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Organisms within all domains of life require the cofactor cobalamin
(vitamin B12), which is produced only by a subset of bacteria and
archaea. On the basis of genomic analyses, cobalamin biosynthesis
in marine systems has been inferred in three main groups: select
heterotrophic Proteobacteria, chemoautotrophic Thaumarchaeota,
and photoautotrophic Cyanobacteria. Culture work demonstrates
that many Cyanobacteria do not synthesize cobalamin but rather
produce pseudocobalamin, challenging the connection between the
occurrence of cobalamin biosynthesis genes and production of the
compound in marine ecosystems. Here we show that cobalamin and
pseudocobalamin coexist in the surface ocean, have distinct micro-
bial sources, and support different enzymatic demands. Even in the
presence of cobalamin, Cyanobacteria synthesize pseudocobalamin—
likely reflecting their retention of an oxygen-independent path-
way to produce pseudocobalamin, which is used as a cofactor in
their specialized methionine synthase (MetH). This contrasts a
model diatom, Thalassiosira pseudonana, which transported pseu-
docobalamin into the cell but was unable to use pseudocobalamin
in its homolog of MetH. Our genomic and culture analyses showed
that marine Thaumarchaeota and select heterotrophic bacteria pro-
duce cobalamin. This indicates that cobalamin in the surface ocean is
a result of de novo synthesis by heterotrophic bacteria or via mod-
ification of closely related compounds like cyanobacterially pro-
duced pseudocobalamin. Deeper in the water column, our study
implicates Thaumarchaeota as major producers of cobalamin based
on genomic potential, cobalamin cell quotas, and abundance. To-
gether, these findings establish the distinctive roles played by abun-
dant prokaryotes in cobalamin-based microbial interdependencies
that sustain community structure and function in the ocean.
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Cobalamin (vitamin B12) is synthesized by a select subset of
bacteria and archaea, yet organisms across all domains of life

require it (1–3). In the surface ocean, cobalamin auxotrophs (in-
cluding most eukaryotic algae) (3) obtain the vitamin through di-
rect interactions with cobalamin producers (3) or breakdown of
cobalamin-containing cells (4, 5). Interdependencies between ma-
rine cobalamin producers and consumers are critical in surface
waters where primary productivity can be limited by the availability
of cobalamin and the compound is short-lived (1, 6, 7). The ex-
change of cobalamin in return for organic compounds is hypoth-
esized to underpin mutualistic interactions between heterotrophic
bacteria and autotrophic algae (3, 6, 8, 9). The apparent perva-
siveness of cobalamin biosynthesis genes in chemoautotrophic
Thaumarchaeota and photoautotrophic Cyanobacteria genomes
(1, 10, 11) raises the question of whether cobalamin production by
these autotrophs may underlie additional, unexplored microbial
interactions.
Cobalamin is a complex molecule with a central cobalt-containing

corrin ring, an α ligand of 5,6-dimethylbenzimidizole (DMB), and
a β ligand of either OH-, CN-, Me-, or Ado- (12) (Fig. 1). Previous
studies have shown that instead of producing cobalamin, Cyano-
bacteria produce pseudocobalamin (11, 13, 14), an analog of

cobalamin in which adenine substitutes for DMB as the α ligand
(12) (Fig. 1). Production of pseudocobalamin in a natural marine
environment has not been shown, nor have reasons for the pro-
duction of this compound in place of cobalamin been elucidated.
To explore the pervasiveness of cobalamin and pseudocobala-

min supply and demand in marine systems, we determined the
standing stocks of these compounds in microbial communities
from surface waters across the North Pacific Ocean using liquid
chromatography mass spectrometry (LC-MS). Our LC-MS method
(15) quantifies cobalamin and pseudocobalamin with different β
ligands. We found that in the surface ocean, pseudocobalamin and
cobalamin concentrations associated with organisms and detritus
captured on a 0.2-μm filter (particulate fraction) were often of
equal magnitude (Fig. 2B). Pseudocobalamin had peak concen-
trations within the euphotic zone at each station and was not de-
tected below the euphotic zone. In contrast, cobalamin was
measurable throughout the sampled waters and maintained
similar or higher concentration from the lower euphotic zone to
our deepest samples (Fig. 2A and Fig. S1).
The overlapping spatial distribution of cobalamin and pseudo-

cobalamin suggests that these cofactors are produced in each other’s
presence, likely with different sources and sinks. To investigate cor-
relations between Cyanobacteria and pseudocobalamin abundance,
we compared observations of Cyanobacteria carbon inferred from
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flow cytometry with pseudocobalamin measurements taken at the
same depth. In cases where we had both continuous measure-
ments (by SeaFlow) (16) and discreet flow cytometry data, we
used the discreet measurements, as collection of these samples
was closely coupled in time and space to pseudocobalamin sam-
pling (n = 16 for discreet, n = 4 for continuous). Pseudocobalamin
concentrations are statistically correlated with carbon from Syn-
echococcus and Prochlorococcus (R2 = 0.71, P < 0.001), both in
the surface and into the subsurface ocean (Fig. 2C), suggesting a
primarily cyanobacterial source. No significant correlation existed

between Cyanobacteria carbon and cobalamin concentrations
(Fig. S2).
To identify the major producers of cobalamin and pseudoco-

balamin in the environment, we investigated representative
marine isolates and then expanded our search into available
genomes that encompass the phylogenetic diversity at our study
site. As expected (1, 8), two strains of marine Alphaproteobac-
teria with cobalamin synthesis genes (Sulfitobacter sp. SA11 and
Ruegeria pomeroyi DSS-3) produced cobalamin, whereas the
gammaproteobacterium Vibrio fischerii ES114 (which lacks co-
balamin biosynthesis genes) did not (Table S1). Four pure strains
of marine chemoautotrophic Thaumarchaeota (Nitrosopumilus
spp. SCM1, HCE1, HCA1, and PS0) also produced cobalamin
(Table S1), confirming earlier suggestions based on the presence
of cobalamin biosynthesis genes in Thaumarchaeota genomes
(10). Like other Cyanobacteria (11, 13, 14), four axenic strains of
marine Cyanobacteria (Prochlorococcus MED4 and MIT9313
and Synechococcus WH8102 and WH7803) produced pseudo-
cobalamin (Table S1). In all of the cobalamin or pseudocoba-
lamin producers, we detected compounds with β ligands Me-,
Ado-, and OH- but not CN- (Table S1).
The observed cell quotas of cobalamin or pseudocobalamin per

cellular carbon varied greatly among producers (Table S1). Lab-
oratory cultures of Alphaproteobacteria and Procholorococcus strains
had lower amounts of cobalamin or pseudocobalamin (less than
1,200 nmol cobalamin analog per mole carbon) than Synechococcus
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Fig. 1. General form of cobalamin analogs. Shown is a schematic of the
conserved corrin ring with various upper (β) and lower (α) ligands. Structures
of cobalamin analogs monitored in this study (eight total) are shown.
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and Thaumarchaeota isolates (1,480–11,600 nmol cobalamin ana-
log per mole carbon). Published values (17) for sea ice bacterial
isolates estimated using a bioassay were highly variable (0.6–6,800
nmol cobalamin analog per mole carbon). In our environmental
samples, we observed an average stoichiometry of 87 nmol pseu-
docobalamin per mole cyanobacterial carbon, lower than the cya-
nobacterial isolates (Fig. 2C). This finding suggests that the cellular
stoichiometry of pseudocobalamin is variable and possibly influenced
by environmental factors like nutrient availability and growth rate.
To expand the breadth of our survey beyond laboratory isolates,

we inspected publically available whole genome sequences from
bacteria and Thaumarchaeota for evidence of cobalamin bio-
synthesis. This analysis expands on previous work (18) while fo-
cusing on the phylogenetic groups present at our study site.
We analyzed full genomes from the Integrated Microbial Ge-
nomes (IMG) database (https://img.jgi.doe.gov) from phylogenetic
groups that encompassed >99.9% of the Bacterial 16S rRNA gene
sequences from our environmental samples to develop a system-
atic inference of cobalamin synthesis capacity (3,410 genomes).
Alpha- and Gammaproteobacteria are hypothesized to be major
marine cobalamin producers (1, 10), and 94% of the surveyed
genomes from these groups that contain genes necessary for corrin
biosynthesis (i.e., cbiA/cobB, cbiH/cobJ) (2) also have genes for
DMB synthesis and activation (bluB, cobT) (2, 19, 20) (Fig. 3),
consistent with the synthesis of cobalamin and the results from our
representative cultures. All of the eight available high-quality
Thaumarchaeota genomes in the IMG database code for corrin
and DMB biosynthesis genes (Fig. 3). Most of the lower quality,
incomplete genomes available follow this same pattern (17/19,
Dataset S1). No Thaumarchaeota genomes possess the cobT gene
and thus must activate DMB through a different pathway. Of the
255 cyanobacterial whole genomes, 247 possessed genes for the
synthesis of the corrin ring, but only one genome possessed an
annotated bluB or cobT gene (Fig. 3), suggesting the vast majority
of Cyanobacteria are unable to produce DMB, in agreement with
a recent study that examined a subset of the available Cyano-
bacteria genomes (11).

All of the 49 Prochlorococcus genomes have genes for corrin
synthesis without genes for DMB synthesis or activation, and our
analysis demonstrated that Prochlorococcus MED4, with its highly
streamlined genome (21), has maintained these genes to synthesize
pseudocobalamin. We propose this originates from an ancient
specialization to the production and use of pseudocobalamin in
lieu of cobalamin among Cyanobacteria. Biosynthesis of the corrin
ring can occur via two separate pathways: an O2-dependent or an
O2-independent pathway (2, 18). DMB synthesis can also oc-
cur via two separate routes, the O2-dependent BluB (19) or the
O2-independent and O2-sensitive Bza pathway (22). Rhodobacters
have the O2-dependent corrin ring and DMB pathways (11),
whereas Thaumarchaeota likely possess the O2-independent path-
way for the corrin ring and the O2-dependent DMB pathway (10).
In some bacteria, pseudocobalamin can be produced if DMB
synthesis is impaired; this is due to the natural presence of adenine
in cells and enzyme substrate promiscuity that allows adenine to
substitute for DMB in some organisms’ CobT (22–27). Cyano-
bacteria use the O2-independent pathway for corrin ring synthesis
and neither pathway for DMB synthesis (11, 18) (Fig. 3). The
use and production of cobalamin as a cofactor predates oxygenic
photosynthesis (28, 29). Possessing an O2-independent mode for
producing a cobalamin analog that is not impaired by O2 may have
been necessary for the success of oxygenic photosynthetic Cyano-
bacteria that were largely responsible for the rise of O2 on earth
and likely endured variable O2 concentrations over time (30).
Cyanobacteria use pseudocobalamin as a cofactor in two en-

zymes: methionine synthase (MetH) and class II ribonucleotide re-
ductase (NrdJ). The 3D structure of MetH contains three β pleated
sheets and two α helices that form a pocket for the DMB ligand of
cobalamin in Escherichia coli (31, 32). Cyanobacterial MetH is
predicted to form the same pocket (13). However, conserved amino
acids within this pocket in the cyanobacterial MetH differ from se-
quences of organisms known to use cobalamin (Figs. S3 and S4),
suggesting a structure that preferentially binds pseudocobalamin in
place of cobalamin as experimentally demonstrated in the Cyano-
bacteria Arthrospira (13). Many Cyanobacteria also code for O2-in-
dependent NrdJ (33), which has limited sequence similarity to
noncyanobacterial NrdJ (34, 35). Similar to pseudocobalamin bio-
synthesis in Cyanobacteria, NrdJ is both O2-independent and
O2-insensitive and has been hypothesized as an important bridge
between the pre- and postoxygenated oceans (36). The continued
maintenance of both the biosynthetic pathway and pseudocobala-
min-dependent enzymes throughout the diverse Cyanobacteria
phylum (from Arthrospira and Synechocystis to the highly stream-
lined Prochlorococcus) suggests the production of pseudocobalamin
is an ancient relic that persists in the oxic marine environment today.
For many eukaryotic algae, pseudocobalamin supports lower

growth yields than cobalamin (11, 37, 38). We examined the un-
derlying cause of this reduced growth by supplying the model
diatom Thalassiosira pseudonana (CCMP 1335) with pseudoco-
balamin and tracking it into the cells. Like others, we found that
growth of T. pseudonana is limited at 1 pM cobalamin (39), and
the addition of pseudocobalamin (at 200 pM) is unable to over-
come this limitation (11, 38). We observed that T. pseudonana
takes up the inactive OH-pseudocobalamin from their growth
media and converts it into the cofactor form Ado-pseudocobala-
min yet is unable to recover to cobalamin-replete growth rates
(Fig. 4, Fig. S5, and Table S2). The role of Ado-cobalamin in
diatoms is unclear, although T. pseudonana does code for Ado-
cobalamin–dependent methylmalonyl-CoA mutase (MCM) and
actively transcribes a putative adenosylcobalamin transferase
(which converts OH-cobalamin to Ado-cobalamin) under co-
balamin limitation (39). Previous studies suggest that when dia-
toms are starved for cobalamin, low Me-cobalamin (required for
MetH activity) deprives cells of S-adenosylmethionine (SAM)
(7, 39). We found that when pseudocobalamin is supplied to co-
balamin-limited T. pseudonana, they contain significantly less
SAM per cell than cobalamin-replete conditions (Fig. 4, Fig. S5,
and Table S2). The depressed levels of SAM and lack of detect-
able Me-pseudocobalamin within cells suggest that T. pseudonana
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are unable to efficiently use pseudocobalamin in their MetH. This
same phenomenon has been demonstrated physiologically in
marine cobalamin-dependent bacteria: Cobalamin or methionine
stimulates growth, but pseudocobalamin does not (40). These
combined findings demonstrate that marine Cyanobacteria
achieve both independence and a competitive advantage by pro-
ducing and requiring only pseudocobalamin; they meet their own
need for their preferred cofactor while also not directly supplying
cobalamin to other photoautotrophs.
Corrin synthesis genes in oligotrophic surface water meta-

genomes are dominated by pseudocobalamin-producing Cyano-
bacteria (10), suggesting that de novo production of true
cobalamin in these regions is limited to a small subset of hetero-
trophic bacteria, including clades like Rhodobacterales that are
commonly associated with eukaryotic algae (9). Cobalamin auxo-
trophs may foster close physical or chemical relationships with
these cobalamin producers, offsetting the expense of cobalamin
biosynthesis to secure a consistent cobalamin source. Alterna-
tively, organisms may employ techniques to use closely related
compounds like pseudocobalamin. Many organisms without the
biosynthetic capacity for de novo production of cobalamin have
salvage or remodeling strategies for reactivating cobalamin ana-
logs (11, 20, 41). A recent study has shown that some eukaryotic
algae have the genetic capacity to make cobalamin when supplied
with pseudocobalamin and DMB, although this phenomenon may
be limited by low DMB concentrations in natural seawater (11),
and DMB biosynthesis seems to be limited to bacteria and ar-
chaea. Of the 3,408 phylogenetically representative prokaryote
genomes we surveyed, we found 73 genomes that did not have the
biosynthetic pathway for the corrin moiety of cobalamin but did
have genetic capacity for cobalamin repair as well as synthesis and

activation of DMB, which has no known role in cells beyond α
ligand of cobalamin. These organisms include several heterotrophic
bacteria known to occur in marine environments such asMethylophaga
and Marinobacter (Dataset S1). Previous work has suggested that
ligand-bound cobalt in low latitudes may be cobalamin degradation
or precursor compounds, which are present at concentrations much
higher than has been observed for dissolved cobalamin (1, 15, 42).
In these environments, organisms capable of salvaging and repair-
ing cobalamin degradation products or precursors could be major
suppliers of cobalamin to the environment and de novo biosyn-
thesis may take a minor role. The prevalence of cobalamin salvage
pathway transcripts in marine systems (6) suggests that synthesizing
DMB or remodeling cobalamin is a common strategy that plays an
important role connecting the production of pseudocobalamin to
the growth of cobalamin auxotrophs in the low latitude oceans
where Cyanobacteria are abundant.
We inspected genomes of marine prokaryotes to identity likely

cobalamin producers in our study site. We combined bacterial
16S rRNA gene sequence-derived phylogenetic data with current
knowledge of corrin biosynthesis genes (including our analysis)
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Fig. 5. Pseudocobalamin and cobalamin producers at station 3. Shown are
particulate cobalamin (closed blue circles), pseudocobalamin (orange open
circles), prokaryote cell abundance (black diamonds), and in situ fluorescence
(gray). Bar graphs show prokaryote population with the following predicted
cobalamin strategies: unlikely producers (gray), bacteria with unknown co-
balamin biosynthesis capacity (gray/blue striped), bacteria that are likely to
produce cobalamin (blue), Thaumarchaeota (likely to produce cobalamin,
white), and Cyanobacteria (likely to produce pseudocobalamin, orange) at
the corresponding depths. Cobalamin and pseudocobalamin concentrations
are as in Fig. 2.
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across different phylogenetic groups to infer the cobalamin
biosynthetic capacity of organisms in the microbial communities
at our study site as likely, unknown, or unlikely (Table S3). We
quantified Thaumarchaeota by quantitative PCR (qPCR) (43,
44) and calculated their contribution to the microbial population
by comparing this value to direct counts of prokaryotic cells
determined for each sample. Our analysis at five targeted loca-
tions in the North Pacific suggested that Thaumarchaeota rep-
resent 30–80% of prokaryotes having likely or unknown genetic
capacity to synthesize cobalamin in the lower euphotic zone and
deeper (Fig. 5 and Fig. S1). High cobalamin contents on a per
carbon basis in cultured Thaumarchaeota implicate them as a
major source of cobalamin in deeper waters (Table S1).
Like Prochlorococcus, marine Thaumarchaeota have main-

tained several genes committed to the biosynthesis of cobalamin
in their small genomes. Detection of MCM, NrdJ, BluB, and
cobalamin biosynthesis proteins in the proteome of an oceanic
thaumarchaeote with a highly streamlined genome, “Candidatus
Nitrosopelagicus brevis,” implies that cobalamin is actively pro-
duced and used in these microbes (45). In Thaumarchaeota, the
cobalamin-dependent MCM catalyzes a key step in their excep-
tionally energy-efficient pathway for carbon fixation (46–48).
The scarcity of dissolved cobalamin in the water column (often
<1 pM as assessed by bioassay) (1) and enzymatic demands like
MCM may have necessitated that Thaumarchaeota retain the
ability to synthesize cobalamin. Thaumarchaeota likely play a
critical role in the microbial loop in the lower euphotic zone and
deeper by providing an essential nutrient to cobalamin auxo-
trophs. In turn, the auxotrophs provide substrates that promote
Thaumarchaeota growth (49, 50)—most critically the ammonia
required by the ammonia-oxidizing Thaumarchaeota (46).
Although Thaumarchaeota and select heterotrophic bacteria

synthesize cobalamin, undoubtedly benefiting from being their
own source of their preferred cofactor, the production of dis-
similar cobalamin analogs by marine Cyanobacteria is likely a
result of their distinct ecological niches, enzymatic demands, and
interactions with other cobalamin-dependent organisms. Pro-
ducers of cobalamin and related compounds thus play distinct
roles in cobalamin-based microbial interdependencies that sus-
tain primary productivity and shape marine community structure.

Materials and Methods
Environmental samples for cobalamin and pseudocobalamin, phytoplankton
abundance, archaeal gene quantification, prokaryotic cell abundance, and
DNA for 16S rRNA sequencing were collected in August 2013 along the
historical transect Line P to ocean station papa (our station 3), then following

150 W to the south into the North Pacific subtropical gyre sampling from the
surface down to a maximum depth of 300 m, as shown in Fig. 2. Culture and
environmental samples were analyzed for cobalamins, pseudocobalamins, and
SAM using an organic solvent extraction (51) paired with LC-MS (15), both
modified as described in SI Materials andMethods (Figs. S6 and S7 and Table S4).
Phytoplankton abundance was monitored continuously using SeaFlow (16), in
addition to discreet samples taken at depth and analyzed by flow cytometry.

We investigated 11 axenic strains of marine prokaryotes for demonstrable
evidence of cobalamin or pseudocobalamin production: four strains of
Nitrosopumilus spp. (SCM1, HCA1, HCE1, and PS0), two strains of Prochlorococcus
(MED4 and MIT9313), two strains of Synechococcus (WH7803 and WH8102),
Sulfitobacter sp. SA11 (52), R. pomeroyi DSS-3, and V. fischerii ES114. We
used the model diatom T. pseudonana to investigate the fate of pseudoco-
balamin in eukaryotic algae by culturing it under three conditions: cobalamin
limited, cobalamin replete, and cobalamin limited with pseudocobalamin. To
compare cobalamin- and pseudocobalamin-binding sites in MetH, we gath-
ered MetH amino acid sequences from organisms known to use true cobala-
min or pseudocobalamin as their cofactor. We then aligned the sequences and
used a known crystal structure (32, 53) to visualize the binding pocket.

We used publically available full genomes from the IMG database that
phylogenetically represent organisms at our study site and searched for
cobalamin biosynthesis genes in these genomes (genomes and functions we
used are listed in Dataset S1). We quantified Thaumarchaeota via qPCR and
performed direct cell counts to quantify total prokaryotes as previously
described (43, 44, 54). DNA for 16S rRNA sequencing was extracted, ampli-
fied, and sequenced as described in SI Materials and Methods. Operational
taxonomic units (OTUs) were called using a 97% nucleotide identify
threshold, and taxonomic inference was based on the SILVA rRNA gene
database (https://www.arb-silva.de). This yielded phylogenetic information
we combined with the current knowledge of cobalamin-biosynthesis ca-
pacity (from the literature and our whole genome analysis) to estimate the
contribution of Thaumarchaeota to the prokaryotic community with the
potential for cobalamin biosynthesis capacity at our sampling sites. Further
details on all aspects of the methods are given in SI Materials and Methods.
Environmental data are supplied in Dataset S2.
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