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The utilization of methane, a potent greenhouse gas, is an
important component of local and global carbon cycles that is
characterized by tight linkages between methane-utilizing (meth-
anotrophic) and nonmethanotrophic bacteria. It has been sug-
gested that the methanotroph sustains these nonmethanotrophs
by cross-feeding, because subsequent products of the methane
oxidation pathway, such as methanol, represent alternative carbon
sources. We established cocultures in a microcosm model system to
determine the mechanism and substrate that underlay the observed
cross-feeding in the environment. Lanthanum, a rare earth element,
was applied because of its increasing importance in methylotrophy.
We used co-occurring strains isolated from Lake Washington
sediment that are involved in methane utilization: a methanotroph
and two nonmethanotrophic methylotrophs. Gene-expression pro-
files and mutant analyses suggest that methanol is the dominant
carbon and energy source the methanotroph provides to support
growth of the nonmethanotrophs. However, in the presence of the
nonmethanotroph, gene expression of the dominant methanol
dehydrogenase (MDH) shifts from the lanthanide-dependent MDH
(XoxF)-type, to the calcium-dependent MDH (MxaF)-type. Corre-
spondingly, methanol is released into the medium only when
the methanotroph expresses the MxaF-type MDH. These results
suggest a cross-feeding mechanism in which the nonmethanotro-
phic partner induces a change in expression of methanotrophMDHs,
resulting in release of methanol for its growth. This partner-induced
change in gene expression that benefits the partner is a paradigm
for microbial interactions that cannot be observed in studies of pure
cultures, underscoring the importance of synthetic microbial com-
munity approaches to understand environmental microbiomes.

synthetic ecology | eco-physiology | flow cytometry | Methylobacter |
metabolic transformation

Microbial communities and their members are part of every
ecosystem and drive important biogeochemical processes

on Earth (1). They typically comprise a range of phylogenetically
and functionally diverse microbes (2) that are structured by
biotic and abiotic factors (3) and are entangled through specific
interactions in complex networks (4).
The significance of microbial communities in diverse ecosys-

tems including the human body is now widely accepted in science
and has led to a range of initiatives focused on the world’s
microbiomes (5, 6). One important goal within these efforts is to
understand how microbes interact with each other and the
consequences of such interactions at the level of their tran-
scriptomes, proteomes, and metabolomes. For instance, it has
been demonstrated that the metabolism of yeast can be trans-
formed by bacteria-induced prions to decrease the release of
inhibiting ethanol (7). In another study, an oral biofilm of the
genus Streptococcus displayed different transcriptional re-
sponses toward the presence of other species in mixed-species
cultures (8).

Measuring interactions in complex environmental communi-
ties is still a difficult task. Laboratory cocultures represent a
simplified approach to assessing cell–cell interactions, allowing
controlled manipulation and detailed analysis of the individual
strains. Measurement of metabolic interactions in synthetic co-
cultures addresses a key feature of known interaction patterns (9,
10) that can drive species co-occurrence in microbial communi-
ties (11). A model system that is particularly well-suited to
such coculture approaches is methane utilization in natural
communities.
Microbial methane utilization plays a significant role in global

climate and is an important part of the carbon cycle (12, 13).
Aerobic and anaerobic methane oxidation are the only two pro-
cesses known for biotic methane consumption (12, 14). Aerobic
methane-oxidizing bacteria (methanotrophs), in particular, play a
vital role in the global climate because they can mitigate up to
90% of the biogenically produced methane in soils and sediments
(15, 16). To date, aerobic methanotrophs are found in the phyla
Verrucomicrobia and Proteobacteria and in the candidate division
NC10. Within the proteobacterial aerobic methanotrophs, they
belong to the Gammaroteobacteria, which primarily use the ribu-
lose monophosphate cycle for assimilation (type I methanotrophs),
and to the Alphaproteobacteria, which use the serine cycle for
assimilation (type II methanotrophs) (17).
The application of stable isotope probing (SIP) of 13C-labeled

methane to environmental communities has demonstrated that
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methanotrophs co-occur with other nonmethanotrophic bacteria
and function collectively with them as a community to consume
methane (18–25). For instance, in the sediment of Lake Washington
methane-utilizing communities are not random; they are dominated
by methanotrophs within the family Methylococcaceae and non-
methanotrophic methylotrophs within the family Methylophilaceae
and also include other specific non–methane-utilizing heterotrophs
(18, 19). These studies have shown that the methanotrophs support a
community that cannot use methane directly, cross-feeding the
nonmethanotrophs with methane-derived carbon. Hence, this group
is well-positioned for studying questions of species interactions in
microbial communities.
In the aerobic methanotrophs, methane is oxidized to meth-

anol by a monooxygenase, and methanol is further oxidized to
formaldehyde by a methanol dehydrogenase (MDH). Tradi-
tionally, this reaction was thought to be catalyzed by a calcium-
dependent MDH (MxaF). However, recent findings identified
an additional, lanthanide-dependent MDH (XoxF), that is wide-
spread in bacterial methylotrophs and dominates under some
growth conditions (26–28).
Because methanol is produced in the periplasm and therefore

can diffuse out of the cell (29), it is reasonable to suggest that
methanol might be cross-fed to nonmethanotrophic methylo-
trophs involved in community-based methane utilization (18, 30,
31). However, Kalyuzhnaya and colleagues (32) have demon-
strated a novel form of fermentation-based methanotrophy that
releases compounds such as formate, acetate, or hydrogen as ad-
ditional possible carbon and energy sources for nonmethanotrophic
heterotrophs. Thus, the substrates and mechanisms that drive cross-
feeding from methanotrophs and allow nonmethanotrophic het-
erotrophs to co-occur are still unknown.
In this study we address the question of cross-feeding between

methanotrophs and nonmethanotrophic methylotrophs by estab-
lishing two-species communities in a microcosm model system using
a methanotroph of the genus Methylobacter (Methylococcaceae)
and two strains of nonmethanotrophic methylotrophs of the genus
Methylotenera (Methylophilaceae). These isolates originated from
Lake Washington sediment (33–35), a freshwater ecosystem, which
is characterized by a dynamic turnover of methane (16) and strong
co-occurrence patterns of methanotrophs and nonmethanotrophic
methylotrophs (36, 37). The isolates used are representative of
strains that dominate methane-enriched microcosms and 13C SIP
studies of sediment (13). We combined a transcriptomics approach,
real-time quantitative PCR (qRT-PCR), flow cytometry, and gas
chromatography to elucidate the substrates and mechanisms de-
termining the co-occurrence patterns typically observed in natural
communities. We demonstrate that in the presence of the co-
occurring species the methanotroph metabolism is altered by a
change in the predominant MDH expression levels. As a result,
methanol is excreted to be used by the co-occurring methylo-
troph as a carbon and energy source. This study links microbial
metabolism and microbial ecology and suggests a mode of met-
abolic interactions that is likely to be important in environmental
microbial communities in lake sediments.

Results
Establishing Cocultures from Isolates as Observed in the Environment.
We first verified that it is possible to establish cocultures of a
methanotroph from LakeWashington,Methylobacter tundripaludum
31/32 (35), and nonmethanotrophic methylotrophs from Lake
Washington, Methylotenera mobilis 13 and JLW8 (33), in the labo-
ratory using a microcosm model system with methane as the sole
carbon source (Fig. 1). This microcosm model system is based on
that used to enrich methane-consuming communities, which resul-
ted in dominance of M. tundripaludum 31/32 and M. mobilis strains
similar to those found in sediment (37). Cells were grown with
methane under low initial O2, with daily headspace replacement
and weekly culture transfer to new medium (36). In these condi-
tions, the abundances of both populations fluctuated over time
but resulted in cocultured populations (Fig. 1 and Fig. S1 A and B)
with ratios ranging from 10:90 to 50:50 (M. tundripaludum

31/32:M. mobilis strains) over the course of these experiments,
similar to the ratios previously observed in enrichments of natural
samples (18, 19, 36). Attempts to coculture the methanotroph with
a nonmethanotrophic heterotroph (Escherichia coli) did not result
in a stable coculture (Fig. S1C).

Evidence for Cross-Feeding of Methanol from the Methanotroph to
the Nonmethanotroph.We next analyzed the transcriptome of the
methanotroph and the nonmethanotrophic methylotrophs in
pure culture and in coculture to identify the key genes expressed
exclusively in the presence of the co-occurring species. Samples
were taken from cocultures at a ratio of 11:89 (M. mobilis 13
to M. tundripaludum 31/32) and 25:75 (M. mobilis JLW8 to
M. tundripaludum 31/32) after 31 d of coculturing (Fig. S1 A and
B, gray shaded area). Statistics for the transcriptomics results are
shown in Table S1.
As expected, the key genes involved in methane oxidation

were the most highly expressed genes in the methanotroph
(Dataset S1). The highly expressed genes in the nonmethanotrophic
methylotrophs included the genes for methanol oxidation both in
pure cultures grown on methanol as substrates and in cocultures
grown with the methanotroph and methane as substrate (Fig. 2
and see Datasets S2 and S3).
To test the hypothesis that methanol is a main carbon and

energy source cross-fed by the methanotroph, we used mutants
of the nonmethanotrophic methylotroph M. mobilis JLW8
(38). This strain can grow on both methylamine and methanol,
allowing growth in the absence of the ability to oxidize meth-
anol. M. mobilis JLW8 does not contain the MxaF-type MDH
but possesses two gene copies of the XoxF-type MDH, which
were deleted by single-knockout (xoxF1, xoxF2) and double-
knockout (xoxF12) mutations (38). Although we established
cocultures with each single mutant, cocultures were not estab-
lished with the double mutant, which is unable to grow on
methanol (Fig. S1D).

Divergence in Gene Expression of the Two MDHs in the Presence of a
Coculture. The transcriptomics dataset also provided evidence for
differential expression in the coculture compared with the single
cultures. In the methanotroph, we identified a clear shift in the
expression of the two MDH genes in the presence of M. mobilis
JLW8 compared with the pure culture (Fig. 2A). Replicates of
the methanotroph grown with M. mobilis 13 showed the same
shifts but were more moderate (Fig. 2A). Overall, expression of
the lanthanide-dependent XoxF-type MDH decreased two- to
threefold, whereas that of the calcium-dependent MxaF-type
MDH increased five- to 23-fold. Housekeeping genes did not
change significantly (Fig. 2A). In addition, one of the XoxF-type
MDHs in both nonmethanotrophic methylotrophs was expressed
only in the coculture (Fig. 2 B and C).
The expression of the methanotroph MxaF-type MDH in the

cocultures was unexpected because 30 μM lanthanum was in-
cluded in all cultures, and recent studies with other methano-
trophs have shown that the XoxF-type MDH should be the
dominant MDH expressed in the presence of lanthanum (26,
27). To verify these observations, we repeated this experiment
with an independent set of cultures and used qRT-PCR to an-
alyze the gene expression of xoxF and mxaF in the methanotroph
with and without a co-occurring species (Fig. 3). We first con-
firmed that in pure cultures of M. tundripaludum 31/32 grown
identically to the cocultures, the XoxF-type MDH is the domi-
nant MDH expressed in the presence of lanthanum.
We further verified that in pure cultures of the methanotroph

different concentrations of lanthanum in the medium, lantha-
num depletion over time, or different O2 levels do not have any
notable effect on the gene expression of the dominant MDHs
(Fig. S2).
qRT-PCR analysis also was performed on cocultures that

were grown for 21 d and with three transfers and dilutions into
fresh medium. Cocultures were established with ratios of 30:70
(M. mobilis 13:M. tundripaludum 31/32) or 50:50 (M. mobilis
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JLW8:M. tundripaludum 31/32). In the presence of a co-occurring
nonmethanotrophic methylotroph the expression of the me-
thanotroph XoxF-type MDH decreased and the expression
of the methanotroph MxaF-type MDH increased compared
with the pure culture grown identically to the cocultures, a
finding also seen in the RNA-sequencing (RNA-seq) results
(Fig. 3 B and C).

Evidence for MDH-Specific Methanol Release into the Medium by the
Methanotroph. The coculture-dependent change in expression
to the MxaF-type MDH suggested that this change might be

responsible for methanol cross-feeding. To test this hypothesis,
we assessed the supernatant of the pure cultures of the meth-
anotroph used for qRT-PCR (Fig. 3A) for methanol release into
the medium (Fig. 4). The results of gas chromatography-flame
ionization detector (GC-FID) analysis demonstrated that no
methanol could be detected in the presence of lanthanum (Fig.
4A), but in the absence of lanthanum methanol and a shift to
mxaF gene expression, methanol was clearly detected with a
concentration of 1.24 mM at the end of the incubation (Fig. 4 B
and C); this level is sufficient to support growth of the non-
methanotrophic methylotrophs (33). We further show that in
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Fig. 1. Cell-abundance dynamics of individual spe-
cies in model synthetic communities grown on methane
as the sole carbon source in 28-mL glass tubes. Different
symbols depict individual abundances of M. tundri-
paludum 31/32 with M. mobilis 13 (A) or M. mobilis
JLW8 (B). Individual abundances were determined by
flow cytometry. Error bars indicate the SE (n = 3).
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Fig. 2. Heatmaps depicting selected gene-expres-
sion data (normalized counts computed with
DESeq2) of the lanthanide-dependent XoxF-type
MDH, the calcium-dependent MxaF-type MDH, and
two housekeeping genes. Housekeeping genes were
selected as predicted to be essential biosynthetic
steps not involved in methylotrophy and to repre-
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(A) M. tundripaludum 31/32 genes grown in the
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M.mobilis JLW8 (coculture II). (B)M.mobilis 13 genes
grown in the presence or absence ofM. tundripaludum
31/32. (C) M. mobilis JLW8 genes grown in the pres-
ence or absence ofM. tundripaludum 31/32. Expression
of the first xoxF gene in B and C had much higher
values and is displayed separately. The full gene-
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cocultures grown without lanthanum, increased expression of
the MxaF-type MDH occurs in the methanotroph, and the co-
occurring nonmethanotrophic methylotroph increases in abun-
dance (Fig. S3).

Evidence for a Soluble Factor in the Cocultures That Affects MDH
Gene Expression. To determine whether coculture-dependent
lanthanum depletion might be responsible for the induced shift
of the dominant MDH and subsequent methanol release, we
measured the lanthanum concentration in the supernatant from
pure cultures and cocultures. All supernatants showed large
decreases, with a stronger correlation between lanthanum de-
crease in the supernatant and MxaF-type MDH expression of
M. tundripaludum 31/32 in coculture with M. mobilis JLW8 than
in coculture with M. mobilis 13 (Figs. 2 and 3 and Table S2). In
a second experiment to assess the presence of a soluble factor
involved in the expression change, pure cultures of M. tun-
dripaludum 31/32 were incubated with and without supernatant
of cocultures. The expression of the MxaF-type MDH in the
methanotroph changed only in the presence of the coculture
supernatant (Fig. S4).

Discussion
In this study we used bacterial isolates from Lake Washington
sediment that are known to be important in one-carbon utiliza-
tion in this ecosystem to identify the cross-feeding mechanisms
that allow nonmethanotrophic methylotrophs to grow on methane-
derived carbon. We established simple synthetic model communi-
ties and focused on cross-feeding as a specific mechanism of
community interactions that is difficult to determine in com-
plex natural communities. Although synthetic communities do
not necessarily reflect the community structure and abundance
of natural communities (39), the basic metabolic interactions
are hypothesized to be the same in the two systems (10). In the
example used here, the species used are representatives of those
known to dominate SIP studies and enriched microcosms in Lake
Washington sediment (13), suggesting that these metabolic inter-
actions also may occur within the natural community.
Our results add insights into recent discoveries of the effects of

rare earth metals on the expression and activities of MDHs.

Previous work showed that the lanthanide-dependent XoxF-type
MDH enzymes are more widespread than the classical MxaF-
type MDH enzymes in known methylotrophs and other organ-
isms (40–42). In line with previous findings with other meth-
anotrophs (26, 27), we provide evidence that in pure culture in
the presence of lanthanum the XoxF-type (Fig. 3A) is the pre-
dominant MDH in M. tundripaludum 31/32.
However, we discovered that the presence of the non-

methanotrophic methylotroph in the co–culture causes a change
in relative expression of the two methanotroph MDHs in the
presence of lanthanum and that this change results in the release
of methanol into the medium by the methanotroph.
In the methanotroph Methylacidiphilum fumariolicum SolV,

the affinity for methanol of XoxF-type MDH was much higher
than reported for other MDHs, with a Km of 0.8 μM (40). If the
same is true in M. tundripaludum 31/32, the lower affinity of the
MxaF-type MDH could result in methanol excretion. Our re-
sults suggest that the partner-induced change in gene expres-
sion induces the methanotroph to perform a less efficient, leaky
function with the result of sustaining the nonmethanotrophic
methylotrophic population in the coculture. This methanotroph-
based cross-feeding mechanism supports previous results show-
ing that methanotrophs support nonmethanotrophs in natural
communities by providing methane-derived carbon (43–45). Hence,
this lanthanum-dependent cross-feeding has the potential to be an
important mechanism in the environment.
Metabolic interactions and cross-feeding are widespread in

microbial communities (9, 11, 46). Those interactions allow mi-
crobes to compete for nutrients by scavenging limited nutrients,
to cooperate with another species to metabolize substrates they
could not metabolize alone, or to cross-feed and support other
members in a microbial community (9, 46). In some cases, such
as obligate syntrophism, it has been shown that different syn-
trophic partners result in changes in both growth parameters and
gene expression (47). Our study presents a specific mode of
carbon and energy source cross-feeding interaction, in which the
presence of a co-occurring species alters the metabolism of
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another species, resulting in the release of a carbon and energy
source for the co-occurring species. In addition, we show that the
mxaF gene expression in M. tundripaludum 31/32 in coculture is
correlated to the level of lanthanum depletion, although it is not
expressed in pure culture of M. tundripaludum 31/32 even when
lanthanum is depleted to similar levels as in the cocultures. This
finding suggests that lanthanum depletion may play a role but is
not the sole mechanism whereby the gene expression changes.
We found that the supernatant from a coculture causes the gene-
expression change, suggesting the presence of an excreted solu-
ble compound involved in altering the methanotroph metabo-
lism. This compound might be a lanthanum sequestration agent,
a signal, or a compound that results indirectly in expression
change. Future studies are needed to address these factors to
determine in more detail the molecular basis of the regulatory
mechanism by which the metabolism of the methanotroph is
changed by the presence of the nonmethanotroph.
Although two independent methods showed the metabolic

alteration, not all cocultures between the methanotroph and the
nonmethanotrophic heterotrophs displayed the change in gene
expression (Fig. 2A). This variability suggests that additional
factors determine when the change in the MDH expression
of the methanotroph is activated. In a type II methanotroph,
Methylosinus trichosporium OB3b, it has been shown that the
presence of copper overrides the lanthanide control (27). In the
two type I strains tested so far (ref. 26 and this study), in pure
cultures, the amount of lanthanum added was sufficient to repress
expression of the genes for the MxaF-type MDH throughout the
course of the experiment, even in the presence of copper.
In bothM.mobilis JLW8 andM.mobilis 13, the dominant xoxF

gene transcripts also change expression in the coculture as com-
pared with the pure cultures. The physiological results of this
change are not known, because little is known about the different
XoxF isozymes and their biochemical properties. It is possible
that this change in gene expression is advantageous in allowing
these strains to grow at the low methanol concentrations pro-
vided by the methanotroph in coculture, and/or it may reflect the
same regulatory mechanism that causes a change in the expres-
sion of MDHs in the methanotrophs. However, mutation of the
up-regulated xoxF gene did not interfere with coculture forma-
tion (Fig. S1E), so this shift in gene expression is not essential for
the interaction. This synthetic two-culture system clearly dem-
onstrates an interaction that cannot be deduced from studies in
pure cultures and shows the power of such simple systems using
strains isolated from a natural microbial community to deduce
interaction mechanisms.

Materials and Methods
Strains and Growth Conditions. The methanotrophic strain M. tundripaludum
31/32 (35) and the nonmethanotrophic methylotrophic strains M. mobilis 13
(33) and M. mobilis JLW8 (34) were isolated within the last few years from
Lake Washington sediment. In addition, we used the MDH mutants xoxF1
(mmol_1170), xoxF2 (mmol_2048), and xoxF12 (mmol_1770, mmol_2048) of
M.mobilis JLW8, which were created in an earlier study (38).M. tundripaludum
31/32 was pregrown in nitrate mineral salt (NMS) medium (48) and 30 μM
lanthanum (III) chloride hydrate (99.9% trace metals basis; Sigma Aldrich)
with 25% (vol/vol) methane, 5% (vol/vol) air, and 70% (vol/vol) nitrogen in
the headspace. M. mobilis strains and the mutant strains xoxF1 and xoxF2
were pregrown in the same way but with 0.1% methanol instead. The
mutant xoxF12 is unable to grow on methanol and was grown with
0.1% methylamine.

Synthetic Communities. In the first set of experiments, we established co-
cultures and controls in duplicate or triplicate in autoclaved glass tubes
(28-mL volume) and 6 mL of NMS medium. Standard curves of cell numbers
and optical density in the pure culture were established by flow cytometry.
Different strains then were mixed together in equal starting densities (107

cells/mL). All vials were sealed with rubber stoppers and capped with crimp
seals. The headspace was exchanged daily according to the following
scheme: (i) flushing with N2 gas for 30 s (flow rate >1.28 L/min); (ii) equal-
izing pressure by removing the excess volume of N2 gas with a syringe; (iii)
removing 6.6 mL of headspace and adding back 5.5 mL of methane and

1.1 mL of air, corresponding to an initial dissolved O2 concentration of
∼15 μM. All vials were incubated in a shaker (200 rpm) at 18 °C.

As shown previously (36), after gas phase replenishment, O2 utilization
occurs until the level drops to undetectable amounts. This protocol results in
a daily cycle of excess methane but limiting O2 availability. This regime is a
representation of O2 and CH4 conditions within the natural gradient of O2

and CH4 concentrations measured in Lake Washington sediments (49). Each
vial was diluted weekly to an OD600 of 0.1. Transfer to a new vial ensured
that any carbon from inoculum was diluted out and CH4 became the main
remaining carbon source.

In a second set of experiments we established two independent setups of
cocultures and controls in duplicate in autoclaved serum vials (250-mL vol-
ume) and 30 mL of NMS medium to grow sufficient biomass for RNA ex-
traction and subsequent RNA-seq or qRT-PCR analysis. We followed the
procedure described above but adjusted the volumes of air and methane to
achieve an initial dissolved O2 concentration of 15 μM.

In a third set of experiments, cocultures and controls withM.mobilis JLW8
mutants were set up in triplicate in autoclaved serum vials (250-mL volume)
and 30 mL of NMS medium following the procedure described above. In
addition, cultures of M. mobilis JLW8 mutants were washed twice by
centrifuging at 4,500 × g for 10 min and were resuspended in fresh NMS
medium to remove remaining methylamine or methanol.

Flow Cytometry. To obtain real-time abundances, cell numbers of individual
strains in cocultures and pure cultures were determined by flow cytometry.
We used the 15:1 difference in the size of M. tundripaludum 31/32 and
M. mobilis 13 or JLW8 and a nucleic acid dye to distinguish different species
in a mixed sample. Before dilution, 900-μL samples were removed from the
culture, were fixed immediately with 100 μL of a mixture of glutaraldehyde
and paraformaldehyde [1.6% (vol/vol) and 0.1% final concentrations, re-
spectively], and were stored at 4 °C. For the analysis 1–10 μL of fixed sample
was mixed with 10 μL of SYBR Green dye (1:100 in DMSO) (Thermo Scientific)
and 0.22 μm filtered NMS medium to a final volume of 830 μL per sample.
These samples were incubated for 30 min in the dark at room tempera-
ture. Cells were measured with a CyFlow space flow cytometer (Partec)
with the following parameters: triggering on green fluorescence; all
measured parameters SSC, FSC, green fluorescence analyzed and displayed
in log3 or 4; flow rate between 4 and 6 μL/s; particle analysis rate below
1,000 particles/s.

Methanol Detection in Supernatant of Methylobacter Pure Cultures. Duplicate
30 mLM. tundripaludum 31/32 cultures were grown as described above with
and without lanthanum for 4 d. All culturing glassware for experiments
performed without lanthanum was acid-washed overnight in 1 M hydro-
chloric acid before use to remove trace amounts of lanthanum adhering to
the glass. Before the experiment a pure culture of M. tundripaludum 31/32
cells was pregrown without 30 μM lanthanum chloride for 4 wk to remove
any traces of lanthanum in the cells. Then 10-mL samples were taken and
centrifuged for 10 min at 20,913 × g. Subsequently, 1-mL samples were fil-
tered through a 0.22-μm filter and were stored at 4 °C for further analysis.
In addition 30-mL samples were used for subsequent RNA extraction
and qRT-PCR.

GC-FID was used for methanol detection with a 6890 Gas Chromatograph
equipped with a flame ionization detector (Agilent). Data were collected and
converted intoMatlab input files with LabVIEW 2010. Data analysis was done
later in Matlab. One microliter of supernatant was injected (split with a ratio
of 1:20) and separated with a SLB IL-15 column (Supelco) with a 5 m × 0.1 mm
i.d. and a thickness of 0.8 μm. The oven temperature was set at 120 °C and was
held for 0.5 min to evaporate the sample. The FID was operated at 220 °C.
Methanol standards were diluted in water from 99.9% (vol/vol) methanol.

RNA Extraction and qRT-PCR. RNA was extracted from 30-mL cultures grown
with and without lanthanum. Separate experiments were carried out for
transcriptomics and for qRT-PCR. Cells were grown to an OD600 of ∼0.5 for
extracting RNA. Before RNA was extracted, samples were flushed and incu-
bated as described above for 2 h to ensure that samples were obtained at the
onset of the micro-oxic phase of the experiment. The procedure was performed
as described (26) except that FastPrep Lysing Matrix E tubes (MP Biomedicals)
were used. The purified RNA was tested for DNA contamination using 16S PCR.
Afterwards, samples were stored at −80 °C for subsequent analyses.

cDNA was generated from ∼500 ng of isolated RNA following the pro-
cedure described earlier (26). PCR reactions for qRT-PCR were performed
as described in ref. 26 using a LightCycler 2.0 (Roche Diagnostics) and
LightCycler Software Version 3.5 (Roche). We used the 16S gene to nor-
malize expression values. Primers are described in Table S3.
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Transcriptomics and Data Analysis. Fifty base pairs were sequenced in single-
read configuration in Rapid Run mode on a HiSeq 2500 System by GENEWIZ.
The raw reads were aligned to the combined isolate genomes, as appro-
priate for each sample, using Burrows–Wheeler Aligner version 0.7.12-r1044
with default parameters (50). The alignments were postprocessed into sorted
BAM files with SAMtools version 1.2-232-g87cdc4a (51). Reads were attributed
to ORFs using the htseq-count tool from the HTseq framework version 0.5.4p5
in the intersection-nonempty mode (52). Differential abundance analysis was
performed with DESeq2 1.2.10 (53, 54). Sequences have been archived with

the National Center for Biotechnology Information in the Gene Expression
Omnibus database (accession no. GSE85736).

Significant differences between samples were tested by using Student’s
t-test. Unless otherwise specified, all data analysis and graphics were per-
formed using R 3.2.4 (55).
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