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Abstract

Purpose of review—Asthma is a complex and heterogeneous disease with strong genetic and 

environmental components that manifests within a variety of clinical features and diverse patterns 

of immune responses. Asthma prevalence has dramatically increased over the last decade in 

Westernize societies, thereby suggesting a key function of environmental factors in disease 

promotion and development.

Recent Findings—“Early-life” microbial exposures and bacterial colonization are crucial for 

the maturation and the education of the immune system. The commensal flora is also critical in 

order to maintain immune homeostasis at the mucosal surfaces and may consequently play an 

important function in allergic disease development. Recent evidences demonstrate that asthma 

influences and is also impacted by the composition and function of the human intestinal and 

respiratory microbiome.

Summary—In this review, we will summarize the most recent findings on how asthma 

development is connected with respiratory and intestinal microbial dysbiosis. We will highlight 

and discuss the recent research that reveal the existence of a “gut-lung” microbial axis and its 

impact on asthma development. We will also analyze how “early-life” microbial exposure affects 

the immune response and their consequences on asthma development.
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Introduction

Asthma is a chronic inflammatory disease of the respiratory airways characterized by an 

inappropriate immune response resulting in reversible airflow obstruction, airway hyper-

responsiveness (AHR), mucus overproduction, tissue eosinophilia, and intense airway wall 

remodeling [1,2]. It is a complex and heterogeneous disease which exists under different 

phenotypes, known as allergic and non-allergic or intrinsic asthma. Allergic asthma affects 
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mostly children and is triggered by aeroallergens, such as house dust mite (HDM), pollen, 

and fungal spores. Predominantly developing during the first years of life, allergic asthma 

involves the production of allergen-specific immunoglobulin type E (IgE) and the 

participation of an adaptive T helper cells Type 2 (Th2) immune response. On the contrary, 

non-allergic intrinsic asthma occurs later in life independently of aeroallergen sensitization, 

results from air pollution, chronic or recurrent bacterial and viral infections of the bronchi 

and sinuses, is more severe and predominant in women [3]. Compared with non-allergic 

patients, allergic asthmatic subjects respond better to a medical treatment combining β2-

adrenergic receptor agonists and inhaled corticosteroids. However, 5 to 10% of bronchial 

asthmatic subjects are unresponsive to this treatment and considered as refractory or steroid 

resistant asthmatic [4,5].

Asthma and allergic diseases have become a major health issue worldwide with increased 

prevalence over the last 50 years. In the USA, subjects affected with asthma rose from 20.3 

millions in 2001 to 25.7 million in 2010 [6]. Although genetic polymorphisms have been 

associated with asthma development [7], this steep increase in asthma prevalence over the 

last decades implicates the existence of environmental factors which promote disease on 

genetically predisposed hosts. Among them, early-life sensitization to aeroallergen [8] and 

microbial exposure [9] as well as infections with respiratory viruses [10] and changes in the 

host microbiome composition [11] have been associated with increased risk of asthma 

development.

In the present review we will highlight and discuss major findings demonstrating a 

connection between the gut and lung microbiome with asthma development and how host-

microorganism interactions in early-life affect the immune response and their consequences 

on allergic diseases development.

Immunology of asthma

Asthma is a complex and heterogeneous disease initially thought to be mediated by 

eosinophils and Th2 immune cells as evidenced by elevated numbers of interleukin 4 (IL-4) 

and IL-5 producing CD4+ T cells in bronchoalveolar lavage (BAL) fluid collected from 

allergic asthmatic patients [12]. Asthma heterogeneity was further characterized by gene 

expression analysis and the identification of two human endotypes, Th2high and Th2low, 

which differ mainly by their Th2 cytokine expression pattern and their response to medical 

treatment [13] (Figure 1). The Th2high endotype is associated with increased activation of 

dendritic cells (DCs), CD4+ Th2 T cells, innate lymphoid cells type 2 (ILC2) and B cells 

resulting in heightened allergen-specific IgE and Th2 cytokine production as well as 

elevated numbers of lung infiltrating and circulating eosinophils. On the other hand, the 

Th2low endotype display reduced levels of Th2 cells activation, Th2 cytokine production and 

eosinophil accumulation in the lungs (Figure 1). Strategies aiming to block the α chain of 

the IL-4 receptor and thereby disrupting both IL-4 and IL-13 signaling (Dupilumab) [14] or 

targeting directly IL-13 (Lebrikizumab) [15] improve asthma clinical aspects for the Th2high 

phenotype. However, those therapeutical approaches appear to be less successful for patients 

with a Th2low profile. Recent studies demonstrate that intrinsic non-allergic, non-IgE 

dependent, late-onset asthma triggered by environmental factors such as respiratory airway 
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infection, air pollution and/or smoking, involves a Th1/Th17 immune response and intense 

neutrophils recruitment in the lungs [16–18] (Figure 1). The secretion of IL-8, IL-17, IL-21, 

IL-22, and monocyte colony stimulatory factor by either CD4+ Th17 T cells or ILC3s will 

promote the recruitment of neutrophils and airway inflammation [19,20]. This Th17-driven 

asthma phenotype is linked to a more severe pathology and a poor response to corticosteroid 

treatment [21–23] (Figure 1). Asthma endotype classification and disease heterogeneity are 

not fixed and exclusive. While each endotype is characterized by specific immune responses 

and pathological patterns, the possibility that those pathways concur and act synergistically 

in asthmatic patients cannot be excluded.

The microbiome

The advancement and the development of affordable next generation high-throughput 

sequencing techniques has expanded our knowledge on the composition of the human 

microbiome as well as its relation to disease [24]. Recently, it has been estimated that the 

human body is composed of 3x1013 eukaryotic cells and colonized by 4 x1013 bacteria, 

roughly representing a 1:1 ratio [25]. The microbiome is constituted of bacteria, fungi, and 

viruses that colonize body surfaces exposed or opened to the outside environment such as 

the skin [26], the lung [27,28], the oral cavity [29] and the gastrointestinal tract [30]. Most of 

the current studies focus on the characterization of the bacterial microbiota and omit the 

presence of the virome and the mycobiome. Fungi are often considered as pathogenic, 

however many fungal species do not trigger disease and coexist with the bacterial 

microbiota. Compared to the bacterial microbiome, the characterization of the mycobiome 

composition is rendered more complicated by the lack of a complete fungal database; it is 

currently estimated that only 1% of fungal species are present in the NCBI GenBank 

database and among those sequences a large part are not classified correctly or of 

uncharacterized origin [31]. Currently, up to 75 different fungal genera have been described 

and are present at different body sites such as the oral cavity [32], intestine [33], skin [34] 

and lungs [35]. Commensal fungi also regulate immune responses and host physiology as 

fungal dysbiosis is associated with changes in the commensal bacteria composition that 

could potentially fuel further inflammation and disease [31,36,37].

Early microbial exposure influences the atopic status

The continuous rise in asthma incidence in industrialized societies cannot be attributed to 

genetic factors alone and implies that some environmental factors resulting from the modern 

lifestyle promotes asthma [38] (Figure 2). The “hygiene hypothesis” states that personal 

hygiene improvement, declining family size and decreased infection burden result in 

reduced early-life microbial exposure and promotion of atopic diseases [39]. The current 

dogma is that microbial colonization begins at birth from exposure to the mother’s vaginal 

and fecal microbial flora, although recent studies demonstrate that microbial exposition may 

start earlier, in utero, as indicated by the presence of bacterial DNA in the placenta and 

meconium of pre-term babies [40,41]. Maternal farming microbial exposure during 

pregnancy is correlated with elevated levels of regulatory T cells (TReg) and decreased Th2 

cytokine secretion [42]. Those studies suggest the possibility that in utero bacterial exposure 

could initiate colonization at different fetal surfaces during pregnancy. Alternatively, it is the 

maternal exposure that directly influences the fetal immune development. The mode of 
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delivery is also known to strongly influence the infant gut bacterial colonization [43]. Infants 

born by Caesarian section (C-section) are at higher risks of developing atopic diseases 

[44,45] and are principally colonized by microbial communities similar to the mother’s skin, 

such as Staphylococcus species [43,46]. Early colonization patterns of the neonatal gut, but 

not the airways, is also affected by the mode of delivery; C-section promotes the emergence 

of Citrobacter, Klebsiella, Enterobacter, and Enterococcus species whereas E. coli 
colonization was associated with natural delivery [47]. Right after birth, inhalation of 

environmental microorganisms will result in lung and airways colonization [48,49]. In mice 

neonates, the main bacterial phyla of the lung microbiome, Proteobacteria and Firmicutes, 

will stabilize during the first month of life and aging is correlated with an outgrowth of 

Bacteroidetes [49]. Similar bacterial clusters were detected in the gut and respiratory 

airways of young infants diagnosed with cystic fibrosis, thereby suggesting the possibility of 

dynamic crosstalk and interactions between the intestinal and the respiratory microbiota 

[48].

Breast- versus formula-feeding is another factor that influences the infant microbiome 

composition and development. Breast milk shapes the infant gut microbial communities and 

promotes intestinal homeostasis through diverse mechanisms; it is a source of bacterial 

communities transmitted to the infant [50], it provides maternal antibodies, such as secretory 

IgA, that further promotes gut homeostasis [51], and supplies nutrients that shape the 

microbial flora composition during the first year of life [46]. Consequently, compared to 

formula-fed infants, breast-fed infants harbor a more uniform commensal flora composition 

associated with higher abundance of Bifidobacteria and Lactobacillus, whereas formula-fed 

infants display higher abundances of Bacteroides, Clostridium, Streptococcus, 
Enterobacteria, and Veillonella species (reviewed in [52]). Compared to formula-fed infants, 

breast-feeding is also associated with decreased risks of developing asthma and this trend is 

even higher in infants with family history of asthma [53–55]. However, whether infant 

feeding mode can be correlated with increased risks to develop atopic diseases still remains 

uncertain and will require further studies in order to identify the specific microbial 

communities present in breast-versus formula-fed infants.

Early microbial exposure and bacterial colonization are important for the maturation and the 

generation of a normal immune system. Compared to specific pathogen-free (SPF) mice, 

Germ-free (GF) mice which are devoid of any microbiota harbor distinct physical 

differences such as increased size cecum, decreased gastrointestinal motility, abnormal 

morphology, and smaller Peyer’s patches and mesenteric lymph nodes [56]. Absence of 

microbial flora in GF mice is linked to a Th2-skewed immune response and elevated levels 

of serum IgE [57,58]. Mono-colonization of GF mice with either Bacteroides fragilis or 

segmented filamentous bacteria will redirect and balance the T cell immune response 

towards stable Th1/Th2 or Th17 phenotypes respectively [59,60]. There is a critical “time 

window of opportunity” in early-life for an appropriate education of the immune system by 

the microbiota [56]. Therefore, early-life events able to alter the microbiota composition or 

disrupt microbiota-immune interactions can be deleterious and promote immune deviation 

towards atopy. In mice, interruption of microbial sensing by the immune system promotes 

the development of allergic inflammation and food allergy development has been associated 

with the emergence of a specific microbial signature [61–63]. In humans, the use of 
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antibiotics during the pre- or post-natal period is associated with increased development of 

atopic dermatitis and asthma [64,65]. Early-life intestinal microbial flora dysbiosis in 

children is correlated with increased asthma development and a reduction of four specific 

bacterial genera: Faecalibacterium, Lachnospira, Veillonella and Rothia [66]. 

Supplementation of these 4 bacterial species in GF mice reduced asthma incidence in their 

adult offspring by decreasing neutrophil recruitment in the lungs and reducing the Th1/Th17 

immune response associated with severe human asthma [66]. Whether early-life microbial 

dysbiosis triggered by environmental factors elicit allergic disease or is a consequence of 

allergic disease development remains unknown and will require further investigations.

Asthma and the lung microbiome

Until recently, healthy lungs and respiratory airways were considered sterile. The use of 16S 

rDNA sequencing techniques demonstrated the presence of a lung microbiota in healthy 

subjects as well as its specific topographical distribution since bacterial biomass decreases 

from upper to lower respiratory airways [27]. The characterization of the lung microbiome is 

rendered more difficult due to its low microbial load compared to other organs such as the 

skin, the oral cavity and the gut, and the possible presence of bacterial contaminants from 

either the upper respiratory airways during sample collection by bronchoscopy or 

contaminants present in DNA extraction kit [67].

In mice, absence of lung microbial colonization in OVA-sensitized and intranasally 

challenged GF mice results in enhanced allergic airway inflammation with increased levels 

of Th2 cytokines and serum IgE as well as augmented lymphocytes and eosinophils 

infiltrations. Colonization of GF mice by SPF flora before allergen exposure protects from 

allergic airway inflammation development [68]. Furthermore, SPF mice intra-nasally treated 

with either Staphylococcus sciuri or Escherichia coli were protected from allergic airway 

development [69,70].

In humans, 16s rDNA sequencing of various type of specimens, including bronchial 

brushing [71,72], BAL [73], and induced sputum samples [74] allowed the detection in the 

lower airways of bacterial species belonging to the 5 major phyla (Proteobacteria, 

Firmicutes, Actinobacteria, Fusobacterium and Bacteroidetes). The asthmatic airway 

microbiota composition differs from healthy subjects and is characterized by a higher 

bacterial load and diversity as well as increased abundance of species belonging to the 

Proteobacteria phylum such as Comamonadaceae, Nitrosomonadaceae, Oxalobacteraceae, 

Pastereurellaceae and Pseudomonadaceae families [71,72,74]. On the other hand, members 

from the Bacteroidetes and Firmicutes phyla have been found more abundantly in the 

airways of healthy controls subjects [71,72,74]. The microbial airway composition also 

differs based on clinical features and the type of immune response triggered by the 

aeroallergens. For instance, the airways of corticosteroid-resistant and severe asthmatic 

patients are predominantly colonized by pathogenic organisms such as M. catarrhalis or 

members of the Haemophilus or Streptococcus genera [75]. Th17 immune-mediated asthma 

exhibit a predominance of Proteobacteria belonging to the Pasteurellaceae, 

Enterobacteriaceae, and Bacillaceae families [76]. This specific bacterial signature was only 

observed in Th17-driven inflammation and did not overlap with a Th2-driven airway 
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inflammation [76]. Studies linking the metabolic activities of those dysbiotic bacteria to 

asthma severity and treatment prognosis are further required. For example, steroid-resistance 

treatment could be related to the presence and expansion in the airways of bacterial species 

that are capable of degrading steroids.

Fungi are also present in the sputum of allergic and healthy subjects [77]. Malassezia 
pachydermatis; a fungus already associated with the development of atopic dermatitis, was 

present in the sputum of asthmatic patients and absent from healthy controls [77]. The last 

couple of years have seen huge improvement in high-throughput fungal rDNA sequencing 

techniques and refinement of fungal sequences databases [31]. Therefore, in order to gain a 

better understanding of the lung mycobiome function during asthma, further studies taking 

advantage of those advances are required to define the role of fungal colonization in asthma.

Asthma and the gut microbiome

The intestinal microbiota is composed of hundreds to thousands of bacterial species 

belonging mostly to the Firmicutes and Bacteroidetes phyla [24]. Its composition varies 

within the distinct section of the gastrointestinal tract and their physiological characteristics, 

resulting in different intestinal micro-habitats such as the gut lumen, colonic mucus and 

colonic crypts and their capacities to promote differently the growth of bacterial species 

(Reviewed in [78]). The bacterial composition of the intestinal microbiota is known to affect 

the development and the phenotype of immune responses [79]. Defined bacteria or their 

derived microbial products will trigger and modulate distinctively either a regulatory or an 

effector immune response. Commensal flora derived products, such as polysaccharide A of 

Bacteroides fragilis [80], several short-chain fatty acids (SCFAs) generated by fermentation 

of dietary fibers [81–83], or the colonization of GF mice by a defined mix of Clostridium 

strains [84,85], prevent intestinal pathology by promoting the differentiation of suppressor 

TReg cells.

On the other hand, the gut microbiota is a potent stimulus for the generation of pro-

inflammatory and harmful autoimmune responses. Alterations in the intestinal flora 

composition are associated with disease development, however how intestinal dysbiosis 

affects the host systemic immune response remains uncertain. Diet is known to modulate the 

gut microbiota composition in humans and mice [48,86]. Increased asthma incidence in 

developed countries could be related to recent lifestyle changes characterized by reduced 

dietary fibers consumption and higher fat intake. Intestinal microbiota as well as their 

derived metabolites production can be influenced by those dietary components. Bacterial-

derived metabolites are not specifically confined to the intestinal tract but can enter the 

blood circulation and affect immune cells and responses at distant sites. Trompette et al. 
demonstrated in a murine model of allergic airway inflammation that dietary fibers influence 

the intestinal microbial flora composition and increase the circulating levels of SCFAs [86]. 

Treatment with the SCFA propionate promotes the hematopoiesis of DCs and convert those 

cells into poor drivers of lung Th2 immune responses resulting in reduced airway 

inflammation [86].

The strong influence of diet on intestinal flora composition and bacterial metabolite 

production on atopic disease development has also been highlighted in human studies. In 
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young children, development of allergic disease is often preceded by alteration of the 

intestinal microbial flora composition [11,87]. The intestinal human microbiota coevolves 

with the diet as demonstrated by a study of the intestinal microbiota composition of 2 

different children cohorts; one from Europe and the other one from Burkina-Faso. The fiber 

rich diet from Burkinabe children is associated with intestinal microbiome compositional 

changes and the emergence of bacterial species producing high levels of SCFAs and 

specialized in energy intake from polysaccharides [88]. On the other hand, the western diet 

with reduced fiber and increased animal protein, sugar and starch content consumed by 

European children is correlated to a complete lack or under representation of those SCFAs 

bacterial producers and consequently with a significant decrease in SCFAs production [88].

How the commensal fungi within the gastrointestinal tract influences the systemic immune 

response and affects the development of allergic airway inflammation is still under 

investigation. Recently, in a murine model of allergic airway inflammation Wheeler et al. 
demonstrated that commensal fungi dysbiosis, obtained by means of oral antifungal 

treatment, is associated with exacerbated allergic airway inflammation and the growth of 

Aspergillus, Wallemia, and Epicoccum species [37]. Oral gavage of these 3 fungi into HDM-

sensitized mice was sufficient to recapitulate similar and exaggerated levels of allergic 

airway inflammation as the ones observed in mice treated with antifungal drugs [37]. 

Importantly, fungal dysbiosis was also associated with a complete restructuring of the 

commensal microbial communities, including a decrease in abundance of Bacteroides, 

Clostridium, and Desulfovibrio and an increase of Anaerostipes, Coprococcus, and 

Streptococcus in mice with allergic airway inflammation [37]. On the other hand, gut 

bacterial dysbiosis induced by antibiotics treatment also promotes allergic airway 

inflammation by boosting the overgrowth of intestinal Candida fungal species and the 

polarization of lung M2 macrophages [89]. These data demonstrate that commensal fungi 

and microbial communities are deeply connected and dependent on one another thereby 

suggesting that the impact of the mycobiome on atopic disease development in 

underestimated and should be further investigated.

Conclusion

Asthma is an heterogeneous and complex disease that can manifest within a variety of 

different clinical features and patterns of immune responses. A growing number of studies 

demonstrate that asthma influences and is also impacted by the composition of the intestinal 

and respiratory microbiota. As discussed above, evidences generated from human and 

murine investigations indicate that lung microbial as well as intestinal microbial and fungi 

communities diverge between healthy and allergic airway inflammation. Additionally, the 

composition of those communities is also impacted by a wide variety of environmental 

factors such as diet and microbial exposures in “early-life”. The specific mechanisms by 

which this “gut-lung” microbiota axis impact health and disease requires further 

investigation. However, modulation of systemic immune responses by the intestinal 

microbial flora can occur through the release in the circulation of bacterial-derived 

metabolites with immuno-modulatory properties. Deciphering further the mechanisms and 

mediators of this “gut-lung” axis could potentially lead to a new therapeutic strategies 
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aiming to modulate the composition of the respiratory and/or intestinal microbiome in order 

to promote resistance to allergic airway disease.

Acknowledgments

Financial support and sponsorship.

This work was supported by the following grants: R01AI117968-01A1 (to M.A.) and R21AI112826-02 (to T.R.C.).

Abbreviation

AHR Airway hyper-responsiveness

HDM House Dust Mite

IgE Immunoglobulin type E

Th2 T helper cells Type 2

IL- Interleukin

BAL Bronchoalveolar lavage

ILC Innate lymphoid cells

DCs Dendritic cells

TReg Regulatory T cells

SPF Specific pathogen free

ICSs Inhaled corticosteroids

SCFA short-chain fatty acid
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Key points

• Asthma is a complex and heterogeneous disease with 

strong genetic and environmental components that 

manifests within a variety of clinical features and 

immune responses.

• Lung tissues are not sterile; fungi and bacterial species 

have been detected in various type of airway specimens 

collected from both healthy and asthmatic subjects.

• The lower airway and intestinal microbial composition 

is different between healthy and asthmatic subjects and 

early-life intestinal microbial flora dysbiosis is 

correlated with increased asthma incidence.

• Existence of a “gut-lung” axis that could potentially be 

used for therapeutics purposes.
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Figure 1. Asthma heterogeneity and immunological patterns involved in disease pathology
(A) The Th2high endotype is characterized by increased activation of DCs, Th2 CD4+ T 

cells, ILC2s and B cells which result in heightened allergen-specific IgE and Th2 cytokine 

production as well as elevated numbers of lung infiltrating and circulating eosinophils. On 

the other hand, the Th2low endotype display reduced activation of Th2 cells and Th2 

cytokine production as well as decreased numbers of eosinophils. (B) Intrinsic non-allergic 

and steroid resistant asthma is IgE and Th2 independent, associated with a Th1/Th17 

immune response and the participation of ILC3s as well as intense neutrophils recruitment in 

the lungs.
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Figure 2. Environmental factors influencing asthma development
The continuous rise in asthma incidence in “westernized” societies cannot be only attributed 

to a genetic component alone; environmental factors resulting from a modern lifestyle are 

involved in this increased prevalence. The composition of the microbial flora is constantly 

fluctuating and strongly influenced by environmental factors. Microbial dysbiosis can be 

triggered by stress, the modern-lifestyle diet, antibiotic use, birth and feeding mode. By 

promoting the growth of pathogenic bacteria, microbial dysbiosis will also prevent early 

exposure to health-promoting bacteria. In genetically predisposed hosts, this alteration in 

microbial communities will promote the development of asthma.
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