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Working memory (WM) is a cognitive function for temporary
maintenance and manipulation of information, which requires
conversion of stimulus-driven signals into internal representa-
tions that are maintained across seconds-long mnemonic delays.
Within primate prefrontal cortex (PFC), a critical node of the
brain’s WM network, neurons show stimulus-selective persistent
activity during WM, but many of them exhibit strong temporal
dynamics and heterogeneity, raising the questions of whether,
and how, neuronal populations in PFC maintain stable mnemonic
representations of stimuli during WM. Here we show that despite
complex and heterogeneous temporal dynamics in single-neuron
activity, PFC activity is endowed with a population-level coding
of the mnemonic stimulus that is stable and robust throughout
WM maintenance. We applied population-level analyses to hun-
dreds of recorded single neurons from lateral PFC of monkeys
performing two seminal tasks that demand parametric WM: ocu-
lomotor delayed response and vibrotactile delayed discrimination.
We found that the high-dimensional state space of PFC population
activity contains a low-dimensional subspace in which stimulus
representations are stable across time during the cue and delay
epochs, enabling robust and generalizable decoding compared
with time-optimized subspaces. To explore potential mechanisms,
we applied these same population-level analyses to theoreti-
cal neural circuit models of WM activity. Three previously pro-
posed models failed to capture the key population-level features
observed empirically. We propose network connectivity proper-
ties, implemented in a linear network model, which can underlie
these features. This work uncovers stable population-level WM
representations in PFC, despite strong temporal neural dynam-
ics, thereby providing insights into neural circuit mechanisms sup-
porting WM.
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he neuronal basis of working memory (WM) in prefrontal

cortex (PFC) has been studied for decades through single-
neuron recordings from monkeys performing tasks in which a
transient sensory stimulus must be held in WM across a seconds-
long delay to guide a future response. These studies discovered
that a key neural correlate of WM in PFC is stimulus-selective
persistent activity, i.e., stable elevated firing rates in a subset of
neurons, that spans the delay (1). These neurophysiological find-
ings have grounded a leading hypothesis that WM is supported
by stable persistent activity patterns in PFC that bridge the gap
between stimulus and response epochs. Because the timescales
of WM maintenance (several seconds) are longer than typical
timescales of neuronal and synaptic integration (~10-100 ms),
mechanisms at the level of neural circuits may be critical for gen-
erating WM activity in PFC (2). A leading theoretical framework
proposes that PFC circuits subserve WM maintenance through
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dynamical attractors, i.e., stable fixed points in network activity,
generated by strong recurrent connectivity (3, 4).

Recent neurophysiological studies have called into question
whether WM activity in PFC can be appropriately understood in
terms of persistent activity and attractor dynamics. These studies
highlight the high degree of heterogeneity and strong temporal
dynamics in single-neuron responses during WM (5, 6), rather
than temporally constant activity patterns. Because only a small
proportion of WM-related PFC neurons show well-tuned, stable
persistent activity, attractor dynamics may not be the domi-
nant form of WM coding. Researchers have emphasized alter-
native forms of population coding, specifically dynamic coding,
in which the mnemonic representation shifts over time during
WM maintenance (7, 8). In turn, such observations have moti-
vated theoretical proposals for alternative neural circuit mech-
anisms for WM that produce dynamical and heterogeneous
activity (9, 10).

These studies centralize a tension between temporal dynamics
and stable coding of stimulus features during WM maintenance.
In high-dimensional state spaces of network activity, however, it
is possible for heterogeneous neuronal dynamics to coexist with
a stable population coding for WM within a specific subspace
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(11). Whether dynamic activity in PFC supports a robust sta-
ble population coding for WM remains unclear. Furthermore,
dynamic coding raises the challenge of how WM information in
PFC can be robustly read out through plausible neurobiological
mechanisms, because a subspace corresponds to a set of readout
weights (12).

To investigate these issues, we applied population-level anal-
yses to two large datasets of single-neuron spike trains recorded
in PFC, from two seminal WM tasks: the oculomotor delayed
response (ODR) task (13, 14) and the vibrotacticle delayed
discrimination (VDD) task (15). In both tasks, PFC popula-
tions exhibit strong temporal dynamics during WM, yet there
exists a subspace, identifiable via principal component analysis
(PCA), in which mnemonic representations are coded stably in
time. This mnemonic subspace supports decoding throughout
WM, performing comparably to dynamic coding subspaces. We
found that population measures dissociate among mechanisms
in three previously proposed WM circuit models. Key features
of the PFC data are not captured by these three models, yet
they are by a simple subspace attractor model. Taken together,
our findings demonstrate a stable and robust population cod-
ing for WM in PFC and pose constraints for circuit mechanisms
supporting WM.

Results

Tasks and Datasets. The ODR and VDD tasks share common
features, facilitating comparison across datasets. Both tasks
demand parametric WM of an analog stimulus variable: visu-
ospatial angle for ODR and vibrotactile frequency for VDD
(Fig. 1 A and B). Both tasks have a 0.5-s cue epoch followed
by a 3-s delay epoch, which is relatively long and allows char-
acterization of time-varying WM representations. The tasks also
contrast in several features, allowing us to test the generality of
our findings. They differ in stimulus modality (visual for ODR
vs. somatosensory for VDD), role of WM in guiding behavioral
response (veridical report of location for ODR vs. binary dis-
crimination for VDD), and prototypical stimulus tuning curves
of single PFC neurons (bell shaped for ODR vs. monotonic for
VDD). Each dataset, collected by a different laboratory, con-
tains spike trains from hundreds of single neurons (645 for ODR,;
479 for VDD) recorded from the lateral PFC of two macaque
monkeys (14, 15). To minimize bias in characterizing population
activity, neurons were not preselected for tuning properties.
We used a pseudopopulation approach to study the state—
space dynamics of population activity (8, 12, 16, 17), rather
than the properties of the heterogenous individual neurons
(Figs. S1 and S2). The activity of N neurons corresponds to a
vector in an N-dimensional space, with each dimension repre-
senting the firing rate of one neuron. The time-varying popula-
tion activity for each stimulus condition thereby corresponds to
a trajectory within this space.

Population Dynamics. We first examined the dynamics of pop-
ulation activity during WM by characterizing the similarity of
activity patterns between two timepoints. We calculated the cor-
relation, across neurons, between the population state at one
timepoint and the state at another timepoint, within a stimulus
condition (18). Fig. 1 C and D shows the time course of this
similarity for two reference timepoints: a “sensory” state dur-
ing the cue epoch and a “late memory” state at the end of the
delay epoch. Fig. 1 E and F shows the population correlation
across all timepoints. For both datasets, WM activity patterns
in PFC exhibit strong temporal dynamics with the population
state changing strongly throughout the cue and delay epochs.
The strength of these dynamics can be observed in the late mem-
ory trace (Fig. 1 C and D): The correlation for early in the delay
is as low as it is for the foreperiod. These temporal dynamics at
the population level are consistent with prior characterizations
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Fig. 1. WM tasks and PFC population dynamics. (A) In the ODR task, the
subject fixates on a central point, and a visuospatial cue of variable spa-
tial angle is presented for 0.5 s, followed by a 3-s mnemonic delay. After
the delay, the subject makes a saccadic eye movement to the remembered
location (14). (B) In the VDD task, the subject receives a 0.5-s vibrotactile
stimulus of variable mechanical frequency (cue, f1) to the finger, followed
by a 3-s mnemonic delay. After the delay, a second stimulus (f2) is presented
and the subject reports, by level release, which stimulus had a higher fre-
quency (15). (C and D) Correlation between population states as a function
of time, within the same stimulus condition. The sensory state is defined by
the first 0.25 s of the cue epoch and the late memory state by the last 0.25 s
of the delay epoch. Colored shaded regions mark SEM. (E and F) Correla-
tion between the population states at different timepoints (i.e., time-lagged
autocorrelation). The correlation between states is generally high due to a
broad distribution of overall firing rates across neurons (Fig. S2). The traces
in C and D are slices along the corresponding timepoint.

of delay dynamics at the single-neuron level (5, 6). We note that
trial averaging could obscure dynamics (e.g., oscillations) that are
not phase locked to task timing.

Stable Coding in a Mnemonic Subspace. Are these strong popu-
lation dynamics compatible with stable coding for WM? In the
state—space framework, stable mnemonic coding corresponds
to a fixed subspace within which the neural trajectories during
WM are relatively time invariant and separable across stimu-
lus conditions. To test this hypothesis, we sought to define and
characterize a mnemonic coding subspace. There are a variety
of dimensionality reduction methods to define candidate cod-
ing subspaces. Motivated by the neurobiological relevance of
a mnemonic subspace, which may provide representations for
downstream readout of WM, we sought to define a subspace that
can be plausibly learned for readout via known forms of synaptic
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plasticity. There is an established theoretical literature linking
Hebbian learning to dimensionality reduction via PCA (19-21).
We therefore applied PCA to the time-averaged delay activity
across stimulus conditions (S7 Text) (Fig. S3). The leading & prin-
cipal axes, ranked by variance captured, define a k-dimensional
linear subspace, which we denote the mnemonic subspace, which
lies closest on average to the datapoints. Because this subspace is
defined by time-averaged activity, our approach does not explic-
itly use timing information (as in ref. 16). A primary rationale
is that if a subspace is accessible through time-insensitive PCA,
then it can potentially be learned neurally through Hebbian
plasticity.

Surprisingly, we found that when the neural trajectories are
projected into the mnemonic subspace, the resulting delay activ-
ity is remarkably stable in time, even though this subspace is
not designed to minimize temporal variation (Fig. 2 A and B).
Separation and stability of trajectories can be quantified and
compared through the across-condition stimulus variance and
within-condition time variance (Fig. S4). For ODR, the first
two principal components (PCs) of the mnemonic subspace (i.e.,
the projections of the activity along the corresponding principal
axes) largely reflect the horizontal and vertical stimulus dimen-
sions (Fig. 24 and Fig. S3C). For the leftmost three locations,
traces overlap in the PC1-PC2 subspace but are distinguishable
in higher PCs (Fig. S3 E and F). This compressed representation
of the ipsilateral (left) visual hemifield is expected due to the
prominent contralateral bias for coding of visual space in PFC
(13, 22). For VDD, the first PC of the mnemonic subspace pro-
vides a monotonic, quasi-linear ordering of the cue stimulus fre-
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Fig. 2. Stable population coding of WM coexists with strong temporal
dynamics. (A and B) Population trajectories during the WM delay epoch pro-
jected into the mnemonic subspace, defined via PCA on time-averaged delay
activity. Here the x and y axes show the first and second principal compo-
nents (PC1 and PC2) of the subspace. Each trace corresponds to a stimulus
condition, colored as in Fig. 1 A and B. The shading of the traces marks
the time during the delay, from early (light) to late (dark). (C and D) Three-
dimensional projections, illustrating the strong temporal dynamics coexist-
ing with stable coding in the mnemonic subspace. The x and y axes are as in
A and B. The z axis (time PC1) is an orthogonal axis in the state space that
captures time-related activity variance, but does not indicate time explicitly.
Within each plot, all axes are scaled equally.
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Fig. 3. Stimulus variance captured by the mnemonic and dynamic coding

subspaces. The mnemonic subspace is defined using delay activity as in Fig. 2.
The dynamic subspace is defined from data for each timepoint (0.25 s). The
dimensionality of the subspaces is 2 for ODR (A and C) and 1 for VDD (B
and D), matching the dimensionality of the stimulus feature for each task.
(A and B) Stimulus variance captured for stable mnemonic subspace (blue)
and for a dynamic subspace optimized for each timepoint (red). Chance val-
ues for the stable (gray) and dynamic (brown) subspaces were calculated
by shuffling stimulus trial labels. (C and D) Generalizability of the dynamic
subspace across time. The red curve marks the stimulus variance captured
by the dynamic subspace defined at one time for activity at another time
separated by a given time separation, averaged across timepoints during
the delay. The blue dashed line marks the stimulus variance captured by the
mnemonic subspace, averaged across the delay epoch. The gray dotted line
marks the mean chance level during the delay. Shaded bands mark SEM.

quency (Fig. 2B and Fig. S3D). To visualize population temporal
dynamics in relation to the mnemonic subspace, we constructed
3D projections. In Fig. 2 C and D, the x and y axes show the first
two PCs of the mnemonic subspace. The z axis is an orthogonal
axis in the state space that captures a large amount of time vari-
ance during the delay. Mnemonic subspace trajectories vary in
time more for VDD than for ODR, exhibiting a gradual increase
in separation during the delay. As this view shows, WM activity
undergoes strong changes over time without interfering with cod-
ing that is stable and separable within the mnemonic subspace.

Stable and Dynamic Coding. We have shown that the PCA-defined
mnemonic subspace captures a relatively stable stimulus rep-
resentation throughout the WM delay. However, this subspace
may not capture components of the WM representation that
are highly dynamic during the delay. In a dynamic coding sce-
nario, a fixed subspace would fail to capture much stimulus vari-
ance, because stimulus representations change over time, and
a “dynamic” subspace that is reoptimized for each timepoint
would capture a much larger amount of stimulus variance. To
characterize the relative strengths of stable and dynamic cod-
ing, we measured the amount of stimulus variance captured by
a given subspace (i.e., the resulting firing-rate variance across
stimuli when the population activity, at a given timepoint, is
projected into the subspace), for the mnemonic subspace as
well as for a dynamic subspace that is redefined for each time-
point by the same PCA method. To allow proper comparison
between mnemonic and dynamic subspaces, we applied a split-
data approach for cross-validation and used equal amounts of
training data (SI Text).

We found that the mnemonic and dynamic subspaces capture
significantly more stimulus variance than expected by chance for
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all timepoints across the cue and delay epochs (P < 0.01, ¢ test)
(Fig. 3 A and B). The mnemonic subspace encodes a compara-
ble amount of variance across the cue and delay epochs, even
though it was defined using only delay-epoch data, suggesting
that mnemonic coding begins early during stimulus presentation.
Relative to the mnemonic subspace, the dynamic subspace cap-
tures a comparable amount of stimulus variance during the delay,
but substantially more during the cue. This suggests a separate
sensory representation that is activated during stimulus presen-
tation. For VDD but not ODR, the variance increases substan-
tially toward the end of the delay, due to dynamic coding as well
as increased separation within the mnemonic subspace, which
could potentially be due to task differences in response type.
We tested generalizability of the dynamic subspace by measuring
how well the subspace defined at one timepoint captures stim-
ulus variance in activity at a different timepoint. The amount
of variance captured decays smoothly with increasing separa-
tion between these two timepoints (Fig. 3 C and D and Fig. S5),
reflecting the timescales over which dynamic coding evolves. For
zero time separation, the dynamic subspace captures more vari-
ance on average than the mnemonic subspace, but for all separa-
tions greater than 0.5 s, the mnemonic subspace captures more
variance, showing robustness of stable coding in this subspace.

Decoding. The above findings do not directly test whether the
stimulus can be reliably decoded from neural activity. Even
within a fixed subspace, representations could potentially rear-
range within the subspace across time. To explicitly quantify
decoding accuracy from the mnemonic and dynamic subspaces,
we designed a neurobiologically plausible decoder based on the
nearest-centroid classifier (SI Text). This simple classifier has
a straightforward neural interpretation: winner-take-all selec-
tion following readout from the low-dimensional linear readout
weights defining the subspace. We reserve the spike counts for
a given timepoint from a single trial, for leave-one-out cross-
validation. We construct decoding subspaces, mnemonic and
dynamic, as well as the centroids related to each stimulus con-
dition in those subspaces, using equal amounts of training data
from the other trials. The classifier choice is given by the stimulus
condition whose centroid is nearest to the test datapoint (Fig. 4
A and B).

We found that the mnemonic subspace yielded decoding per-
formance that is above chance during the delay epoch and dur-
ing the cue epoch (P < 0.01, ¢ test), even though the subspace
was trained using only delay-epoch data (Fig. 4 C and D and
Fig. S6). Both subspaces produced comparable performance dur-
ing the delay epoch. Errors in the mnemonic subspace were
typically made to similar stimulus conditions (Fig. S6). Rela-
tive to mnemonic, the dynamic decoder performed substantially
better during the cue and early delay. As with variance cap-
tured (Fig. 3B), for VDD decoding improves in the late delay.
For some timepoints the dynamic decoder performed slightly
worse than the mnemonic decoder, potentially due to noisy sub-
space estimation from limited trials. We tested generalizability
across time of the dynamic subspace classifier (Fig. 4 £ and F
and Fig. S6) and found a gradual decay in performance with
increasing time separation, consistent with prior studies (7, 8).
Compared with mnemonic, the dynamic decoder had marginally
higher decoding performance at zero time separation, but sub-
stantially lower performance when applied to separations greater
than 0.5 s.

Neural Circuit Models. What implications do these findings have
for the neural circuit mechanisms supporting WM activity in
PFC? To investigate this, we applied the same population-level
analyses to four theoretical models of neural WM circuits. We
first analyzed three previously proposed circuit models (S Text).
The first model, denoted as a “stable attractor” network, uses
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strong recurrent excitation and lateral inhibition to maintain
a stimulus-selective persistent activity pattern as a stable fixed
point of the network dynamics (3, 23). The second model is
denoted as a “feedforward chain” network (9). In contrast to the
recurrent excitation in the stable attractor model, this network
has a feedforward chain structure of excitatory connections, and
information is encoded only transiently in each neuron. In the
third model, denoted as a “chaotic random” network, recurrent
connections are random but strong, placing the network dynam-
ics in a chaotic regime (10, 24). Stimulus presentation temporar-
ily suppresses chaotic activity, allowing the network to reliably
encode the stimulus (25). During the delay, the network activ-
ity evolves chaotically from this stimulus-selective point, gen-
erating activity patterns that are distinguishable across stimuli
but with representations that change over time. We found that
none of these models captured key features of WM popula-
tion coding observed in the PFC datasets (Fig. 5 A-D, Left-
most three columns). The stable attractor model exhibits stable
coding in the mnemonic subspace, but not strong temporal
dynamics, because network activity is at a fixed point during the
delay. In contrast, the feedforward chain and chaotic random
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Fig. 4. Decoding of stimulus via stable and dynamic coding subspaces.
(A and B) Schematic of the subspace decoder. Activity at a given time-
point for a single trial is projected into the subspace, and the classifier’s
winner-take-all readout is the stimulus condition whose centroid is near-
est (dmin)- As in Fig. 3, the number of dimensions used for the subspace
is 2 for ODR and 1 for VDD. (C and D) Decoding accuracy over time for
the mnemonic (blue) and dynamic (red) coding subspaces. Chance perfor-
mance for the stable (gray) and dynamic (brown) subspaces was calculated
by shuffling stimulus trial labels. (E and F) Generalizability of the dynamic
subspace across time. The red curve marks the stimulus variance captured
by the dynamic subspace defined at one time for activity at another time
separated by a given time separation, averaged across timepoints during
the delay. The blue dashed line marks the stimulus variance captured by the
mnemonic subspace, averaged across the delay epoch. The gray dotted line
marks chance performance. Shaded bands mark SEM.
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Population-level analyses measures distinguish theoretical model network mechanisms for population coding and dynamics. We tested four dynam-

ical circuit models, described in the main text: stable attractor, feedforward chain, chaotic random, and stable subspace. The simulated stimulus features are
designed to match the ODR task. (A) Example activity for one neural unit in the network. Each colored trace indicates a different stimulus condition, as for
ODR. (B) Correlation of population state as a function of time, as in Fig. 1 C and D. We show the correlation for each timepoint with the sensory (orange)
and late memory (purple) states. (C) Delay-activity state-space trajectories, as in Fig. 2 C and D. (D) Stimulus variance captured over time, for mnemonic

(blue) and dynamic (red) coding subspaces, as in Fig. 3 A and B.

models exhibit strong temporal dynamics, but both fail to exhibit
stable coding in the mnemonic subspace, because WM represen-
tations change throughout the delay.

Motivated by our empirical findings, we built a simple circuit
model, which we denote a “stable subspace” model, designed on
three principles that constrain the recurrent and input connec-
tivity (SI Text). First, there is a mnemonic coding subspace in
which network dynamics are stable in the absence of stimulus
input. Second, the stimulus input pattern should partially align
with this coding subspace, activating a representation within the
subspace. Third, the noncoding subspace can exhibit temporal
dynamics that are orthogonal to the coding subspace. Druck-
mann and Chklovskii (11) proposed a similar model mechanism.
We found that a linear network model with these properties
can capture the key observed features of population coding and
dynamics (Fig. 5 A-D, Rightmost column). It exhibits stable cod-
ing in the mnemonic subspace and strong temporal dynamics
orthogonal to it. Due to partial alignment of the stimulus input
vector with the mnemonic subspace, there is a sensory repre-
sentation that decays following stimulus removal, whereas the
orthogonal mnemonic representation persists (Fig. 5D, Right).

Discussion

Stable and Dynamic Population Coding. Prior studies have char-
acterized dynamic WM coding by testing how well a decoder
defined at one time generalizes to other times (7, 8). Our find-
ings extend these by showing that dynamic coding during WM
can coexist with stable subspace coding that is comparably strong.
Our analyses reveal both stable and dynamic components of
WM coding, with dynamic components especially strong dur-
ing the cue and early delay. Comparable decoding performance
of the mnemonic subspace during the delay suggests that sta-
ble WM coding in the mnemonic subspace is robust and suit-
able for downstream neural readout of WM signals from PFC.
Our findings also shed light on the relationship between sensory

398 | www.pnas.org/cgi/doi/10.1073/pnas.1619449114

and mnemonic coding in PFC. Prior dynamic coding analyses
led to proposals of a sequential transition from a sensory rep-
resentation during the cue to a mnemonic representation dur-
ing the delay (8, 18), seemingly in contrast to persistent activity
models of WM. Our findings suggest that during cue presenta-
tion an activated mnemonic representation coexists with a quasi-
orthogonal sensory representation that then decays during the
delay while the mnemonic representation stably persists.

Neural Readout. Our findings of stable coding in a mnemonic sub-
space have implications for possible downstream readout of WM
information from the PFC and how WM information combines
with subsequent input to guide decisions (4). A subspace corre-
sponds to sets of synaptic readout weights to downstream neu-
ral systems. In the state—space framework, dynamic WM coding
poses challenges for neurobiologically plausible readout of WM
information. Purely dynamic coding demands different sets of
readout weights at different timepoints; downstream systems
would need to measure elapsed time to select the appropriate
set of weights. In contrast, stable coding within a fixed subspace
corresponds to a fixed, common set of weights that allows read-
out across time. Fixed decoding weights are especially important
when WM signals must be flexibly and robustly read out under
changes in delay duration. Both tasks analyzed here used a fixed
delay duration and could therefore in principle be implemented
using dynamic coding, with readout from a single set of readout
weights optimized for the end of the delay, yet the PFC popula-
tions nonetheless exhibited robust stable WM coding.

The mnemonic subspace was obtained via PCA on time-
averaged delay activity and therefore does not directly take pre-
cise timing information into account, a feature that strengthens
the neural plausibility of such a subspace being used for WM cod-
ing. Theoretical studies have established relationships between
dimensionality reduction via PCA and unsupervised learning
of readout weights via Hebbian plasticity. There are Hebbian
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learning rules through which readout weights to a downstream
neural system can extract the principal subspace (19, 20), includ-
ing via local synaptic plasticity rules (21). These features are
in contrast to coding subspaces derived from timing-sensitive
dimensionality reduction methods such as difference of covari-
ances (DOC) (16) or demixed PCA (dPCA) (26). DOC and
dPCA define a subspace in which coding has maximized tem-
poral stability, by explicitly using timing information to separate
stimulus-related from time-related activity variance. For these
methods it is unknown how neurobiologically plausible learn-
ing rules could extract the coding subspaces. We propose that
a downstream circuit can harness neurobiologically plausible
synaptic plasticity mechanisms to learn readout of the mnemonic
subspace. Furthermore, a low-dimensional coding subspace
allows information to be transmitted via sparse projections.

Neural Circuit Mechanisms. In addition to their neurobiological
relevance, one strength of these subspace analyses is that they can
dissociate predictions from circuit models that implement WM
maintenance via distinct mechanisms. In contrast, timing-based
DOC and dPCA analyses can yield apparently stable coding even
for dynamic coding mechanisms, such as the random chaotic net-
work (10). Similarly, although the feedforward chain model func-
tions by a quintessential dynamic coding mechanism, one can
construct a subspace in which its WM representations are sta-
ble (9). Our findings thereby provide population-level constraints
on neural circuit mechanisms supporting WM. In particular, they
highlight the need for circuit models that capture both stable cod-
ing and temporal dynamics. We developed a proof-of-principle
linear network model that captures both stable coding in the
mnemonic subspace and strong temporal dynamics orthogonal
to it. Druckmann and Chklovskii (11) found that stable subspace
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