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Directional change in environmental drivers sometimes triggers
regime shifts in ecosystems. Theory and experiments suggest that
regime shifts can be detected in advance, and perhaps averted, by
monitoring resilience indicators such as variance and autocorrela-
tion of key ecosystem variables. However, it is uncertain whether
management action prompted by a change in resilience indicators
can prevent an impending regime shift. We caused a cyanobacterial
bloom by gradually enriching an experimental lake while monitoring
an unenriched reference lake and a continuously enriched reference
lake. When resilience indicators exceeded preset boundaries, nutrient
enrichment was stopped in the experimental lake. Concentrations of
algal pigments, dissolved oxygen saturation, and pH rapidly declined
following cessation of nutrient enrichment and became similar to the
unenriched lake, whereas a large bloom occurred in the continuously
enriched lake. This outcome suggests that resilience indicators may
be useful in management to prevent unwanted regime shifts, at least
in some situations. Nonetheless, a safer approach to ecosystem
management would build and maintain the resilience of desirable
ecosystem conditions, for example, by preventing excessive nutrient
input to lakes and reservoirs.
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Climate warming, land use alterations, increased nutrient fluxes,
species invasions, habitat loss, and other factors can cause

large changes, or regime shifts, in ecosystems (1–5). The iden-
tification, drivers, mechanisms, and potential reversibility of
regime shifts are debated and vary among ecosystems (6–8).
Nonetheless, regime shifts in ecosystems warrant further research
due to their massive consequences. Regime shifts are difficult to
predict, but loss of resilience may indicate pending change (3).
Thus, evaluations of changing resilience may help anticipate re-
gime shifts, thereby facilitating ecosystem management and sus-
taining vital ecosystem services.
Indicators of ecosystem resilience derived from theory and

models are proposed as early warnings of regime shifts (9).
These indicators, hereafter resilience indicators, are statistical
measures such as temporal or spatial variance and autocorrela-
tion of an ecosystem variable measured over time. Model anal-
yses have evaluated these indicators as effective in some, but not
all, circumstances (10–13). Experiments have demonstrated that
resilience indicators foreshadow abrupt shifts in both laboratory
microcosms (14–16) and a whole-ecosystem experiment (17).
Paleoclimate and paleoecological data have corroborated resil-
ience indicators in long time series with known shifts (18–20).
In aquatic ecosystems, transitions from oligotrophic to eutro-

phic conditions represent a type of regime shift. These changes
are often related to high loadings of nutrients such as phosphorus
(21). Under high nutrient loads, phytoplankton transition from a
stable point of mild oscillations to cyclical dynamics of blooms
and busts or to stable high biomasses (22). Models of these dy-
namics exhibit critical transitions (3) that generate well-known
signals of declining resilience such as autocorrelations near 1
and sharp increases in variance (23). Among the phytoplankton,

cyanobacteria are a key bloom-forming taxon that often dominates
inland waters under eutrophic conditions (24, 25). Cyanobacterial
blooms can form surface scums and deplete bottom-water oxygen.
Bloom-forming cyanobacteria may also be toxic and a hazard
to domestic animals as well as humans (26). Nuisance and toxic
blooms may limit water use and necessitate extensive treatment for
water supply systems. Consequently, warnings of blooms would
help either to mitigate effects or improve treatment options.
Here we test whether early warnings of a pending bloom can

be used with an intervention (i.e., halting nutrient additions) to
forestall the transition to conditions where cyanobacteria domi-
nate and repeatedly develop large populations associated with
negative effects. We experimentally enriched a lake (hereafter
manipulated lake) with daily additions of inorganic nitrogen and
phosphorus and compared this lake to an adjacent unenriched
lake (hereafter reference lake) as well as a second continuously
enriched lake (hereafter Tuesday Lake). We measured three
ecosystem variables: the pigments chlorophyll a and phycocyanin,
which represent total phytoplankton and cyanobacterial biomass,
respectively, and the percent saturation of dissolved oxygen (DO%sat),
which increases with primary production. From these ecosystem
variables, we calculated two resilience indicators, SD and lag-1
autocorrelation, using 28-d rolling windows. Near a critical tran-
sition, SDs should increase and autocorrelation should approach 1
(9). To determine when these statistics were sufficiently elevated
to constitute a warning, we conducted quickest detection tests (27).
The statistic, updated with each new data point, compares the
departure of resilience indicators in the manipulated from those in
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and pose toxicity risk for humans, livestock, and wildlife. Theory
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management. However, in practice, the risk of blooms may best
be prevented by reducing inputs of nutrients.
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the reference lake. A warning occurs when sufficient evidence has
accumulated indicating conditions have departed from a reference-
determined baseline. To make a real-time decision, we preset cri-
teria for halting the nutrient addition based on warnings from daily
data that updated the rolling windows statistics and quickest de-
tection tests. We tested if the halt of nutrient additions in response
to warnings reversed bloom conditions or if warnings occurred too
late and the system transitioned to repeated cyanobacterial blooms.

Results
The manipulated lake moved toward eutrophic conditions under nu-
trient enrichment with elevated total phosphorus (peak = 39 μg P·L−1)
and total nitrogen (peak = 755 μg N·L−1) concentrations. There
was a rapid increase in phytoplankton biomass as measured by
chlorophyll a. Values reached a maximum near 40 μg·L−1 on day
of year (DOY) 180 (Fig. 1), and the lake was visibly green and
turbid. Phycocyanin fluorescence rose dramatically and in par-
allel with chlorophyll concentrations (Fig. 1). Microscopic counts
on DOY 180 confirmed the phytoplankton community was domi-
nated by cyanobacteria, mainly Anabaena spp., which accounted for
93% of the total community biomass. Indicators of primary pro-
duction, pH and DO%sat, also rose to maxima of 9 and 130%, re-
spectively, on or near DOY 180 (Fig. 1). Although there is no
specific threshold that defines bloom conditions, chlorophyll con-
centrations above 20 μg·L−1 are far out of normal bounds for these
lakes (28). Further, a 100-point trophic state index (TSI) defines
chlorophyll concentrations of 20 μg·L−1 as a TSI of 60, a value
indicative of highly enriched conditions (29). None of these changes
occurred in the reference lake where chlorophyll, phycocyanin,
DOsat, and pH were lower during the bloom than in the manipu-
lated lake (Fig. 1). Total phosphorus (mean = 12 μg·L−1) and total
nitrogen (mean = 226 μg·L−1) were also much lower in the refer-
ence lake and similar to concentrations measured in prior years for
both lakes (28).

The dynamics of the resilience indicators before the bloom max-
imum were consistent with expectations for a system approaching a
threshold. Rolling window SDs all rose in the manipulated lake
before the bloom maximum on DOY 180, whereas rolling window
SDs were unchanging in the reference lake (Fig. 2). Trends of the
rolling window SDs were positive and significant (Table 1) both for
the absolute values and for values relative to the reference lake (i.e.,
manipulated − reference for daily rolling window SDs). Rolling
window autocorrelations (ACs) were high and approached 1 for all
three variables (chlorophyll, phycocyanin, and DO%sat) in the ma-
nipulated lake, whereas rolling window ACs either declined or
fluctuated in the reference lake (Fig. 2).
Quickest detection alarms were recorded for five of the six in-

dicators before the bloom maximum (red dots in Fig. 2). The
earliest alarms were from the resilience indicators for phycocyanin
where an AC alarm occurred on DOY 163 and an SD alarm oc-
curred on DOY 165 (Table 1). First alarms for the resilience in-
dicators based on chlorophyll (SD and AC) and DOsat (SD only)
occurred over the next 10–13 d. The statistic that signals an alarm
(Methods) resets after each alarm. Following these resets, the alarm
statistic rapidly reaccumulated evidence for a new alarm based on
differences in resilience indicators between the lakes; most indi-
cators generated several alarms before the bloom maximum
(Table 1). The AC for DO%sat did not produce an alarm. This
absence was partly due to a linear decline in the reference lake
DO%sat, which produced a high autocorrelation during the same
time the bloom developed in the manipulated lake (Fig. 1). We have
previously observed the reference lake to have an early season pe-
riod of DO%sat near or above 100%, followed by a persistent decline
to undersaturation for the remainder of the season (30).
Our goal was to use warnings from the AC and SD of the

resilience indicators to inform a decision to intervene. Thus, we
halted the nutrient addition on DOY 180 based on a preset
criterion that required alarms from the four pigment resilience
indicators (Methods). The fourth indicator alarm was on DOY
176 (Table 1). The lag in halting was related to time required to
process the daily manual chlorophyll a samples. A key test of the
study was whether the manipulated lake recovered to baseline
conditions or maintained high or even possibly increased phy-
toplankton and cyanobacterial biomass after the halt of nutrient
inputs. Immediately after the nutrient halt, chlorophyll a, phy-
cocyanin, pH, and DOsat declined rapidly. The manipulated lake
recovered to baseline with all four variables at or near reference
lake values by approximately DOY 210 (Fig. 1).
Increases in phytoplankton biomass and productivity associ-

ated with the nutrient addition contributed to the upward trends
in SD and autocorrelation, which in turn triggered alarms given
little trend in the reference lake. In practice, these alarms are
useful, but ideally, early warnings reflect loss of resilience and
would be robust to trends. Although we used the real-time data
to make the nutrient-halt decision, we retrospectively detrended
the data and recalculated the early warning statistics and alarms.
Results were similar for phycocyanin and DOsat with early
warning before the bloom, although there were fewer alarms
(Table S1). There were no alarms for detrended chlorophyll
which in part reflects the shorter prebloom time series (Methods).
Another indicator statistic is the coefficient of variation (CV),
which normalizes the variance by the mean and is thus less affected
by trends. The CVs provided first alarms on DOY 178, 167, and
174 with the number of alarms being 1, 4, and 2 for chlorophyll,
phycocyanin, and DOsat, respectively. Collectively, CVs and in-
dicator statistics calculated from detrended data provided early
warnings for all variables except for detrended chlorophyll. Fur-
ther, we analyzed for evidence of critical transitions using time-
varying autoregressions and found the reference lake was stable,
whereas the manipulated lake was unstable (Evidence for Critical
Transition). Nutrient loading caused a loss of resilience, and this
declining resilience was detected by the indicators.
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Fig. 1. Dynamics of (Upper Left) chlorophyll a (μg·L−1), (Upper Right) phy-
cocyanin (fluorescence units), (Lower Left) pH, and (Lower Right) dissolved
oxygen (DO; percent saturation) in the unenriched reference and enriched
manipulated lakes. Nutrients were added to the manipulated lake from day
of year 151–180.
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Discussion
In this study, resilience indicators were consistent with theory (9),
producing warnings as the nutrient addition moved the lake to-
ward high phytoplankton biomass. Warnings detected by the
quickest detection (QD) test included rises in the rolling window
SD and autocorrelation approaching 1. By halting nutrient inputs
in response to resilience indicator warnings, we achieved a quick
recovery of the manipulated lake to its original trophic state.
Before this study we did not know how the lake would respond to
cessation of nutrient input, and one possibility was that early
warnings would not arrive soon enough to avoid crossing thresh-
olds (11, 12). The threshold could have been crossed despite the
halt because nutrient recycling has the potential to maintain eu-
trophic conditions long after nutrient additions cease (31, 32).
Hence, the manipulation could have resulted in a transition to
cycling with high biomasses of phytoplankton as well as high tur-
bidity, possible toxicity, and increased anoxia of bottom waters.
However, the manipulated lake recovered to the low-productivity
and low-phytoplankton biomass state.
If we had acted sooner to halt nutrients, could a bloom have

been avoided? In the manipulated lake the first QD alarm was
17 d before the biomass maximum. At that time the chlorophyll
concentration was <10 μg·L−1. Halting nutrients at that point
would have likely prevented or substantially ameliorated a bloom.
Before the manipulation, we established more conservative criteria
for halting the nutrient additions because we did not want to act
based on a possible false positive that might have been generated

by background variability. Greater experience with manipulations
of this type would allow adjustment of criteria to minimize blooms
within an acceptable tolerance for false positives.
Whole lake manipulations usually cannot be replicated. This raises

the question of whether the nutrient halt was the reason for the
observed return of phytoplankton and cyanobacterial biomass to
baseline conditions. For example, what if a viral disease or a grazer
caused the bloom to collapse and not recover? Although it is im-
possible to completely rule out various mechanisms for the bloom
decline, prior studies of nutrient addition in the manipulated lake
indicate that repeated blooms and sustained high-biomass conditions
occur under continuous nutrient loading. Specifically, we conducted
nutrient additions at similar loading rates to the same manipulated
lake in the summers of 1993, 1997, and 2002. In these manipulations,
chlorophyll concentrations were far in excess of the reference lake
(28, 33). Although we did observe blooms to collapse in some years,
these were followed by rebounds to elevated chlorophyll concen-
trations (Fig. S1) and were unlike the dynamics observed for the
manipulated lake in 2015. Tuesday Lake was continuously enriched
with nutrients in 2015, and a slower developing but massive bloom
occurred; chlorophyll concentrations were sustained at high levels for
the remainder of the season (Fig. S2). Thus, the weight of evidence,
based on the current manipulations and informed by past studies,
indicates that recovery of the manipulated lake (Fig. 1) was due to
halting the nutrient additions (Fig. S3).
An alternative and arguably a simpler approach to following

the dynamics of the resilience indicators would have been to
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Fig. 2. Resilience indicators (Upper) SD and (Lower) autocorrelation (AC) for the unenriched reference and enriched manipulated lakes over the time period before
the bloom maximum on day of year 180. Lines are the 28-d rolling window values. Points are where the Shiryaev-Roberts statistic exceeds an alarm threshold.

Table 1. Resilience indicators before the bloom maximum on day of year 180 for the variables
chlorophyll a, phycocyanin, and dissolved oxygen saturation

Resilience indicator Chlorophyll Phycocyanin Dissolved oxygen saturation

SD positive absolute slope Yes (P < 0.001) Yes (P < 0.001) Yes (P < 0.001)
SD positive relative slope Yes (P < 0.001) Yes (P < 0.001) Yes (P < 0.001)
SD day of first alarm 175 165 173
SD no. of alarms 2 5 2
AC day of first alarm 176 163 None
AC no. of alarms 2 3 0

Rising variance of the indicators was tested by whether the slope of the rolling window SD was positive and
statistically significant at P < 0.05 before the bloom. Both the absolute values and the relative values (manip-
ulated − reference) of the SDs were tested. The day of year of the first alarm and the number of alarms before
the bloom maximum (DOY = 180) are also presented for the rolling window SDs and ACs.
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monitor the ecosystem variables (i.e., chlorophyll a, phycocyanin,
and DOsat) and act in response to their dynamics. Thresholds
for concern and action could have been established and used for
decision making. Further, the QD method could be adapted for
use based on the state variable dynamics rather than statistics.
Such an approach might be logical for management situations.
However, the generic statistical indicators we used are derived
from theory related to loss of resilience and changes in these
statistical indicators are often detectable long in advance of a
regime shift (34). Changes in state variables, especially if there are
thresholds, may be sudden. Further, the earliest warning from a
resilience indicator came at a time when the corresponding state
variable, phycocyanin (our most direct measure of cyanobacteria;
Supporting Information), was only slightly higher than the reference
lake (Fig. 1). With time series of sufficient length premanipulation
and postmanipulation, the resilience indicators are sensitive,
whereas judging state variable changes may be more difficult (34).
The most effective indicators for early warning are likely context

specific. In this study, the pigment statistical indicators performed
better than those derived from DO%sat. pH was too sensitive to
nutrient addition and difficult to compare with the reference lake
to use as a resilience indicator (Methods). In the case of oxygen, the
constant equilibration with the atmosphere modifies the dynamics
of DO during a bloom. Hence, the range of DO%sat was more
limited than that of the pigments. Nonetheless, DO%sat can be
useful as an indicator of an impending regime shift (35), although
in some cases, DO%sat alarms are delayed compared with those
derived from other resilience indicators (36).
We measured temporal dynamics using sensors and samples

from a single, centrally located station on each lake. Spatial
heterogeneity might also contribute to the variability we ob-
served. Spatial analysis can provide early warnings (37), and we
are exploring the potential of this approach using a measurement
system that can provide spatial maps of indicator variables (38).
Managers cannot usually turn off drivers that are moving an

ecosystem toward a threshold. In the case of nutrient pollution,
considerable loading to aquatic ecosystems arises from nonpoint
sources, which are difficult to remediate (39). Further, once
eutrophication occurs, severe internal loading of nutrients from
sediments may continue for decades even in cases where external
loads are reduced (21). Our manipulation was, therefore, ide-
alized relative to management situations and did not simulate
the long-term processes that cause eutrophication such as those
considered by Carpenter and Brock (40). However, for phyto-
plankton blooms, there are interventions such as the use of al-
gaecides, water diversions, and additions of coagulants. Such
treatments are frequently applied, especially to drinking water
supplies. Application of resilience indicators in water bodies
subject to these interventions may be helpful through earlier
action that might reduce treatment costs and limit undesirable
effects such as toxicity to humans, domestic animals, and wildlife.
Experience with indicators of declining resilience is advancing

and providing insight into utility and application (9). Capabilities

and weaknesses of generic indicators, such as autocorrelation and
variance, have been refined by theoretical research (13, 41).
Resilience indicators have been evaluated with experiments: in
laboratory populations of zooplankton (14), yeast (15), and cya-
nobacteria (16); in pitcher plant community oxygen dynamics (35);
and in lake food webs (17). In our current study an ecosystem re-
gime shift was prevented by intervention based on resilience indi-
cators. Collectively, experiments that reveal clear evidence for
resilience indicators have used explicit models of the ecosystem
processes, detailed measurements tailored to the expected dynam-
ics, and controls or reference ecosystems. In contrast, situations
where dynamics are poorly understood, data are collected for an-
other purpose, or reference ecosystems are not available may fail to
generate discernible changes in resilience indicators (8). In addition,
resilience indicators need to be evaluated under a wider variety of
experimental conditions to better understand their efficacy.
Ecosystems are increasingly stressed by ongoing and sustained

changes in climate, land use, nutrient flows, and other factors (42).
These trends may increase the frequency of regime shifts in eco-
systems, and legacies of accumulated change may have already
committed some ecosystems to future regime shifts (43). In some
situations, resilience indicators may provide useful warnings of
impending and unwanted regime shifts. Nonetheless, many envi-
ronmental threats are evident without resilience statistics, and in
other cases, catastrophic changes may occur without warning (44).
In a time of strong directional change in fundamental drivers of
ecosystem processes, the best insurance is to maintain a safe op-
erating space for crucial ecosystem processes (45). Resilience in-
dicators may help locate boundaries for favorable spaces that
maintain ecosystem processes and human well-being.

Methods
Study Site and Design. The study was conducted from May 9 to September 4,
2015. We used Peter and Paul Lakes (46°25′N, 89°50′W), which are separated
by a dike and located at the University of Notre Dame Environmental Re-
search Center in Michigan. The glacially formed lakes are small and deep
relative to their surface area with low dissolved inorganic carbon concen-
trations and circumneutral pH (Table 2). The lakes have moderate levels of
dissolved organic carbon and are a slightly brown color as indicated by light
absorption values measured at 440 nm (Table 2). Nutrient concentrations are
low (e.g., total phosphorus of 10–15 μg·L−1), and phytoplankton biomasses
are also low, as indicated by chlorophyll concentrations (typically, summer
mean values <5–10 μg·L−1). Conditions in Tuesday Lake, the continuously
enriched lake, are described in Tuesday Lake.

Paul Lake was unmanipulated, whereas Peter Lake was fertilized with
H3PO4 and NH4NO3 at a N:P molar ratio of 15:1. The liquid nutrient mixture
was added at a loading rate of 3 mg P·m−2·d−1 by pumping the liquid from a
boat into the propeller wash of an electric motor while moving around the
lake. Additions were made daily between the hours of 1000 hours and 1200
hours local time and were done after any sampling on that day. Nutrient
additions commenced on day of year 151.

High-Frequency Sensor Measurements. Phycocyanin, DO, pH, and temperature
were measured every 5 min using sensors on a Hydrolab sonde deployed at
0.75 m in each lake (Equipment and Methods for High-Frequency Mea-
surements). Sondes were routinely calibrated following procedures recom-
mended by the manufacturer. For phycocyanin we report instrument values
that are relative measures based on fluorescence. These instrument values
were compared with direct pigment measurements (Phycocyanin in Situ
Fluorescence in Relation to in Vitro Measurements). All of the sensor data
were recorded by a data logger and transferred each day to a shore-based
computer using radio telemetry. Sensor variable means were calculated daily
as well as the resilience indicators (see below). The time series for the sensor
analysis ran from DOY 129 to 247.

Phytoplankton Biomass and Community Structure.We measured chlorophyll a
daily at 0.5 m in each lake to estimate phytoplankton biomass. We filtered
200 mL of water through GF/F filters that were then frozen and later
extracted in methanol. Chlorophyll concentrations in the extracts were de-
termined with a fluorometer using standard methods (46). Chlorophyll
measurements began on DOY 143, and thus, the prebloom time series for

Table 2. Morphometry and lake physical and chemical variables
for the reference (Paul) and manipulated (Peter) lakes

Variable Reference (Paul Lake) Manipulated (Peter Lake)

Surface area, ha 1.7 2.7
Mean depth, m 2.7 5.7
Color, m−1 1.21 (0.13) 1.58 (0.15)
DOC, g·m−3 4.51 (0.95) 5.78 (0.68)
DIC, g·m−3 1.44 (0.09) 1.04 (0.34)
pH 6.53 (0.25) 7.18 (0.93)

Mean values and SDs are based on weekly samples from late May to early
September 2015.
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this variable was shorter than for sonde-measured variables, phycocyanin and
DO%sat. Phytoplankton community structure was also measured monthly using
microscopic counts of glutaraldehyde preserved samples.

Data Analysis and Resilience Indicator Calculations. The data for determining
the resilience indicators consisted of daily manual measurements of chlo-
rophyll a and high-frequency measurements of phycocyanin and dissolved
oxygen obtained by the sensors. We used the daily manual chlorophyll a and
sensor-based phycocyanin data because these were the most reliable data
sources (Equipment and Methods for High-Frequency Measurements). The
sensor data were downloaded daily via short-wave radio, whereas the
chlorophyll analyses were performed every few days in the laboratory. Data
were processed according to an automated workflow with the following
tasks: (i) cleaning of erroneous points, (ii) calculation of resilience indicators
and quickest detection (QD) alarms (see below), (iii) visualizations of data
and indicators uploaded to a team website, and (iv) notification of team
members via email and text message if there was a QD alarm. Cleaning in-
volved removing gaps and errors in the sensor data before calculating daily
average values. The sources of gaps in the data included sondes being re-
moved for calibration and cleaning as well as data points corresponding to
instrument error/malfunction that were removed manually (e.g., bubbles/
particles caught on probes) or through an automated quality control algo-
rithm developed by the authors (i.e., outliers more than five SDs away from
the weekly mean).

We calculated rolling windows of SD and lag-1 autocorrelation on daily
averaged log-transformed values of the pigments and of untransformed
values of dissolved oxygen (percent saturation). Although continuously
measured pH was a good indicator of primary production, we did not cal-
culate resilience indicators from this variable, because of differences between
pH in the reference and manipulated lakes (Table 1) and because changes in
pH were highly sensitive to nutrient addition. After 28 d of data collection,
rolling window SD and autocorrelation were calculated for chlorophyll a,
phycocyanin, and DO%sat. Each successive day, the time window was iterated
and the calculation repeated. Iteration of these daily calculations created
rolling window measures of the resilience indicators for the three variables.
The rolling window time period of 28 d was chosen a priori and was based
on previous experience where we found that this window length is suffi-
ciently long to provide precision but short enough to capture important
dynamics in the time series (17, 47). We subsequently varied window length
to test the sensitivity of this choice on the timing and number of alarms
(Sensitivity of Alarms to Choice of Rolling Window Length and Table S1).

Rollingwindowresilience indicatorswere examined for earlywarnings. Rise in
SD before a bloomwas evaluated using Kendall’s tau to test for a positive trend
(34). Autocorrelation approaching 1 was judged by determining if values in the
manipulated lake exceeded 0.8 and if autocorrelations were distinct from

trends in the reference lake. We also tested the impact of detrending on the
performance of early warning indicators (Results of Indicator Early Warnings
Using Detrended Values and Table S2).

We used the resilience indicators to generate warning using the QD
method (27) and based our real-time decision to halt nutrients on QD alarms.
This method evaluates the ratio of the likelihood that a warning has arrived
to the likelihood that the ecosystem is in the baseline state, conditional on
the most recent observation. The updated likelihood ratio, called the Shiryaev–
Roberts statistic, minimizes the time to detection of an early warning if the
expected time to a false alarm is greater than a specified bound (48). In
practice, we chose the bound for the Shiryaev–Roberts statistic to be within
the range where time to first alarm was not sensitive to the bound evalu-
ated using numerical experiments (27). The probability densities were N(μ,σ).
For evaluating resilience using the lag-1 autocorrelation, μ and σ in the
baseline ecosystem state were the values observed in Paul Lake, the refer-
ence ecosystem. After the alarm is received, μ = 1, and σ is the observed
value in Paul Lake. For evaluating resilience using the SD, in the baseline
ecosystem state, μ is the value observed in Paul Lake, and σ is the pooled
value observed in Paul and Peter lakes, σpool. After the alarm is received, μ is
the observed value for Paul Lake plus 2σpool, and σ = σpool.

The decision to halt the nutrient additionswasmade based on the statistics
derived from the phycocyanin sensor and the manual chlorophyll. We ex-
amined the statistics daily and halted nutrients after all four resilience in-
dicator statistics (i.e., rolling window SDs and ACs for chlorophyll and
phycocyanin) produced an alarm. Subsequent to the field season, data gaps
from these high-frequency measurements were filled with data taken si-
multaneously using backup instruments (a YSI sonde) with similar sensors
deployed in each lake (Supporting Information). We used a maximum like-
lihood multivariate autoregressive state–space model (MARSS package ver-
sion 3.9) in R version 3.2.1 (49) to fit a bivariate model of the primary and
backup sensors and impute missing observations. This method uses in-
formation in both time series to minimize bias that could occur when filling
data gaps. Data inserted to fill gaps represented 1.4% of the observations.
The finalized variable series and resilience indicator statistics based on
MARSS are presented here (Figs. 1 and 2), but the real-time decision was
made based on the running observations during the field season.
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