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Abstract

Background: DNA methylation regulates together with other epigenetic mechanisms the transcriptional activity
of genes and is involved in the pathogenesis of malignant diseases including lung cancer. In non-small cell lung
cancer (NSCLC) various tumor suppressor genes are already known to be tumor-specifically methylated. However,
from the vast majority of a large number of genes which were identified to be tumor-specifically methylated,
tumor-specific methylation was unknown so far. Thus, the major aim of this study was to investigate in detail

the mechanism(s) responsible for transcriptional regulation of the genes SPAG6 and L1TDT in NSCLCs.

Methods: We analysed publically available RNA-sequencing data and performed gene expression analyses by RT-
PCR. DNA methylation analyses were done by methylation-sensitive high-resolution melt analyses and bisulfite
genomic sequencing. We additionally investigated protein expression using immunohistochemistry. Cell culture
experiments included tumor cell growth, proliferation, viability as well as colony formation assays. Moreover, we
performed xenograft experiments using immunodeficient mice.

Results: We observed frequent downregulation of SPAG6 and L1TD1 mRNA expression in primary tumor (TU)
samples compared to corresponding non-malignant lung tissue (NL) samples of NSCLC patients. We furthermore
observed

re-expression of both genes after treatment with epigenetically active drugs in most NSCLC cell lines with
downregulated SPAG6 and L1TD1 mRNA expression. Frequent tumor-specific DNA methylation of SPAG6 and

L1TDT was detected when we analysed TU and corresponding NL samples of NSCLC patients. ROC curve analyses
demonstrated that methylation of both genes is able to distinguish between TU and NL samples of these patients.
Immunohistochemistry revealed a close association between SPAG6/LTTD]1 methylation and downregulated protein
expression of these genes. Moreover, by performing functional assays we observed reduced cell growth, proliferation
and viability of pCMV6-L1TD1 transfected NSCLC cells. In addition, reduced volumes of tumors derived from pCMV6-
L1TD1 compared to pCMVE-ENTRY transfected NCI-H1975 cells were seen in a xenograft tumor model.

Conclusions: Overall, our results demonstrate that SPAG6 and L1TD] are tumor-specifically methylated in NSCLCs and
that DNA methylation is involved in the transcriptional regulation of these genes. Moreover, in vitro as well as in vivo
experiments revealed tumor-cell growth suppressing properties of L1TDT in NSCLC cells.
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Background

DNA methylation (referred to as methylation) is a major
epigenetic modification which regulates gene expression
mainly by binding methyl-CpG binding proteins (MBDs)
and their associated chromatin remodeling factors to
DNA [1, 2]. It has been shown that methylation plays an
important role in various molecular and cellular pro-
cesses including embryonic development and genomic
imprinting as well as in the pathogenesis of malignant
diseases [3-7]. Methylation occurs by the covalent
addition of a methyl group to the 5’ carbon of cytosines
within CpG dinucleotides which is catalysed by DNA
methyltransferases (DNMTs) [8, 9]. Unlike genetic
changes, methylation may be reversed by DNMT inhibi-
tors such as 5-aza-2’'-deoxycytidine (5-AzadC) and 5-
azacytidine (5-AzaC). A synergistic effect on re-expression
of by methylation silenced genes by DNMT inhibitors in
combination with histone deacetylase inhibitors like tri-
chostatin A (TSA) was reported [10].

In non-small cell lung cancers (NSCLCs) numerous
tumor suppressor genes (TSGs) are already known
which are frequently methylated. Besides other epigen-
etic and genetic factors methylation may be responsible
for transcriptional inactivation of these genes [11-15].
However, from the vast majority of ~500 genes which
were identified to be tumor-specifically methylated in a
genome-wide approach, tumor-specific methylation was
unknown so far [12]. When we additionally analysed
publically available microarray data in primary tumors
(TU) compared to non-malignant lung tissue (NL) sam-
ples of NSCLC patients, we observed tumor-specifically
downregulated expression of many of these genes [11,
16, 17]. An extensive PubMed search revealed that many
of these genes are functionally uncharacterised in
NSCLCs and in other cancer types. Based on all these
observations, we selected the genes SPAG6 (Sperm As-
sociated Antigen 6) and LITDI (LINE-1 Type Transpo-
sase Domain Containing 1) for detailed investigation.
SPAGS6 is located in the chromosomal region 10p12.2
and is thought to be a cancer-testis antigen (CTA) [18].
CTAs represent a large family of cancer-associated anti-
gens which are expressed in immunoprivileged tissues
such as testis but were also detected in tumor tissues of
various origins including lung cancer [19]. SPAG6 is also
expressed in normal lung tissues where it is associated
with ciliary function [20]. It encodes a microtubule-
associated protein which either functions as microtubule
itself or binds to microtubules to form the cytoskeleton
of the cell (www.pantherdb.org). There is increasing
evidence that the expression of CTAs might be involved
in tumorigenesis, however, so far there are no reports
available about an involvement of SPAG6 in malignant
disease biology or cancer cell invasiveness [21]. LITDI
is located in the chromosomal region 1p31.3 where
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frequent loss of heterozygosity (LOH) was observed in
NSCLCs [22]. This gene encodes a stem-cell specific
RNA-binding protein required for self-renewal of human
embryonic stem cells and for cancer cell proliferation
[23]. Since the mechanism(s) of inactivation of both,
SPAG6 and LITDI, were not studied in detail and their
role in the pathogenesis of NSCLCs was unclear so far,
we were interested to further investigate these genes.

Thus, we determined gene expression, methylation
and re-expression of SPAG6 and LITDI in various
NSCLC cell lines to elucidate if methylation is associated
with the transcriptional inactivation of these genes.
Moreover, we investigated tumor-specific methylation of
these genes in a large number of NSCLC patients and
compared these data as well as mRNA expression data
with clinico-pathological characteristics of NSCLC pa-
tients. We also analysed protein expression of both
genes in a subset of NSCLC patients and compared
these results with SPAG6 and LITDI methylation. In
addition, potential tumor-cell growth suppressing prop-
erties of these genes were investigated in in vitro studies
and, for LITDI, also in in vivo xenograft experiments.

Overall, we identified methylation as a mechanism in-
volved in the regulation of transcriptional activity of
SPAG6 and L1TD1 in NSCLCs. Furthermore, our results
indicate that LITDI functions as a tumor cell growth
suppressor in NSCLC cells.

Methods

Publically available databases

luminaHiSeq RNA-sequencing (RNA-seq) data were
obtained from “The Cancer Genome Atlas” (TCGA)
database (https://cancergenome.nih.gov), Cancer Browser
(https://genome-cancer.ucsc.edu) and from cBioPortal for
Cancer Genomics (http://www.cbioportal.org) [24-28].
For analyses of single nucleotide variants (SNVs) and dele-
tions of SPAG6 and L1TD1 lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC) datasets were
used. A summary of the clinico-pathological data of ana-
lysed patients is shown in Additional file 1: Table S2. For
additional mRNA expression analyses, breast invasive car-
cinoma (BRCA), colon and rectum adenocarcinoma
(COADREAD), head and neck squamous cell carcinoma
(HNSC), kidney clear cell carcinoma (KIRC), liver hepato-
cellular carcinoma (LIHC) and prostate adenocarcinoma
(PRAD) datasets were used (https://cancergenome.nih.gov).
Data visualization of SNVs and homozygous and
heterozygous deletions was performed using
Caleydo software [29].

Tumor cell lines and tissue samples

NSCLC cell lines A549 and NCI-H1993 were purchased
from the American Type Culture Collection (ATCC),
cell lines HCC827, NCI-H1650 and NCI-H1975 were
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kindly provided by Dr. Walter Berger (Institute of Can-
cer Research, Medical University of Vienna, Austria).
Cell lines were maintained and grown as described [11].
Detailed descriptions of NSCLC and non-lung cancer
cell lines are provided in Additional file 1: Table S1 and
Table S4. Normal human bronchial epithelial cell
(NHBECs) pellets were purchased from Promocell. For
re-expression experiments tumor cells were treated ei-
ther with the demethylating agent 5-AzadC alone or
with a combination of 5-AzadC and the HDAC inhibitor
TSA as described [30]. Untreated cells were used as con-
trols. In addition, DNA of breast cancer (MCF-7, MDA -
MB-453, MDA-MB-468, MDA-MB-231, BT20), colon
cancer (HCT-15, HT29), ovarian cancer (SK-OV3,
A2780), pancreatic cancer (AsPC-1, BxPC-3) as well as
head and neck cancer cell lines (CAL27, FaDu) were
provided by various members of the Medical University
of Vienna, Austria. Primary TU and corresponding NL
samples of 146 stage I-III NSCLC patients who under-
went surgical resection of the tumor were collected and
stored in liquid nitrogen until use. From 97 of these pa-
tients clinico-pathological characteristics including gen-
der, age, histology, tumor stage, lymph node stage,
disease stage, disease free survival (DFS) and overall sur-
vival (OS) were available. Moreover, from 35 of these pa-
tients formalin-fixed, paraffin embedded (FFPE) TU and
NL samples were available and were used for immuno-
histochemistry. This study was approved by the local
ethics committee.

Methylation-sensitive high resolution melting analysis
(MS-HRM)

Genomic DNA from NHBECs, 18 tumor cell lines and
tissue samples of 146 NSCLC patients was isolated and
modified by treatment with sodium bisulfite using Epi-
Tect Bisulfite kit (Qiagen) [11]. The genomic sequences
of SPAG6 and LITD1 were obtained from ENSEMBL
database (release 69). Primers were designed using Me-
thyl Primer Express v1.0 software and are listed in the
Additional file 1: Table S3. MS-HRM analyses were per-
formed using a Rotor-Gene Q cycler (Qiagen) [31].

Bisulfite genomic sequencing (BGS)

Sodium bisulfite treated genomic DNA was amplified
(primer sequences listed in Additional file 1: Table S3).
PCR products containing sequences which were also
analysed by MS-HRM analyses were cloned using
TOPO® TA Cloning® Kit for Sequencing (Invitrogen).
Four clones per cell line were sequenced using M13
primers.

Real-time reverse transcription PCR (RT-PCR)
Total RNA was isolated from NHBECs and from 5
NSCLC cell lines and reverse transcribed using
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OmniScript Reverse Transcriptase Kit (Qiagen) [11].
Expression of SPAG6 was determined using Tagman
Gene Expression Assays Hs00542625_ml (SPAG6)
and Hs03929097_gl (GAPDH) in a StepOne cycler
(Applied Biosystems) and expression of LITD1 was
determined using Qiagen’s QuantiTect” SYBR Green
PCR Kit (primer sequences see Additional file 1:
Table S3). The AACt method was used to calculate
differences in gene expression [32].

Immunohistochemistry (IHC)

Tissue microarrays with 1 mm cores and 5 um sections
from FFPE TU and NL samples were used for protein
expression analyses of SPAG6 and L1TD1. Samples
were stained with the rabbit polyclonal antibodies
HPA038440 (SPAG6 1:100, Sigma Aldrich) and
HPA028501 (L1TD1 1:100, Sigma Aldrich). Results of
IHC were scored as no staining (-), weak staining
(-/+), moderate staining (1+) or strong staining (=2+).
For comparison with methylation results patients
whose TU showed no or weak staining were grouped as
“negative by IHC” while patients whose TU showed
moderate or strong staining were grouped as “positive
by IHC” as reported previously [12].

Cell transfection

NCI-H1975 cells were transfected with pCMV6-ENTRY
(PS100001, Origene) and pCMV6-L1TD1 (RC219014,
Origene) expression vectors using Lipofectamine® LTX
reagent (Invitrogen). Additionally, a pCMV6-GEFP vector
was constructed by subcloning the GFP coding sequence
into existing pCMV6-ENTRY vector (primer sequences
see Additional file 1: Table S3). Stably transfected NCI-
H1975 cells were selected by G418 treatment (Invitro-
gen) and transfection efficacy was analysed by RT-PCR
and Western blotting [11].

Immunoprecipitation and Western blot (IP-WB)

IP was used to enrich L1TD1 protein after transfection
with pCMV6-L1TD1 expression vector of NCI-H1975
cells. Transfected cells were lysed in Pierce IP Lysis
Buffer (Thermo Scientific) containing PhosSTOP and
EDTA-free inhibitors (Roche). IP was carried out using
L1TD1 Antibody (HPA028501, Sigma-Aldrich), normal
rabbit IgG (#2729, Cell Signaling) and Protein A/G
PLUS-Agarose beads (Santa Cruz). Western blot analysis
was performed as described [11].

Cell proliferation assay

The xCELLigence Real-Time Cellular Analysis (RTCA)
System (Roche) was used to measure cell proliferation in
real-time. Stably transfected NCI-H1975 cells were seeded
in triplicates and cell proliferation was monitored [11].
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Cell viability assay

Stably transfected NCI-H1975 cells were seeded in tripli-
cates in 96-well plates and incubated with CellTiter™
Blue reagent (Promega). Fluorescence was measured re-
peatedly using a TriStar microplate reader (Berthold
Technologies) [11].

Colony formation assay

After selection of stably transfected NCI-H1975 cells,
cells were grown until differences in colony-forming
abilities were detected. Before imaging cells were stained
with 0.05% crystal violet dye.

Xenograft tumor model

All animal experiments were approved by and carried
out according to guidelines from the Austrian Federal
Ministry of Science, Research and Economy and the
Animal Ethics Committee of the Medical University of
Vienna. For the xenograft tumor model female NSG
JAX (NOD.Cg—PrkdcscidIIngfml Wil/Sz]) mice (NSG mice)
were purchased from Charles River Laboratories and
housed under pathogen-free conditions in the animal fa-
cility of the Medical University of Vienna. 5x10° NCI-
H1975 cells stably transfected with LITDI expression
vector or with empty control vector were injected sub-
cutaneously into the left respectively right flanks of 4
17 weeks old NSG mice. Animals were checked for over-
all health regularly and tumor size was measured using a
digital caliper. Tumor volume was calculated using the
standard formula (length x width?)/2 [33]. At the end of
the experiment mice were sacrificed by cervical disloca-
tion and dissected tumors were snap frozen and proc-
essed for RT-PCR analyses.

Statistical analyses

Wilcoxon signed rank tests and receiver operating char-
acteristic (ROC) curve analyses were performed to deter-
mine methylation differences between TU and NL
samples obtained by MS-HRM analyses. Spearman cor-
relation was determined to investigate correlation be-
tween methylation and expression data. To calculate
statistical differences between the tumor volumes of xe-
nografts two-way ANOVA test was performed. These
analyses were performed using GraphPad Prism 6 soft-
ware with two-sided p-values < 0.05 considered as statis-
tically significant. MS-HRM data were compared with
clinico-pathological characteristics of NSCLC patients.
Chi? tests/ Fisher’s exact tests were applied to calculate
differences between groups and t-tests were used to cal-
culate differences between means. For methylation ana-
lyses T/N ratios were calculated and a ratio of > 1.5 was
used as cut off for samples to be considered as methyl-
ated. Survival analyses of patients were performed using
log rank testing. Cox regression was used for univariate
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analyses on overall survival and to calculate hazard ra-
tios with 95% confidence intervals. A p-value < 0.05 was
considered as statistically significant. Analyses were per-
formed using the statistics software PASW (version 18).
Kaplan-Meier plots were generated using Kaplan-Meier
plotter [34]. The cut-off values for “low” and “high”
SPAG6 as well as LITDI mRNA expression were auto-
matically defined by KM plotter software.

Results

Downregulation of SPAG6 and L1TDT mRNA expression in
NSCLCs and in other tumor entities

We analysed publically available RNA-seq data from
TCGA database to investigate SPAG6 and LITDI
mRNA expression in NSCLC patients. By comparison of
RNA-seq expression values in TU and corresponding
NL samples of LUAD and LUSC datasets, we ob-
served a statistically significant downregulation of
SPAG6 and LITDI mRNA expression in lung adeno-
carcinomas (p <0.0001, respectively; Fig. 1a) as well
as in lung squamous cell carcinomas (p <0.0001, re-
spectively; Fig. 1b). In addition, we analysed mRNA
expression of these genes also in tumors of other histolo-
gies by the use of different datasets from the TCGA
database [24]. Compared to non-malignant tissues we ob-
served statistically significant downregulation of SPAG6 in
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Fig. 1 SPAG6 and L1TD1 mRNA expression in TU and corresponding
NL samples of NSCLC patients in TCGA datasets. Comparison of
SPAG6 a and L1TDT b mRNA expression in TU and NL samples of 57
adenocarcinoma (LUAD dataset) and 51 squamous cell carcinoma
patients (LUSC dataset), respectively. Normalized log2 expression
values are shown, ****p < 0.0001. Only patients with matched TU
and NL samples were used for this analysis. TU, primary tumor

sample; NL, normal lung tissue sample
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breast carcinomas (p = 0.0039), colorectal carcinomas (p <
0.0001), head and neck carcinomas (p =0.0030), kidney
clear cell carcinomas (p <0.0001) and in hepatocellular
carcinomas (p = 0.0046), but not in prostate carcinomas
(Additional file 2: Figure S1). In contrast, LITDI expres-
sion was significantly downregulated in breast carcinomas
(p =0.0253), colorectal carcinomas (p=0.0224) and in
prostate carcinomas (p <0.0001), but not in head and
neck carcinomas, kidney clear cell carcinomas and in he-
patocellular carcinomas (Additional file 2: Figure S1).

Transcriptional silencing of SPAG6 and L1TD1 in cancer
cell lines is caused by methylation of SPAG6 and L1TD1
We additionally determined mRNA expression of these
genes in NSCLC cells as well as in NHBECs. While
SPAG6 and LITD1 mRNA expression was observed in
NHBECs, expression of these genes was decreased in
cells of all 5 NSCLC cell lines analysed (Fig. 2a and d).
In order to investigate if downregulated SPAG6 and
LITDI expression in NSCLC cells may be caused by
methylation, we developed MS-HRM assays to analyse
methylation of the 5'- promoter regions of these
genes. SPAG6 and LITDI1 were found to be methyl-
ated in cells of all 5 NSCLC cell lines, but not in
NHBECs (Fig. 2a and d).

Moreover, we treated cells of the 5 NSCLC cell lines
found to be SPAG6 and LITDI methylated with either
5-AzadC alone and with a combination of 5-AzadC and
TSA. We observed an upregulation of SPAG6 as well as
of LITDI mRNA expression after treatment with epige-
netically active drugs compared to untreated cells by
RT-PCR (Fig. 2b and e). To confirm data obtained by
MS-HRM analyses, we also performed bisulfite genomic
sequencing (BGS) of parts of the 5'-regions of these
genes in cells of selected NSCLC cell lines and in
NHBECs. While most of the 56 CpG sites analysed were
found to be SPAG6 methylated in A549 (79%) and in
NCI-H1975 (92%) cells, only a few CpG sites were meth-
ylated in NHBECs (4%, Fig. 2c). Differences in the per-
centage of SPAG6 methylated CpG sites between
NSCLC cells and NHBECs were statistically significant
(p<0.0001). LITD1 was methylated in 77% and 93% of
24 CpQG sites analysed in A549 and in NCI-H1975 cells,
however, in NHBECs only 3% of CpG sites were methyl-
ated for this gene (Fig. 2f). Differences of LITDI
methylation between NSCLC cell lines and NHBECs
were statistically significant (p < 0.0001).

Moreover, we determined methylation of SPAG6 and
LITDI in 5 breast cancer, 2 colon cancer, 2 ovarian
cancer, 2 pancreatic cancer as well as 2 head and neck
cancer cell lines. All these tumor cell lines were found to
be SPAG6 and LITDI1 methylated with percentages of
methylation ranging between 71% (SK-OV3 cells) and
98% (FaDu cells) for SPAG6 methylation and between
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88% (BxPC-3 cells) and 100% (FaDu cells) for LITDI
methylation (Additional file 1: Table S4).

SPAG6 and L1TD1 are tumor-specifically methylated in
NSCLC patients

We also investigated SPAG6 and L1TDI methylation in
TU and corresponding NL samples of 146 stage I-III
NSCLC patients by MS-HRM analyses. Differences in
SPAG6 and LITDI methylation between TU and NL
samples were statistically significant (p <0.0001, respect-
ively) demonstrating that both genes are tumor-specifically
methylated (Fig. 3a and b). Furthermore, ROC curve ana-
lyses of methylation results revealed that SPAG6 as well as
L1TDI methylation is able to distinguish TU from NL sam-
ples of NSCLC patients (p <0.0001, respectively; Fig. 3a
and b). Moreover, for each patient T/N ratios of SPAG6
and LITDI1 methylation were calculated as the % of
methylation in the primary TU/ % of methylation in the
corresponding NL sample [12]. Considering patients with a
T/N ratio > 1.5 as methylated, 79% of them were SPAG6
methylated and 81% of them were LITDI methylated, re-
spectively. In addition, T/N ratios of SPAG6 and L1TDI
methylation were used to compare methylation results with
clinico-pathological characteristics of the patients. No sta-
tistically significant associations were observed.

However, we observed a statistically significant shorter
OS of patients with squamous cell carcinoma subtype
and low SPAG6 mRNA expression levels as well as of
patients with adenocarcinoma subtype and low LI1TDI
mRNA expression levels (Additional file 3: Figure S2;
https://cancergenome.nih.gov/).

SPAG6 and L1TD1 SNVs and deletions in NSCLC patients
To investigate if other mechanisms besides methylation
are involved in transcriptional regulation of SPAG6 and
LITDI, we analysed SNVs as well as homozygous and
heterozygous deletions in LUAD and LUSC SNP and
aCGH datasets of NSCLC patients. In lung adenocarcin-
oma patients only 3% had SPAG6 SNVs. While no
homozygous SPAG6 deletions were detected, 22% of
these patients showed SPAG6 heterozygous deletions
(Additional file 4: Figure S3). In lung squamous cell car-
cinoma patients SPAG6 SNVs were seen in only 2%.
Homozygous SPAG6 deletions were detected in only 1%
and heterozygous SPAG6 deletions were found in 40% of
these patients. Similar frequencies of SN'Vs and deletions
were found for LITDI (Additional file 4: Figure S3).

Frequent loss of SPAG6 and L1TD1 protein expression in
NSCLC patients

To compare SPAG6 and LITDI methylation with their
protein expression in NSCLC patients, we performed
IHC of FFPE TU and NL samples of a subgroup of 35
NSCLC patients. These samples were also analysed for
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after drug treatment. Fold changes of gene expression in treated cells compared to untreated cells are shown. f Results from BGS of a part of the
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start site, black squares indicate methylated CpG sites, white squares unmethylated CpG sites and grey squares intermediate methylation. Analysis
of BGS results of the L1TDT 5" region showed statistically significant differences of methylated CpG sites between NHBCEs and NSCLC

cells (****p < 0.0001)

SPAG6 and LITDI1 methylation by MS-HRM. SPAG6  respectively. Moreover, no L1TD1 protein expression
and L1TD1 protein expression was observed in bron-  was detected in 51% and only weak staining in 11% of
chial and bronchiolar epithelial cells of NL samples. the TU samples. Moderate or strong staining was seen
L1TD1 protein expression was also detected in alveolar in 20% and in 17% of the TU specimens, respectively.
epithelial cells. However, no or only weak SPAG6 stain-  Representative stainings of TU and NL samples are
ing was detected in 60% and in 40% of the TU samples, shown in Fig. 4. When we compared SPAG6 and L1TDI
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methylation with their protein expression in TU sam-
ples, we observed downregulated SPAG6 protein expres-
sion in 77% of SPAG6 methylated TU samples and
downregulated L1TD1 protein expression in 52% of
LITDI methylated TU samples, respectively (Fig. 4c).

Effects of SPAG6 and L1TD1 expression on growth,
proliferation, viability and colony-forming abilities

of NSCLC cells

To investigate potential tumor cell - growth suppressing
properties of LITDI1, we stably transfected NCI-H1975
cells with a pCMV6-L1TD1 expression vector, with a
pCMV6-ENTRY control vector as well as with a con-
structed pCMV6-GFP vector. We found a strong reduc-
tion in tumor cell growth of pCMV6-L1TD1 compared
to pCMV6-ENTRY transfected cells (Fig. 5a). Overex-
pression of LITDI in pCMV6-L1TDI1 transfected cells
was confirmed by RT-PCR (Fig. 5b) and IP-WB (Fig. 5¢).
Moreover, we analysed tumor cell proliferation in a
time-dependent manner and observed a reduced prolif-
eration rate of pCMV6-L1TD1 compared to pCMV6-
ENTRY and to pCMV6-GEFP transfected cells (Fig. 5F).
In addition, we found a reduced colony-forming ability
and tumor cell viability of pCMV6-L1TD1 transfected
cells compared to control cells (Fig. 5d, e). Differences in
tumor cell viability between pCMV6-L1TD1 and pCMV6-

ENTRY transfected cells were statistically significant after
48 (p =0.0064) and 72 h (p <0.0001), while differences
between pCMV6-L1TD1 and pCMV6-GFP transfected
cells did not reach statistical significance. Similar in
vitro experiments were performed for SPAG6. However,
no impact of ectopic SPAG6 expression on tumor cell
growth, proliferation, viability or colony-forming abil-
ities were seen (data not shown).

L1TD1 reduces tumor growth in vivo

Because in vitro experiments suggested tumor-cell growth
suppressing properties of LITDI, we additionally per-
formed in vivo studies using immunodeficient mice.
Therefore, pCMV6-L1TD1 and pCMV6-ENTRY trans-
fected cells were subcutaneously injected into the ventral
flanks of NSG mice. Ten days after injection 4/4 mice had
measurable lesions in both flanks. From day 18 after
injection on statistically significant differences in tumor
volumes between the two groups were observed (Fig. 6a).
At day 28 after injection the experiment was terminated
and tumors were dissected. Size measurement of dissected
tumors confirmed size differences of tumors derived from
pCMV6-L1TD1 and from pCMV6-ENTRY transfected
cells which were seen during the experiment (Fig. 6b).
Expression of LITDI in tumors derived from pCMV6-
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Fig. 4 Protein expression of SPAG6 and L1TD1 in NSCLC patients. Representative IHC stainings of NL and TU samples are shown. In unmethylated
NL samples cytoplasmic expression of SPAG6 a and L1TD1 b was observed in bronchial and bronchiolar epithelial cells. In SPAG6 a, respectively,
L1TD1 b methylated TU samples neither SPAG6 nor L1TD1 expression was observed in tumor cells. ¢ The comparison between SPAG6 and L1TD1
protein expression and SPAG6 or L1TD1 methylation by T/N methylation ratios and IHC groupings of 35 TU samples is shown

Bl Gene methylated and negative by IHC
Bl Gene not methylated and positive by IHC
3 Gene methylated and positive by IHC
[ Gene not methylated and negative by IHC

L1TD1 transfected NCI-H1975 cells was confirmed by
RT-PCR (Additional file 5: Figure S4).

Discussion

In a recent study, we performed a genome-wide screen
for CpG island methylation in NSCLC patients and
identified more than 400 tumor-specifically methylated
genes. Two of them, SPAG6 and LITDI, were selected
for detailed investigation of gene expression, gene-
specific methylation and potential tumor-cell growth
suppressing properties in NSCLCs. So far, only little in-
formation about a potential impact of these 2 genes on
the development of lung cancer was available.

SPAG6 regulates proliferation and differentiation of
certain cell types and belongs to the family of CTAs [35,
36]. Normally CTAs are expressed by gametes and tro-
phoblasts but are aberrantly expressed in a variety of tu-
mors [21]. Their transcriptional activity is mainly
regulated by epigenetic modifications including methyla-
tion and histone acetylation [21, 37]. The role of CTAs
in germ line as well as in tumor tissues is poorly under-
stood, however, since germ and cancer cells share certain
characteristics including immortalization, invasion and

migration, an involvement of CTAs in the development
of different tumor types is suggested [37].

LITD1 is involved in the regulation of self-renewal
and pluripotency of human embryonic stem cells. It is
highly expressed in medulloblastoma cells where it is
associated with cell viability, chemotherapeutic drug re-
sistance and stem cell-like properties [38].

To determine a potential role of SPAG6 and/or LITDI
in various malignancies, we analysed RNA-seq datasets
from the TCGA database. While tumor-specific down-
regulation of SPAG6 mRNA expression was observed in
all tumor types investigated except hepatocellular and
prostate carcinomas, downregulated LITDI mRNA ex-
pression was found in NSCLCs, breast, colorectal and
prostate carcinomas but not in head and neck, kidney
and hepatocellular carcinomas. Overall, these data sug-
gest that deregulated expression of SPAG6 and LITDI
may play a role not only in the pathogenesis of NSCLCs
but also in tumors of other entities and that expression
of these 2 genes differs between certain tumor types.

Besides other mechanisms, methylation is involved in
the regulation of transcriptional gene activity [1, 2]. In
NSCLCs, many TSGs are already known which are
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Fig. 5 Growth, proliferation, colony-forming ability and viability of pCMV6-L1TD1 and pCMVE-ENTRY transfected NCI-H1975 cells. a Reduced
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assay at different time points are shown. Experiments were performed in triplicates (**p < 0.05, ** **p < 0.0001)

frequently inactivated by methylation [11, 13, 15, 39]. To
determine if downregulation of SPAG6 and L1TDI1 may
be caused by methylation, we performed gene-specific
approaches to detect mRNA/protein expression and
methylation of these genes in NSCLC cell lines and in
primary TU and NL samples from NSCLC patients. In-
deed, we found a correlation between downregulated
SPAG6 and LITDI mRNA expression and methylation
of these genes in all NSCLC cell lines analysed. Treat-
ment of these cells with epigenetically active drugs
which inhibit DNA methyltransferases and histone dea-
cetylases resulted in upregulated expression of both
genes. In addition, we found an association between
SPAG6 and LITDI methylation and loss of SPAG6 and
L1TD1 protein expression when we performed IHC of
FFPE tissue samples from NSCLC patients. While most
of the SPAG6 or LITD1 methylated TU samples did not
express these proteins, not methylated TU samples
mostly expressed SPAG6 or L1TD1. However, these re-
sults did not reach statistical significance, probably

because of the low sample number available for these
analyses and the fact that tissue microarrays only repre-
sented small parts of the primary tumor samples. Our
hypothesis that methylation is one of the mechanisms
responsible for inactivation of these genes is further sup-
ported by the fact that SNVs and homozygous deletions
of SPAG6 and L1TD1 were rarely detected in LUAD and
LUSC SNP and in aCGH datasets of NSCLC patients.
However, other mechanisms including deregulation of
histone modifications and non-coding RNAs may also
contribute to the transcriptional regulation of these
genes. All these findings indicate that methylation is in-
deed involved in the transcriptional regulation of SPAG6
and LITDI in NSCLCs.

Methylation of certain TSGs in NSCLCs is tumor-
subtype specific [40]. While for instance APC and
CDH13 methylation was detected more frequently in
lung adenocarcinomas compared to lung squamous cell
carcinomas, pl6 methylation was detected more fre-
quently in lung squamous cell carcinomas than in lung
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adenocarcinomas [40, 41]. By comparing SPAG6 and
LITDI methylation with histological classification of
our tumor samples, we did not find a difference be-
tween the frequencies of methylation of these genes
in lung adenocarcinomas or lung squamous cell car-
cinomas. These observations suggest that methylation
of SPAG6 and LITDI is a common feature in all
histological subtypes of NSCLCs. Methylation of sev-
eral genes was shown to be associated with shorter
survival of NSCLC patients (e.g. APC, CDHI, DAPK
or pl6) [13, 42, 43]. In our study, we did not find a
correlation between SPAG6 or LITDI1 methylation
and OS as well as DFS of NSCLC patients or any
other clinico-pathological characteristic of these pa-
tients. However, analyses of gene expression micro-
array data indicate that low SPAG6 expression is
associated with a shorter OS of lung squamous cell
carcinoma patients and low LITDI expression with a
shorter OS of lung adenocarcinoma patients. Never-
theless, these findings need to be studied in larger pa-
tient cohorts.

TSGs are characterised by a variety of molecular
features including frequent CpG island methylation,
downregulated expression and that they are often lo-
cated in regions of LOH. Since SPAG6 and LITDI
were found to be frequently methylated and down-
regulated in NSCLC cells and are located in chromo-
somal regions where frequent LOH was observed, we
hypothesized that these genes may have tumor-cell
growth suppressing properties. Indeed, in vitro ex-
periments showed reduced cell growth, proliferation,
viability and colony-forming abilities of pCMV6-
L1TD1 transfected cells suggesting that it may be a
potential TSG in NSCLCs. Because of these encour-
aging results and to further support our hypothesis
that LITD1 has tumor-cell growth suppressing prop-
erties, we additionally performed xenograft experiments
to investigate the growth of tumors induced by L1TD1-

overexpressing and wildtype NSCLC cells. Interestingly,
we observed significantly smaller tumors induced by
pCMV6-L1TD1 compared to pCMV6-ENTRY trans-
fected NCI-H1975 cells indicating that LITDI1 indeed
has tumor-cell growth suppressing properties. Based on
the literature this is the first report which describes a po-
tential impact of LITDI expression in the pathogenesis
of NSCLCs. However, further studies are necessary to
elucidate molecular mechanisms affected by LITDI in
NSCLC cells.

Although it was reported that SPAG6 is involved
in proliferation and differentiation of neuronal pro-
genitor cells, in our in vitro studies ectopic SPAG6
expression did not affect the behavior of NSCLC
cells [35, 36]. Since no reports are currently available
about a potential role of SPAG6 in malignant dis-
eases further studies are necessary to determine cell-
type specific functions of SPAG6 and to elucidate if
besides tumor-specific methylation other functions of
SPAG6 may be involved in the pathogenesis of
NSCLCs.

Conclusion

Our results demonstrate that tumor-specific methyla-
tion of SPAG6 and LITDI is a frequently occurring
event in NSCLCs and they suggest that methylation
plays an important role in the transcriptional regulation
of these genes. Protein expression of both genes was
frequently downregulated in primary NSCLCs. In
addition, or findings indicate that methylation of these
genes may be of relevance not only in NSCLCs but also
in other malignancies. Moreover, in vitro and in vivo
experiments showed that LITD1 has tumor-cell growth
suppressing properties in NSCLC cells. Taken together
we identified methylation as a potential mechanism for
frequent downregulation of SPAG6 and LITDI in
NSCLCs and suggest a putative role of LITD1 in tumor
cell development.
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Additional files

Additional file 1: Table S1. Description of NSCLC cell lines used in this
study. Information about histology, origin and disease stage of donors
was obtained from ATCC catalogue (https://www.lgcstandards-atcc.org).
EGFR, KRAS and TP53 mutational status and MET amplification according
to supplementary references (1-3). *activating EGFR mutation in exon 19
(E746-E749 del), **activating EGFR mutation in exon 21 (L858R). N/A, not
available; wt, wildtype; mut, mutated. Table S2. Clinico-pathological char-
acteristics of 983 NSCLC patients. Overview of gender, histology, stage of
disease and ethnicity of NSCLC patients obtained from TCGA database
and used for mutation and copy number changes analyses of SPAG6 and
L1TD1 is shown. ADC, adenocarcinoma; SCC, squamous cell carcinoma.
Clinical data based on Caleydo software version 16/04/14. Table S3.
Primer sequences. Summary of oligonucleotide sequences used for
mMRNA expression, MS-HRM, BGS analyses and construction of pCMV6-
GFP expression vector. Y, random integration of C or T in fwd primer; R,
random integration of G or A in rev primer. Table S4. Methylation of
SPAG6 and L1TD1 in tumor cells of other tumor types. *Morphology,
histology and origin of cell lines according to ATCC catalogue (https://
www.lgcstandards-atcc.org). Percentage of methylation was calculated as
described previously (4). (DOCX 33 kb)

Additional file 2: Figure S1. SPAG6 and L17D1 mRNA expression in
different datasets of TCGA database. SPAG6 and L1TD1 mRNA expression
was analysed using llluminaHiSeq RNAseq data from TCGA database.
Datasets LUAD and LUSC (lung), BRCA (breast), COADREAD (colorectal),
HNSC (head and neck), KIRC (kidney), LIHC (liver) and PRAD (prostate)
were analysed. Normalized log2 mRNA expression values are shown.
Each dot represents a single sample. (TIF 176 kb)

Additional file 3: Figure S2. Impact of SPAG6 and L17TDT mRNA
expression on OS of NSCLC patients. (A) A shorter OS of squamous cell
carcinoma patients with low SPAG6 mRNA expression (N = 155) compared to
high SPAG6 mRNA expression (N = 267) was observed. (B) Adenocarcinoma
patients with low L1TDT mRNA expression (N = 138) showed a shorter OS
compared to adenocarcinoma patients with high L17D7 mRNA expression
(N =350). Gene expression microarray datasets (Affymetrix IDs 210032_s_at
and 219955_at) were analysed and Kaplan-Meier plots were generated using
all datasets and default settings of KM plotter. The cut-off values for “low” and
"high” SPAG6 and L1TDT mRNA expression were automatically defined by KM
plotter software (Version 2013). (TIF 50 kb)

Additional file 4: Figure S3. SPAG6 and L1TD1 SNVs and deletions in
NSCLC patients. TCGA LUAD and LUSC datasets were analysed with
Caleydo software (version April 2014). Mutation of TP53 was used to
demonstrate reliability of TCGA data analysis. ADC, adenocarcinoma
patients; SCC, squamous carcinoma patients. (TIF 90 kb)

Additional file 5: Figure S4. L17TD7 mRNA expression in xenograft
tumors. Expression of L1TD1 in 4 xenografts derived from pCMV6-L1TD1
transfected NCI-H1975 cells was confirmed by RT-PCR. GAPDH was used as
housekeeping gene to normalize mRNA expression of L1TD]. (TIF 17 kb)
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5-AzaC: 5-azacytidine; 5-AzadC: 5-aza-2'-deoxycytidine; aCGH: Microarray
Comperative Genomic Hybridization; BGS: Bisulfite genomic sequencing;
BRCA: Breast invasive carcinoma; COADREAD: Colon and rectum
adenocarcinoma; CTA: Cancer-testis antigen; DFS: Disease free survival;
DNMT: DNA methyltransferases; FFPE: Formalin-fixed, paraffin embedded
samples; HDAC: Histone deacetylase; HNSC: Head and neck squamous cell
carcinoma; IHC: Immunohistochemistry; IP-WB: Immunoprecipitation and
Western blot; KIRC: Kidney clear cell carcinoma; LIHC: Liver hepatocellular
carcinoma; LUAD: Lung adenocarcinoma dataset; LUSC: Lung squamous
cell carcinoma dataset; MBD: methyl-CpG binding domain proteins; MS-
HRM: Methylation-sensitive high resolution melting analysis; NHBEC: Normal
human bronchial epithelial cell; NL: Corresponding non-malignant lung tis-
sue samples; NSCLC: Non-small cell lung cancer; NSG mice: NSG JAX
(NOD.Cg-Prkdc™I12rg"™""/SzJ) mice; OS: Overall survival; PRAD: Prostate
adenocarcinoma; RNA-seq: llluminaHiSeq RNA-sequencing; ROC: Receiver
operating characteristic; RT-PCR: Real-time reverse transcription PCR;

SNV: Single nucleotide variants; TCGA: “The Cancer Genome Atlas”;

TSA: Trichostatin A; TSG: Tumor suppressor gene; TU: Primary tumor samples
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