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Abstract

Observations that dopaminergic antagonists are beneficial in bipolar disorder and that
dopaminergic agonists can produce mania suggest that bipolar disorder involves excessive
dopaminergic transmission. Thus, mood stabilizers used to treat the disease might act in part by
downregulating dopaminergic transmission. In agreement, we reported that dopamine D,-like
receptor mediated signaling involving arachidonic acid (AA, 20:4n-6) was downregulated in rats
chronically treated with lithium. To see whether chronic carbamazepine, another mood stabilizer,
did this as well, we injected i.p. saline or the D,-like receptor agonist, quinpirole (1 mg/kg), into
unanesthetized rats that had been pretreated for 30 days with i.p. carbamazepine (25 mg/kg/day) or
vehicle, and used quantitative autoradiography to measure regional brain incorporation coefficients
(k*) for AA, markers of signaling. We also measured brain prostaglandin E, (PGE,), an AA
metabolite. In vehicle-treated rats, quinpirole compared with saline significantly increased k* for
AA in 35 of 82 brain regions examined, as well as brain PGE, concentration. Affected regions
belong to dopaminergic circuits and have high D,-like receptor densities. Chronic carbamazepine
pretreatment prevented the quinpirole-induced increments in k* and in PGE». These findings are
consistent with the hypothesis that effective mood stabilizers generally downregulate brain AA
signaling via D,-like receptors, and that this signaling is upregulated in bipolar disorder.
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Introduction

Lithium, valproic acid and carbamazepine (5H-dibenz[b,flazepine-5-carboxamide) (CBZ)
are used to treat mania in bipolar disorder, but whether they have a common mechanism of
action is not agreed on [3]. One possibility is that these agents correct a neurotransmission
imbalance that contributes to bipolar symptoms. Clinical evidence suggests that excessive or
abnormal dopaminergic signaling contributes to this neurotransmission imbalance [13, 28,
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31]. Thus, drugs that inhibit dopaminergic transmission (e.g., haloperidol) have an antimanic
action in bipolar disorder [20], whereas drugs that stimulate dopamine synthesis (levodopa),
bind to dopamine receptors (bromocriptine), or reduce dopamine reuptake (amphetamine),
often precipitate mania [1, 40].

Brain signal transduction mediated by dopaminergic Do-like (D5, D3 and Dy4) receptors can
be coupled to the activation of Ca2*-dependent cytosolic phospholipase A, (CPLA)), to
selectively release arachidonic acid (AA, 20:4n-6), from the stereospecifically numbered
(sn)-2 position of membrane phospholipid [53]. The signaling process can be imaged in
unanesthetized rats by injecting intravenously [1-1*C]AA and measuring tracer AA uptake
into brain using quantitative autoradiography. Regional brain AA incorporation coefficients
k* (brain radioactivity/integrated plasma radioactivity) are calculated and, if multiplied by
unlabeled unesterified plasma AA concentrations, are converted to regional incorporation
rates Jj, that represent regional brain AA consumption. Both k* and J;, are independent of
changes in cerebral blood flow [44, 46]. Increments in k* caused by drug reflect the quantity
of unesterified AA released and'then metabolized to eicosanoids (e.g. prostaglandin E,
(PGEy), thromboxane B, (TXB,)) and other products [9, 10]. Unesterified AA as well as its
eicosanoid metabolites are bioactive and can influence many physiological processes,
including membrane excitability, gene transcription, apoptosis, sleep, brain blood flow and
behavior [49].

Consistent with inhibition of dopaminergic receptor-mediated signaling by mood stabilizers,
we reported that chronic LiCl feeding, sufficient to produce therapeutically relevant plasma
and brain lithium concentrations, blocked k* signals caused by administration of the D,-like
receptor agonist, quinpirole, to unanesthetized rats [5]. In control animals fed a LiCl-free
diet, quinpirole-induced increases in k* are robust and widespread in brain regions within
dopaminergic circuits, and can be blocked by pre-treatment with the D,-like receptor
antagonists, butaclamol or raclopride [16, 29]. In addition to LiCl, chronic CBZ has been
reported to attenuate dopamine function in rats, suggesting that normalization of a
dysfunctional dopamine neurotransmission may underlie CBZ effects in bipolar disorder [2,
4, 35, 38].

In the present study, we determined if chronic CBZ administration, like chronic LiCl, would
block the k* increments in response to quinpirole, and would influence brain PGE, or TXB,
concentrations at rest or following drug. We measured these global brain concentrations, as
well as k* for AA in 82 brain regions, in unanesthetized rats that had been treated daily for
30 days with i.p. vehicle or CBZ 25 mg/kg, then administered saline (control) or quinpirole
(1.0 mg/kg i.v.). The CBZ regimen produces a plasma CBZ concentration of 54 uM, at the
high end found in CBZ-treated bipolar patients (51 uM), and decreases AA turnover in brain
phospholipids and the brain PGE, concentration [2, 11, 18, 27]. The quinpirole dose
increases k* for AA significantly in brain dopaminergic circuits [5, 15].
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Experimental Procedures

Animals and Diets

Drugs

The study was approved by the National Institutes of Health (NIH) Animal Care and Use
Committee in accordance with NIH Guidelines on the Care and Use of Laboratory Animals.
Two-month-old male Fischer CDF (F-344)/CrIBR rats (Charles River Laboratories,
Wilmington, MA, USA) were acclimatized for 1 week in an animal facility in which
temperature, humidity and light cycle were regulated, and had ad libitum access to food
(NIH-31 diet, Zeigler, Gardners, PA, USA) and water. The diet contained (as percent of total
fatty acids): 20.1% saturated, 22.5% monounsaturated, 47.9% linoleic, 5.1% a-linolenic,
0.02% AA, 2.0% eicosapentaenoic, and 2.3% docosahexaenoic acid.

[1-14C]AA in ethanol (53 mCi/mmol, >98% pure, Moravek Biochemicals, Brea, CA, USA)
was evaporated and resuspended in HEPES buffer, pH 7.4, containing 50 mg/ml fatty acid-
free bovine serum albumin (Sigma-Aldrich, St Louis, MO, USA). CBZ-treated rats received
25 mg/kg intraperitoneally once daily for 30 days (Sigma-Aldrich). The CBZ was dissolved
in a 50:50 (v/v) dimethyl sulfoxide (DMSO, =99.9% Sigma-Aldrich): saline (0.9% NacCl,
Hospira Inc., Lake Forest, IL, USA) mixture and kept at 37°C as described previously [2, 11,
27]. A control group received the same volume of DMSQ:saline (vehicle) under parallel
conditions. The acute 1 mg/kg i.v. dose of (=)-quinpirole hydrochloride (Sigma-Aldrich), a
selective D,-like dopamine receptor agonist [47], was chosen because it does not cause
convulsions but produces widespread significant increments in k* for AA in the brain of
unanesthetized rats that can be blocked by D,-like receptor antagonists [5, 15].

Surgical Procedures and Tracer Infusion

On the morning of day 30 of chronic treatment, a rat was injected with the last CBZ or
vehicle dose and then anesthetized with 2—3% halothane in O,. Polyethylene catheters (PE
50) were inserted into the right femoral artery and vein as described previously [5]. The
wound was closed with surgical clips and the rat was wrapped loosely, with its upper body
remaining free, in a fast-setting plaster cast taped to a wooden block. Surgery lasted 20-25
min. The rat was allowed to recover from anesthesia for 4 h in an environment maintained at
25°C. Body temperature was maintained at 36.4-37.1°C using a feedback-heating device
and rectal thermometer. Arterial blood pressure and heart rate were measured with a blood
pressure recorder (CyQ 103/302; Cybersense, Inc., Nicholasville, KY, USA). Arterial blood
pH, pO, and pCO, were measured with a blood gas analyzer (Model 248, Bayer Health
Care, Norwood, MA, USA).

One minute after an i.v. injection of quinpirole or saline, [1-14C]JAA (170 uCi/kg) in 2 ml
was infused into the femoral vein for 5 min at a rate of 400 pl/min, using an infusion pump
(Harvard Apparatus Model 22, Natick, MA, USA). Twenty min after beginning tracer
infusion, the rat was killed with an overdose of Nembutal® (100 mg/kg, i.v.) and
decapitated. The brain was removed (<30 s), frozen in 2-methylbutane maintained at —40°C
with dry ice, and stored at —80°C until sectioned.
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Chemical Analysis

Thirteen arterial blood samples were collected before, during and after [1-14C]JAA infusion,
and were centrifuged immediately (30 s at 18,000¢). Total lipids were extracted from 30 pl
of plasma with 3 ml chloroform:methanol (2:1, by vol) and 1.5 ml 0.1 M KCI using the
Folch procedure [26]. Radioactivity was determined at an efficiency of 88% in 100 pl of the
lower organic phase by liquid scintillation counting. As reported, following 5 min
[1-14C]AA infusion, 98% of total plasma radioactivity was radiolabeled AA [11].
Concentrations of unesterified fatty acids were determined in 100-150 pl of the frozen
arterial plasma. Total lipids were extracted by the method of Folch et al. [26], and were
separated by thin layer chromatography on silica gel 60 plates (Whatman, Clifton, NJ, USA)
using the solvent system, heptane:diethylether:glacial acetic acid (60:40:3, by vol).
Unesterified fatty acids were scraped from the plate and methylated with 1% H,SO4 in
anhydrous methanol for 3 h at 70°C. Fatty acid methyl esters were then separated and
quantified by gas chromatography using an internal standard, heptadecanoic acid (17:0)
[11].

Quantitative Autoradiography

Frozen brains were cut in serial 20-pm thick coronal sections in a cryostat at —20°C.
Sections were placed for 5 weeks with calibrated [14C]methylmethacrylate standards on
Kodak Ektascan C/RA film (Eastman Kodak Company, Rochester, NY, USA). Brain regions
from autoradiographs were identified from a stereotaxic rat brain atlas [39], and were
sampled in both hemispheres. The average of bilateral measurements for each region from
three consecutive brain sections was used to calculate regional radioactivity (nCi/g of brain)
by digital quantitative densitometry, using a Macintosh computer and the public domain NIH
Image program 1.62 (developed at the US National Institutes of Health and available on the
Internet at http://rsh.info.nih.gov/nih-image/). Regional incorporation coefficients k* (ml
plasma/s/g brain) of AA were calculated as [46],

lox — Cprain (20 min)

20 x
f() Cplasmadt (1)

Cplasma €Quals plasma radioactivity determined by scintillation counting (nCi/ml), ¢, .
equals brain radioactivity (nCi/g of brain), and fequals time (min) after beginning of
[1-1C]AA infusion.

Rates of incorporation of unesterified AA from plasma into brain phospholipids, J;,
(fmol/s/g) were calculated as,

Jin=k * Cplasma (2)

where Cpjasma IS the plasma concentration of unlabeled unesterified AA (nmol/ml).
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Brain PGE, and TXB, Concentrations

In separate experiments, on the morning of day 30, rats received the last injection of CBZ or
vehicle, and 3 h and 30 min later were injected i.v. with quinpirole (1 mg/kg) or saline.
Twenty-one minutes later, they were anesthetized with Nembutal® (50 mg/kg, i.p.) and
subjected to high-energy head-focused microwave irradiation (5.5 kW, 3.8 s; Cober
Electronics, Stamford, CT, USA) to stop post-mortem changes, such as formation of
prostaglandins and fatty acid release from phospholipid [41]. Half-brains were weighed,
homogenized with 18 volumes of hexane:isopropanol (3:2, by vol) using a glass Tenbroeck
homogenizer and the homogenate was centrifuged for 5 min at 800g. Tissue residues were
rinsed with 3 x 2 vol of the same solvent. The resultant lipid extract was concentrated to
dryness under nitrogen and resuspended in the enzyme immunoassay buffer provided with a
polyclonal PGE; or TXB; kit (Oxford Biochemical Research, Oxford, MI, USA).

Statistical Analyses

Results

An unpaired two-tailed #test was used to compare mean physiological parameters in CBZ-
and vehicle-treated rats, using GraphPad Prism version 4.0b (GraphPad Software, San
Diego, CA, www.graphpad.com). A standard two-way ANOVA, comparing CBZ
administration (CBZ vs. vehicle) with drug (quinpirole vs. saline) was performed to compare
arterial plasma radioactivity input functions, plasma unesterified fatty acid concentrations,
brain eicosanoid concentrations and regional values of k* and J;, using SPSS 11.0 (SPSS
Inc., Chicago, IL, USA, http://www.spss.com). Where interactions between CBZ and
quinpirole were statistically insignificant, probabilities of effects of CBZ and quinpirole
were reported. Where interactions were statistically significant, these probabilities were not
reported because they cannot be interpreted [51]. Instead, unpaired two-tailed £tests were
used to compare quinpirole and saline responses between CBZ- and vehicle-treated rats as
well as saline responses in CBZ-compared with vehicle-treated rats. Other comparisons were
not considered relevant. A post-hoc test was not used to avoid a correction for multiple
comparisons. However, when a Bonferroni post-hoc test with correction for three
comparisons was performed, statistical significance of differences were not changed. Data
are reported as means + SD, with statistical significance taken as £< 0.05.

Physiology, Behavior and Arterial Plasma Radioactivity

At surgery, CBZ-treated rats had a lower mean body weight than vehicle-treated rats, 269

+ 119 (n=12) versus 281 + 11 g (n=12) (P=0.02). Quinpirole (1 mg/kg) provoked
behavioral cycles, each consisting of an “activity” period (repetitive sniffing, mouth and
head-turning) followed by a “calm” period, whereas saline did not obviously affect behavior
(Table 1). No significant difference in mean cycling periods was observed in CBZ-treated
compared to vehicle-treated rats (Table 1). Compared with saline, quinpirole did not
significantly affect arterial pH, pCO5 or pO,, or blood pressure or heart rate (Table 1).

Following intravenous [1-14C]AA infusion, neither CBZ nor quinpirole modified the
integral of plasma radioactivity in the organic fraction, the input function for determining k*
in Eqg. 1. The mean integral, (nCi x s)/ml (n=5-6), did not differ significantly between
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groups: vehicle plus saline, 213,888 + 28,329; vehicle plus quinpirole, 253,791 + 32,823,;
CBZ plus saline, 194,933 + 15,343; CBZ plus quinpirole, 215,594 + 14,957.

Plasma Concentrations of Unlabeled Unesterified Fatty Acids

A two-way ANOVA showed statistically insignificant interactions between CBZ and
quinpirole with regard to eight of the measured plasma concentrations of unesterified fatty
acids, including AA (Table 2). Chronic CBZ compared with vehicle had a negative main
effect on oleic, linoleic, a-linolenic and docosahexaenoic acid concentrations (Table 2).
Quinpirole did not have a main effect on any concentration.

Regional Brain AA Incorporation Coefficients, k*

Figure 1 presents coronal autoradiographs of brains from rats treated chronically with
vehicle or CBZ, then injected acutely with either saline or quinpirole. It illustrates that
quinpirole increased k* for AA in multiple brain regions in the vehicle- but not CBZ-
pretreated rats. Data from such autoradiographs were collated and analyzed in Table 3.

Quinpirole Administration in Vehicle-Treated Rats

Mean AA incorporation coefficients, k*, determined in each of 82 brain regions, were
subjected to a two-way ANOVA (Table 3). Statistically significant interactions between
quinpirole and CBZ were found in 30 regions. In 29 of these, #tests showed that quinpirole
compared with saline significantly increased k* in the vehicle-treated rats. The regions,
many of which belong to dopamine circuits [21], include prefrontal layer IV (18%), frontal
10 and 8 (16-36%), anterior cingulate (16%), motor (21-44%), somatosensory (21-65%),
auditory (19-23%) and visual layer 1V cortical areas (20%), diagonal band ventral (19%),
nucleus accumbens (38%), caudate-putamen (21-31%), medial septal nuclei (28%), 2
regions of the thalamus (11-27%), and the substantia nigra (22%).

Quinpirole also significantly increased k* for AA in 6 regions having statistically
insignificant CBZ x quinpirole interactions—Ilateral and medial habenular nuclei (12% and
9%, respectively), dorsal lateral geniculate nucleus (27%), ventroposterior thalamus nucleus
lateral (14%), paratenial thalamus nucleus (24%), and olfactory tubercle (17%). In total,
then, 35 brain regions were significantly activated by quinpirole in vehicle-treated control
rats. The pattern of significant activations is illustrated in a sagittal representation of the
brain in Fig. 2a.

Effects of Chronic CBZ Administration at Baseline

In the 30 regions in which CBZ x quinpirole interactions were statistically significant, #tests
showed that chronic CBZ did not significantly change mean baseline (acute saline) k* in any
region. Where CBZ x quinpirole interactions were statistically insignificant, chronic CBZ
reduced k* in 4 regions: visual cortex layer VI (-11%), hippocampus CA1 (-12%), lateral
septal nucleus (-13%) and grey layer of the superior colliculus (—14%) (Table 3, Fig. 2b).

Effects of Quinpirole in Chronic CBZ-Treated Rats

Of the 30 regions in which CBZ x quinpirole interactions were statistically significant,
quinpirole compared with saline reduced k* in somatosensory cortex layer 11-I11 (-15%)
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and auditory cortex layer IV (-12%) (Fig. 2c). In the 6 regions in which CBZ x quinpirole
interactions were statistically insignificant and in which quinpirole had a significant effect in
vehicle-treated rats, chronic CBZ had a main effect by preventing the quinpirole-induced k*
increments (Table 3).

Regional Rates of Incorporation of Unlabeled Unesterified AA into Brain

Baseline (following saline)- and quinpirole-induced regional values of J;, were calculated by
Eq. 2 (data not shown). Because the mean plasma concentration of unlabeled unesterified
AA did not differ significantly between chronic CBZ- and vehicle-treated rats (Table 2),
baseline differences and percent changes in Jj, corresponded to the differences and percent
changes in respective values of k* (Table 3). In vehicle-treated rats, baseline values of J;,
ranged from 4.5 fmol/s/g in the internal capsule to 36.1 fmol/s/g in the choroid plexus. In
CBZ-treated rats, no baseline value of J;, differed significantly from its respective value in
vehicle-treated rats; J;, ranged from 3.9 fmol/s/g in the periventricular of the hypothalamus
to 30.9 fmol/s/g in the choroid plexus. As noted above, J;, increments following quinpirole
in the vehicle-treated rats did not differ significantly from respective increments the CBZ-
treated rats (data not shown).

Brain PGE, and TXB, Concentrations

A two-way ANOVA demonstrated both significant and insignificant interactions between
CBZ and quinpirole with regard to brain PGE, and TXB5 (Table 4). Consequent #tests
showed that chronic CBZ decreased the basal PGE, concentration by 25% (P = 0.048).
Acute quinpirole increased brain PGE, by 67% (P = 0.011) in vehicle-treated rats, whereas
chronic CBZ prevented this increase. CBZ and quinpirole had main effects on TXB, (Table
4). Chronic CBZ decreased the basal TXB, concentration by 35%. Quinpirole reduced the
TXB, concentration by 23% in vehicle-treated rats but had no effect in the CBZ-treated rats
(Table 4).

Discussion

Chronic administration of CBZ, sufficient to produce a plasma CBZ concentration
therapeutically relevant to bipolar disorder, blocked the increments in k* for AA and in
whole brain PGE, and TXB, concentrations that were produced in chronic vehicle-treated
rats injected with quinpirole. Chronic CBZ by itself reduced k* in four regions as well as
global brain concentrations of PGE; and TXB,.

The effects in rats of chronic CBZ on baseline brain AA cascade markers, and on quinpirole-
induced changes in these markers, are comparable to those produced by chronic LiCl
feeding [5]. For example, chronic LiCl like chronic CBZ blocked quinpirole-induced
increments in k* for AA (we have not as yet examined lithium’s ability to block the PGE,
increment following quinpirole). Both chronic LiCl and CBZ reduced AA turnover in rat
brain phospholipids, brain mMRNA, protein and activity levels of cPLA,, and the DNA-
binding capacity and protein level of a cPLA; transcription factor, activator protein-2 [11,
19, 27, 42, 43, 45]. These observations, plus clinical data that dopaminergic
neurotransmission is disturbed in bipolar disorder [13, 28, 31], and that dopamine receptor
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antagonists can be therapeutic whereas drugs that stimulate dopamine synthesis, bind to
dopamine receptors or reduce dopamine reuptake often precipitate mania (see
“Introduction”), suggest that mood stabilizers are therapeutic in bipolar disorder in part by
suppressing excessive D,-like receptor signaling involving AA.

CBZ could have downregulated the D,-like receptor-initiated AA signal by reducing
synaptic dopamine release and synthesis, D, receptor density, Do-like coupled Gaqjj, Do-like
receptor phosphorylation, or histone deacetylation by histone deacetylase [2, 14, 32, 34, 35,
38]. CBZ also could have altered G-protein receptor kinase translocation from cytosol to cell
membrane, and thus densitiztion of Do-like receptors [24]. CBZ’s ability to reduce rat brain
cPLA, transcription and COX activity also could have contributed to the reduced signaling,
associated with reduced basal PGE, and TXB, concentrations and reduced quinpirole-
induced changes in these concentrations [8, 27]. PGE, and TXB, are converted
preferentially from AA by COX-2 and COX-1, respectively. When these enzymes are
pharmacologically inhibited or knocked out in rodent models, k* responses to drugs acting
at cPLA,-coupled neuroreceptors are reduced or lost, as are the increments in brain PGE,
and/or TXB, concentrations [9, 10]. Our finding that quinpirole elevated brain PGE, in
vehicle-treated rats agrees with prior in vitro and in vivo observations [23]. The mechanism
for the reduction of brain TXB, by quinpirole is not apparent but might be elucidated by
studying the drug effect on COX-1 and thromboxane synthase expression in brain.

The baseline values of k* for AA in vehicle-treated rats, which ranged from 2.65 to 20.9 x
10~ ml/s/g brain, are similar to previously reported values [5, 6, 8, 10, 15]. Quinpirole
significantly increased k* in 35 regions, many of which belong to dopaminergic circuits
containing D, receptors (e.g. caudate-putamen and substantia nigra) [33], D3 receptors (e.g.
nucleus accumbens and olfactory tubercle) [50] or D4 receptors (e.g. cerebral cortex) [55].
Giving selective D, D3 and D4 agonists or antagonists might identify the contributions of
the different receptor subtypes to the k* signal. Furthermore, regional baseline values of J;,
in vehicle-treated rats, 4.5-36.1 fmol/s/g, agree with a published global value of 6.57
fmol/s/g [11]. Given that J;, represents the regional rate of metabolic AA loss from brain
[10, 44], our data on Jj, indicate comparable baseline rates of AA loss in vehicle- and CBZ-
treated rats.

Chronic CBZ, unlike chronic lithium [5, 12] did not prevent the quinpirole induced
hyperactivity or stereotypy (Table 1). Chronic CBZ or chronic valproate also do not affect
quinpirole-induced locomotor activity [48]. As each of the three anti-bipolar agents
downregulates the brain AA cascade, their different effects on quinpirole-induced behaviors
suggest that these behaviors don’t involve AA signaling and, moreover, that the quinpirole-
induced activity cycles are not modeling bipolar disorder [48].

In addition to attenuating Do-like receptor-mediated AA signaling, chronic lithium, CBZ and
valproic acid [6-8] each attenuates AA signaling mediated by glutamatergic N-methyl-D-
aspartate (NMDA\) receptors in unanesthetized rats [6, 8]. As Do-like and NMDA receptors
are often functionally coupled and co-localized on the same neurons in brain [52, 54], these
data suggest that mood stabilizers that are effective against mania suppress AA signaling
coupled to both D,-like and NMDA receptors. In this regard lamotrigine, which is preferred
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for treating bipolar depression and rapid recycling, is considered to act in part by reducing
presynaptic glutamate release [22]. A role for both receptor subtypes is consistent with
evidence of disturbed dopaminergic and NMDA transmission in bipolar disorder [1, 13, 20,
28, 31, 36, 37, 40].

It now is possible to measure k* for AA in the human brain with positron emission
tomography following the intravenous injection of [1-11CJAA [25]. Thus, it would be of
interest to see if our findings in rats can be extrapolated to bipolar disorder patients off and
on treatment with mood stabilizers, by giving them dopamine receptor agonists to stimulate
the AA signal, such as apomorphine or ropinerole [17, 30, 56].

In conclusion, chronic CBZ blocked the increments in k* for AA as well in the global brain
PGE, concentration seen in response to quinpirole in chronic-vehicle treated rats. Those and
related observations regarding chronic lithium and valproic acid support the hypothesis that
mood stabilizers of proven efficacy against bipolar disorder may act by downregulating brain
AA signaling coupled to both D,-like and NMDA receptors.
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Vehicle Carbamazepine

Saline Quinpirole Saline Quinpirole

Fig. 1.
Coronal autoradiographs of brains showing effects of quinpirole and carbamazepine on

regional AA incorporation coefficients k* in rats. Values of k* (ml/s/g brain x 1074) are
given on a color scale from 4 (blue) to 8 (yellow-orange). Abbreviations: Acb, nucleus
accumbens; Acg, anterior cingulate cortex; CPu, caudate-putamen; DB, diagonal band; Fr 8,
frontal cortex area 8; Fr 10, frontal cortex area 10; Mot, motor cortex. Note: For
interpretation of the references to color in this figure legend, the reader is referred to the
online version of this article
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Chronic vehicle
+ quinpirole

Chronic CBZ
+ saline

Chronic CBZ
+ quinpirole

Fig. 2.
Difference patterns of k* responses to quinpirole and carbamazepine in sagittal

representation of rat brain. Regions in which k* was increased significantly (£ < 0.05)
compared with chronic vehicle + saline are solid black, regions in which k* was decreased
significantly are hatched. List of regions: A, amygdala; Acb, nucleus accumbens; Aud,
auditory cortex; av, anteroventral thalamic nucleus; CbG, cerebellar gray matter; CbW,
crebellar white matter; CPu, caudate putamen; DLG, dorsal lateral geniculate nucleus; Fr,
frontal cortex; GP, globus pallidus; HB, habenular nuclei; HIP, hippocampus; HYP,
hypothalamus; IC, inferior colliculus; IPC, interpeduncular nucleus; MM, mammillary
nucleus; mG, medial geniculate nucleus; MolCBG, molecular layer of cerebellar gray
matter; Mot, motor cortex; OT, olfactory tubercle; PF, prefrontal cortex; pt, paratenial
thalamic nucleus; SN, substantia nigra; S, septum; SS, somatosensory cortex; SC, superior
colliculus; SCql, gray layer of superior colliculus; STH, subthalamic nucleus; THa,
thalamus; Vis, visual cortex
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