, we compared PESU and PEDU between groups
and observed significantly reduced activation associ-
ated with PEDU in BED in the vmPFC (X= − 12, Y= 40,
Z=− 6, t= 4.06, p-FWEvmPFC= 0.03, Figure 3b) but no
significant differences for the other post hoc contrasts
(p-FWEvmPFC4= 0.68).
Next, we tested for an association of neural activation

related to PEDU and choice behavior: parameter estimates at
the peak-coordinate of the group difference in vmPFC (X=
− 12, Y= 40, Z=− 6) for PEDU were extracted and correlated
with behavioral performance (percentage of correct choices,
percentage of switching) for both groups separately. One
outlier (z-value of parameter estimateso− 2.8) in the BED
group was removed beforehand. We found a significant
positive association between the neural PEDU signature and
correct choices in BED (r= 0.60, p= 0.005) as well as in HC
(r= 0.53, p= 0.02). Indeed, with group as a covariate, the
correlation between PEDU and correct choices was significant
(r= 0.55, po0.001). The association of the PEDU signature
and switching was significantly negative in HC (r=− 0.47,
p= 0.03), but non-significant in BED (r= -0.24, p= 0.32).
Across both groups, when controlling for group, the negative
correlation between PEDU and switching was significant
(r= − 0.35, p= 0.03). No moderation effect of group on the
association of neural signature and behavioral performance
was found (to1.41, p40.17, R2 change due to moderator
o0.03). These findings suggest that neural activation
corresponding to PEDU is related to better behavioral
performance and less switching in both healthy individuals
and BED (Figure 3c and d).

Figure 3 Neural correlates of single-update and double-update prediction error processing. (a) Across both groups, peak conjoint activity elicited by PESU
and PEDU was observed in the ventro-medial prefrontal cortex (vmPFC, X= -6 Y= 52 Z= -12, t= 4.86, p-FWE for the whole brain= 0.03, see Supplementary
Table S6). (b, c) Comparing PESU and PEDU between groups revealed significantly reduced activation associated with of PEDU signatures in BED in the medial
prefrontal cortex (X=− 12, Y= 40, Z=− 6, t= 4.06, FWE-corrected for vmPFC p= 0.03). For display purposes, threshold is set at po0.001, cluster level
k= 10. (d) Parameter estimates at the peak-coordinate of the group difference in vmPFC for PEDU were extracted and, for both groups separately, correlated
with behavioral performance (percentage of correct choices, percentage of switching). This revealed a significant positive association between activation
associated with PEDU and correct choices in both, BED (r= 0.60, p= 0.005) and HC (r= 0.53, p= 0.02). The correlation between PEDU related activation and
switching was significant (r= − 0.35, p= 0.03) and did not indicate any evidence for an interaction effect with group (to1.41, p40.17, R2 change due to
moderatoro0.03). PEs, prediction errors; BED, binge eating patients; DU, double update; HC, healthy controls; SU, single update.
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Neural Correlates of the Exploration-Exploitation
Trade-Off

Building on the observation of enhanced exploration in BEDs’
choices, we compared activity elicited in exploratory vs
exploitative trials using an F-contrast. This revealed peak
activation in bilateral anterior insula/ventro–lateral prefrontal
cortex (aI/vlPFC) and in the dorso–medial prefrontal cortex
(p-FWEwholebraino0.05, Figure 4a, Supplementary Table S7),
due to higher activation for exploratory vs exploitative trials. A
between-group effect was revealed in the right aI/vlPFC. BED
patients showed significantly lower activation for exploratory
trials compared to HC (X= 44, Y= 22, Z=− 10, t= 3.91,
p-FWEmain effect exploration-exploitationo0.05, Figure 4b and c).
For both groups separately, we tested for an association

between BOLD activation in response to exploratory trials at
the peak coordinate of the between-group difference in the
aI/lPFC and behavioral performance (correct choices and
switching behavior). Results did not indicate any significant
correlation (correlation with correct choices: rHC= 0.35
pHC= 0.12, rBED= -0.14, pBED= 0.55; correlation with switching:
rHC= 0.13 pHC= 0.58, rBED .0.17, pBED= 0.47).

DISCUSSION

The results of the current study, which combined fMRI and
computational modeling of Reinforcement Learning, provide
novel insight into the neural correlates of maladaptive
decision-making in BED, thereby helping to refine a
neurocognitive phenotype of the newly classified disorder.
We observed impaired behavioral adaptation in a dynamic
environment in BED as compared with healthy controls.
Whereas we found compelling evidence that healthy controls
used inference on alternative choices to guide decision-
making, Bayesian model selection did not reveal convincing
evidence that Binge Eating patients employed this type of
inference to solve the task. Relatedly, patients showed

reduced BOLD-activation associated with learning signatures
incorporating alternative choice options in the vmPFC.
Moreover, we found decision-making in BED to be charac-
terized by enhanced switching between choices, indicating a
bias towards exploratory decisions during behavioral adap-
tation in a dynamic environment. Parallel to this behavioral
observation, BED was characterized by less aI/vlPFC activa-
tion during exploratory decisions.

Reduced Incorporation of Inference on Alternative
Options in the Neural Correlates of Learning

According to BMS, HCs convincingly integrated inference
on alternative choices into decision-making, to use ‘what
might have happened’ when making decisions. Contrary to
this, BMS did not reveal convincing evidence for this type of
inference on alternative choices being dominant in BED
patients. In accordance with the aforementioned results,
BOLD-activation associated with PEs incorporating infer-
ence on alternative options was reduced in the vmPFC
of BED patients. In healthy individuals, concurrent tracking
of multiple decision possibilities and their potential con-
sequences contributes to flexible goal-directed behavior in
dynamic environments (Abe and Lee, 2011; Bromberg-
Martin et al, 2010; Glascher et al, 2009; Hampton et al, 2006;
Lohrenz et al, 2007; Takahashi et al, 2013). In the present
study, vmPFC PE signatures incorporating inference on
alternative options were indeed positively associated
with successful choices and negatively associated with
switching behavior. Thus, the specific reduction in vmPFC
signaling could be one common substrate for impaired
goal-directed decision-making in BED as reported previously
in a behavioral study using a sequential decision-making
task (Voon et al, 2015). In accordance with this conclusion,
the latter study also found an association between impaired
goal-directed behavior and reduced gray matter density in
vmPFC/mOFC in BED (Voon et al, 2015).

Disadvantageous Switching Behavior in BED

Although clinical characteristics and diagnostic criteria
suggest impaired mechanisms of flexible behavioral adapta-
tion as crucial to BED, systematic investigations of this
impairment are scarce. In this study, we observed deficits in
BED in the flexible adaptation of behavior in a changing
environment. Our analytic approach, including computa-
tional modeling, allowed us to differentially disentangle this
deficit: while neither learning rates nor neural correlates of
model-free learning differed between groups, patients
suffering from BED did not exploit a relatively better option
as consistently as controls but showed pronounced switching
behavior. This can be regarded as an impaired balance
between exploratory and exploitative choice behavior (Cohen
et al, 2007; Daw et al, 2006). Although it is obviously
advantageous for an individual to explore alternatives in a
changing environment, this type of behavior observed in
BED was accompanied by fewer correct choices, confirming
that the amount of exploration was indeed suboptimal.
Notably, control analyses showed that this was not owing to
overall random switching behavior in BED. Accordingly, our
interpretation is consistent with a very recent study, which
found obese people with BED to be characterized by

Figure 4 Neural correlates of the exploration–exploitation trade-off.
(a). Across both groups, exploratory trials vs exploitative trials were
associated with bilateral activation of the anterior insula/ventro–lateral
prefrontal cortex (see also Supplementary Table S7). (b,c) Comparing
activation in exploratory vs exploitative trials between groups demonstrated
that BED patients show significantly diminished activity in the aI/vlPFC during
exploratory trials (X= 44, Y= 22, Z=− 10, t= 3.91, FWE-corrected for the
aI/vlPFC, p-FWEo0.05). For display purposes, threshold is set at po0.001,
cluster level k= 10. FWE, family-wise-error.
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enhanced exploration compared to obese people without
BED (Morris et al, 2016).
In patients, this behavioral tendency to switch was

paralleled by reduced activation during such exploratory
choices in the anterior aI/vlPFC, key regions implicated in
reversing behavior (Cools et al, 2002; Menon and Uddin,
2010). Thus, less activation in this region might hinder the
individual to get back on the right track after an exploratory
try that has not resulted in positive benefits. In line with this
idea, prior imaging studies have also reported aI/vlPFC
activation during uncertainty prediction and when making a
risky compared with a safe decision (Paulus et al, 2003;
Preuschoff et al, 2008; Singer et al, 2009). This notion is
complemented by the interpretation that enhanced anterior
aI/vlPFC activation in exploratory trials as observed in
healthy controls could reflect a potential warning or
uncertainty signal for these trials. In fact, in healthy subjects,
uncertainty was proposed to mediate exploratory behavior
(Badre et al, 2012; Daw et al, 2005, 2006; Frank et al, 2009;
Kakade and Dayan, 2002) and thus, could be hypothesized to
underlie switching behavior observed in BED. In this
framework, aI/vlPFC activation could guide choices in
moments of uncertainty, while computations of uncertainty
itself appear to be more likely associated with the frontal pole
(Badre et al, 2012). Therefore, the reduction of such aI/vlPFC
signaling during exploratory decisions may be thought of as
reduced awareness regarding the uncertain (or disadvanta-
geous) character of these decisions. This might bias the
individual toward more and suboptimal exploratory deci-
sions (instead of selecting a relatively good option based on
accumulated experience).
In summary, the latter aspects of our data suggest that patients

learn similar to controls but perform suboptimally owing to
enhanced switching paralleled by reduced aI/vlPFC exploration
signaling. However, more heterogeneous BMS results and, most
importantly, reduced coding of PEs incorporating task structure
in patients’ vmPFC, are indicative of a specific learning deficit as
learning values via PEs incorporating task structure could result
in choosing, and staying with, the most valuable option, when
appropriate. These lines of reasoning might motivate future
studies to systematically dissect where (and when) the observed
deficits originate, eg, by testing performance in extinction (Frank
et al, 2004; Gold et al, 2012).

Relevance to Addiction Theories

A hallmark of BED, the maintenance of maladaptive
behaviors despite negative consequences, closely resembles
key criteria of substance addiction and a current debate
relates to the classification of BED as an addiction spectrum
disorder (Smith and Robbins, 2013; Volkow et al, 2013).
However, a noteworthy albeit debated review (Ziauddeen
et al, 2012) issues caveats against a premature adoption of
the ‘food addiction model’: the article deems functional
imaging attempts to profile BED as insufficient to date and
calls for task-dependent measurements based on cognitive-
neuroscience models in order to relate behavioral and
cognitive phenotypes to neuroimaging findings. The study
at hand is one step in this direction. The adopted
computational psychiatry approach enables estimation of
specific parameters that provide mechanistic accounts of
functioning in one or another cognitive domain (Wiecki

et al, 2015) and informs the modeling-based fMRI analysis of
neural learning signatures (Stephan et al, 2015).

Limitations

Although general neuropsychological measures did not differ
between-groups in a MANOVA and our between-group
behavioral findings remained significant when adjusting for
neurocognitive functioning, exploratory analyses (Supplemen-
tary Results) also revealed group×cognitive speed, as well as
group×verbal intelligence interactions due to correlations
between the cognitive measures and task performance in the
patient group. This invites speculations that relatively better
cognitive functioning could protect against or compensate for
impaired flexible decision-making in BED. To test this hypo-
thesis, larger samples and longitudinal designs are warranted as
the cross-sectional design precludes any conclusions on cau-
sality. Future studies may also investigate the extent to which
the observed deficits in BED are influenced by certain task
specifics. It would be interesting to determine whether findings
generalize to similar tasks with mildly correlated reward
probabilities (Wimmer et al, 2012), whether changes or drifts
in reward probabilities (Behrens et al, 2007; Daw et al, 2005)
exacerbate deficits and how explicit presentation of forgone
rewards impacts patients’ behavior (Chiu et al, 2008; Li and
Daw, 2011). In the current study, we identified vmPFC as an
a priori region of interest. However, the finding of between-
group differences in the vmPFC and aI/vlPFC associated with
different decision signatures begs the question as to whether
vmPFC activity or vmPFC-vlPFC interactions mediate switch-
ing behavior. Interestingly, vmPFC signals were clearly associ-
ated with behavioral performance. Lesion studies in animals
and their translation to humans, eg via brain stimulation
techniques, could bear on the question of which PFC regions
mediate the observed alterations in switching behavior.

CONCLUSIONS

In summary, this study provides insight into specific
impairments in reward-guided decision-making in BED.
That is, a disadvantageous behavioral bias towards switching
behavior accompanied by less activation associated with
these exploratory trials in the aI/vlPFC, as well as diminished
representation of PEs incorporating information about the
task structure in the vmPFC. By adopting a computational
psychiatry approach combined with modeling-informed
fMRI analysis, this study contributes to refining the
neurocognitive phenotype of BED as an addition to clinical
observations and new diagnostic criteria in the DSM-5.
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