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Abstract

Purpose of review—In the age of targeted genomic enrichment and massively parallel 

sequencing there is no more efficient genetic testing method for the diagnosis of hereditary 

hearing loss. More clinical tests are on the market, which can make choosing good tests difficult.

Recent findings—More and larger comprehensive genetic studies in patients with hearing loss 

have been published recently. They remind us of the importance of looking for both single 

nucleotide variation and copy number variation in all genes implicated in non-syndromic hearing 

loss. They also inform us of how a patient’s history and phenotype provide essential information 

in the interpretation of genetic data.

Summary—Choosing the most comprehensive genetic test improves the chances of a genetic 

diagnosis and thereby impacts clinical care.
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Introduction

Early diagnosis of hereditary hearing loss has a large impact on a patient’s clinical course. A 

genetic diagnosis of non-syndromic hearing loss (NSHL) obviates the need for additional 

‘rule-out testing’ or referrals, and one of syndromic hearing loss allows for early monitoring 

and intervention, ultimately decreasing medical spending [1, 2*]. The 2014 ACMG 

guidelines for diagnosis of hearing loss recommend incorporating genetic testing early in 

diagnostic protocols for the evaluation of NSHL. After a thorough history, physical and 

audiometric assessment, the next step should involve either GJB2 and GJB6 testing or 
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immediate comprehensive genetic testing [3]. Although early genetic diagnosis used to be a 

lofty goal, it is now achievable with targeted genomic enrichment and massively parallel 

sequencing (TGE+MPS). TGE+MPS has revolutionized the way genetic testing is 

performed and promulgated advances in research and clinical testing, diagnosis and 

discovery, and variant interpretation. This technology has become ubiquitous and ordering 

options have become so plentiful that the choice of a specific platform can be complicated 

and difficult. In this review we discuss important factors to consider when choosing a 

genetic test for a patient with hearing loss, as illustrated by recent studies and discoveries.

TGE+MPS in hearing loss diagnosis and available testing options

NSHL is an extremely heterogeneous condition and the number of causal genes continues to 

increase. In 2015 and the first half of 2016, for instance, 14 additional genes were identified 

as causing NSHL in humans [4–17,18*], increasing the number of NSHL genes to nearly 

100 (http://www.hereditaryhearingloss.org). Prior to TGE+MPS, the best genetic diagnosis 

for NSHL required serial gene-by-gene Sanger sequencing, a constraint that made 

comprehensive diagnostic testing prohibitively slow and expensive. TGE+MPS now 

facilitates comprehensive genetic diagnosis for NSHL with a single test. A recent 

comparison of the ordering habits of otolaryngologists and geneticists, evaluated using four 

case presentations, identified a correlation between clinician comfort and familiarity with 

genetic testing and the likelihood of ordering comprehensive genetic testing. As might be 

expected, geneticists were more familiar with TGE+MPS and more likely to order genetic 

testing, highlighting the importance for ongoing education to ensure that all clinicians 

understand and confidently utilize genetic testing options [2*].

As of June 2016, 12 unique labs offer molecular diagnostic testing involving TGE+MPS 

methods via NextGxDx (https://www.nextgxdx.com/) or on their own website (http://

www.otogenetics.com/) (Table 1). This abundance of testing options creates confusion as 

several test-specific differences must be considered, including: 1) The genes included in 

analysis; 2) Variant detection methodology; 3) Copy number variation (CNV) analysis and 

methodology; 4) Analytic pipelines and validation; and 5) Cost and turnaround time. 

Additionally, it is important to consider a patient’s history and phenotype before ordering 

genetic testing to determine the applicability of this type of testing and after generating a 

genetic variant list to assess the concordance of the phenotype and the genotype.

Genes included

The most important factor when choosing a test is determining if it will adequately target the 

genes of interest given a patient’s phenotype. Each of the currently available tests (Table 1) 

has a unique focus and targets. Some laboratories focus on the most likely diagnoses, others 

are more expansive and include genes implicated in only single families, and still others 

include various syndromic forms of hearing loss. As an example of the first, OtoSeq targets 

23 genes, which are the most common known causes of NSHL. OtoSCOPE (v7), in 

comparison, targets more genes (133 total) than any other panel and includes all known 

genetic causes of NSHL and syndromes that may initially present as NSHL (so-called NSHL 
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mimics). A summary of genes included in currently available tests can be found in 

Supplementary Table 1.

Many recent studies illustrate the importance of a more comprehensive approach. These 

studies show a large amount of population-specific heterogeneity. In a study of 10 

Cameroonian multiplex families with autosomal recessive NSHL (ARNSHL), for example, 

7 diagnoses were possible with comprehensive testing (OtoSCOPE v5, 89 genes), 

implicating CDH23, LOXHD1, MYO7A, OTOF, SLC26A4 and STRC as causes of hearing 

loss [19]. Although this study is small, it is nonetheless noteworthy for the significantly 

higher diagnostic rate than previously possible in Sub-Saharan African studies focused on 

GJB2, a common cause of ARNSHL in many other world population groups [20].

Targeted panels can also be very helpful in the diagnosis of syndromes, especially when the 

phenotype is variable or subtle. In a cohort of 67 Chinese Usher syndrome patients, using a 

retinal panel of genes, it was possible to provide a genetic diagnosis to 49 persons (70%). An 

additional 10 patients carried single likely causative alleles in USH2A suggesting that non-

coding variants are a common cause of USH2A in this population [21]. As these and other 

non-coding variants are implicated in hearing loss it will be essential to expand platforms to 

include these genetic regions [22]. This study also exemplifies the complexity of genetic 

testing– the authors identified a patient with concurrent DFNB2 NSHL and RP49 (MYO7A 
and CGNA1 variants) [21]. Including possible diagnoses outside of the obvious often 

provides key diagnostic information to physicians for a guided clinical correlation. An 

excellent example is genetic testing for prelingual hearing loss. An apparent severe-to-

profound NSHL at 6 months of age may in fact ‘morph’ into a syndromic form of hearing 

loss with age. Usher syndrome type 1 is the classic and most common NSHL mimic, 

although there are many others, attesting to the value of including carefully selected causes 

of syndromic hearing loss on NSHL panels.

Diagnostic rate

The diagnostic rate for TGE+MPS panels is ~40%, making comprehensive genetic testing 

the single best diagnostic test in the evaluation of hearing loss. Sommen and colleagues 

evaluated 131 GJB2-negative individuals with ARNSHL using a 79-gene panel that included 

in-house CNV detection and a variant scoring system; they estimated their positive 

diagnostic rate as ~30% [23*]. Bademci and colleagues investigated 160 multiplex GJB2-

negative ARNSHL families for causative variants in 58 genes and identified a genetic 

etiology in 90 (56%) families, who segregated likely pathogenic or pathogenic variants in 31 

genes [24**]. Moteki and colleagues diagnosed 27% of 194 probands in a GJB2-negative 

Japanese cohort. Their diagnoses included 20 genes and they estimated a diagnostic rate of 

40% if they had not preselected their patient population [25]. They also provided an in-depth 

phenotypic analysis that adds to our knowledge of the clinical presentation associated with 

several genes, including LRTOMT, P2RX2, POU3F4, PTPRQ, and USH2A [26–30].

Amongst a cohort of 302 Iranian probands with ARNSHL, Sloan-Heggen and colleagues 

illustrated the genetic diversity associated with a high co-efficient of inbreeding–they 

diagnosed 40 different genetic causes of hearing loss in 201 of 302 (67%) patients. Twenty-
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six genes had not been previously reported as a cause of ARNSHL in Iran, suggesting that it 

may be short sighted to restrict the genetic search space to commonly implicated deafness-

causing genes, especially when diverse ethnicities are being tested [31].

The most all-encompassing study to date was completed by Sloan-Heggen and included an 

analysis of 1119 sequentially accrued clinically identified probands [32*]. 440 (39%) 

patients were diagnosed with a hearing loss secondary to variants in 49 different genes. This 

study used OtoSCOPE v4 (66 genes) and v5 (89 genes), with the added genes accounting for 

additional 2% diagnostic rate, supporting regular updates to panels to maintain 

comprehensive testing. Nearly 25% of diagnoses were syndromic (101), the most common 

being Usher syndrome. Surprisingly, many of these patients were reported to have a normal 

physical exam, suggesting that a focused history was not obtained and showing that Usher 

syndrome is frequently unrecognized. Covering NSHL mimics like Usher syndrome in 

diagnosis is therefore essential.

The largest comprehensive study to date, by Nishio and Usami, reported a diagnostic rate of 

~40% in 1120 Japanese patients [33**]. Of the 112 genes these authors targeted with TGE

+MPS panels, 30 genes were reported as deafness-causing in their cohort. In addition, of the 

2631 candidate variants they identified, only 105 variants had been reported pathogenic in 

the Deafness Variation Database [34] or ClinVar [35]. These included variants in ACTG1, 
CDH23, COCH, COL4A5, COL11A2, CRYM, EYA1, GJB2, GJB3, GJB6, KCNQ4, 
LOXHD1, MARVELD2, MYH9, MYO6, MYO7A, MYO15A, OTOF, SIX1, SLC26A4, 
TECTA, TMC1, TMIE, TMPRSS3, USH1C, USH2A, and WFS1. Their list of new 

candidate variants, which is being published separately, attests to the requirement for ethnic-

specific data and includes variants in ACTG1, COCH, COL11A2, GRXCR1, KCNQ4, 
MYO6, MYO15A, and TMPRSS3 [36–42].

Detection methodology

Although TGE+MPS is comprehensive, Sanger sequencing is valuable in select 

circumstances and is often used for small targets like GJB2, SLC26A4, and mtDNA in well-

defined populations or in patients meeting select phenotypic criteria. In China, for example, 

33% of 484 patients were diagnosed with NSHL by screening only these three genes in the 

Han, Hui and Tibetan ethnicities. The respective gene-specific diagnostic rates were: GJB2 - 

17.52%, 15.35%, and 11.43%; SLC26A4 - 12.39%, 8.84%, and 8.57%; and mtDNA 
1555A>G - 8.97%, 3.72%, and 5.71% [43]. In contrast, the limitation of Sanger sequencing 

was illustrated in a screen of eight small genes (CABP2, CIB23, DFNB59, GJB3, ILDR1, 
LHFPL5, LRTOMT, and TMIE) in a cohort of 72 Czech patients – only 1 positive diagnosis 

was made [44].

Using Sanger sequencing in a diagnostic workflow based on phenotypically driven gene 

testing can be successful if the phenotype is well understood. Tang and colleagues [45] 

performed this kind of testing on 71 patients with syndromic hearing loss or auditory 

neuropathy and identified a likely pathogenic or pathogenic variant in 25 patients (35.2%) 

and a positive diagnosis in 9 (12.7%). Because hearing loss syndromes are challenging to 

diagnose, this type of approach requires a high degree of specialized understanding of the 
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genotype-phenotype correlations associated with hereditary hearing loss. Indeed, after 

unsuccessful phenotype-driven candidate gene screening, Kim and colleagues used TGE

+MSP (80 genes) to diagnose three of six families with NSHL (COCH and GJB2) and 

Waardenburg syndrome (PAX3) [46]. This more comprehensive approach highlighted 

previously-unappreciated physical features of Waardenburg syndrome in the proband 

(synophrys and prematurely greying hair), showing that the genetic diagnosis is often 

disease defining and can inform a more thorough physical examination.

Microarrays provide an alternative to Sanger sequencing but offer an even narrower 

detection window, one limited to variants included on the chip. Nevertheless, when variants 

are highly enriched in a population this approach is very cost effective. For example, 

amongst 1164 Chinese patients with early onset severe-to-profound hearing loss, 28% had at 

least 1 of 8 common mutations in GJB2, SLC26A4, or mtDNA [47]. The authors then 

presumed a diagnosis of ARNSHL even in heterozygous cases, discounting the carrier 

frequency for common variants, which can be high. Within a Brazilian cohort with NSHL, 

evaluated using a similar platform, variants were identified in 30% of 180 patients, however 

the diagnostic criteria were strict and only 19% received definitive diagnosis [48].

In general, TGE+MPS with no or minimal pre-screening is now the preferred screening 

option, although debate over the use of a custom-designed panel or selective filtering of 

whole exome sequencing (WES) remains. Each year, more genes are implicated in hearing 

loss, most of which are identified using WES (Reviewed through 2014 in[49], [4–17,18*]). 

These discoveries mean that a targeted panel must be regularly updated to be 

comprehensive. Aside from this limitation, targeted panels offer many advantages over 

WES. Deafness-specific TGE panels (see Table 1) restrict analysis to likely relevant genes, 

decrease sequencing costs, improve sequencing quality, and ease analysis and counseling by 

removing the burden of many secondary findings that are identifiable in WES.

Small panels also offer better targeted coverage. Bademci et al. have shown that overall gene 

coverage and specifically coverage of 58 ARNSHL genes has increased with versioning of 

WES [24**]. While this improved performance has closed the gap between custom panels 

and WES, a significant difference in coverage still exists (mean gene coverage at 10X with 

the v5 exome capture of 88.6%, while Sloan-Heggen reported 10x coverage of 99.3%[32*]). 

One possible option that Bademci offers to further improve this methodology is the 

utilization of spike-in baits (custom designed probes added to a predesigned TGE panel 

during the hybridization process) to improve coverage [24**]. This study also exemplifies 

some of the benefits of WES testing for hearing loss diagnosis: new gene discovery. Two of 

the 90 families diagnosed using their WES workflow to date segregated novel ARNSHL 

genes, OTOGL and FAM65B [50, 51].

CNV inclusion and methodology

CNV analysis is essential in the genetic diagnosis of hearing loss. For example, CNVs in 

STRC are a common cause of ARNSHL in Caucasian populations [52]. STRC encodes 

stereocilin, a protein essential for maintaining proper linkage of cochlear stereocillia and 

hearing physiology. Variants in or deletions of STRC can result in NSHL at the DFNB16 

Sloan-Heggen and Smith Page 5

Curr Opin Pediatr. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



locus, but can also result in Deafness Infertility Syndrome (DIS) when STRC and 

CATSPER2 are both deleted. In fact, Sloan-Heggen and colleagues found that STRC was 

the most common genetic cause of mild-to-moderate hearing loss, accounting for 30% of 

diagnoses in persons with this degree of hearing loss [32*]. Shearer et al. reported that 20% 

of all positive diagnoses in their cohort involved at least 1 CNV [53]. In a study of 94 

patients from Germany, seven patients were diagnosed with DFNB16 NSHL or (DIS) [52]. 

These authors used the Omni 1-Quad v1.0 array, aCGH and qPCR to identify 9 patients with 

deleterious CNVs, reflecting the challenges of STRC CNV analysis, which is complicated 

by the presence of a pseudogene within the area that often undergoes non-allelic 

homologous recombination [53].

CNV analysis of MPS data has resulted in the identification of several novel CNVs [23*, 25, 

31, 32*, 49, 54*] and has shown that many genes can harbor CNVs. Comprehensive CNV 

detection is as important as comprehensive SNV detection and analysis and must be 

included in all analytic pipelines. Two new CNV detection methods based upon differential 

read depth have been reported [23*, 54*], which should make CNV incorporation into TGE

+MPS workflows more widespread.

Analytic pipeline and validation

Genetic testing laboratories rarely describe in detail the unique attributes of their analytic 

pipelines and how genetic variants are interpreted. Some labs have made their own variant 

scoring systems [23*] while other labs discuss results and correlate genotypes with 

phenotypes as part of a multidisciplinary meeting [32*]. These details can have a 

tremendous impact on the final report.

All TGE+MPS technologies have platform specific strengths and weaknesses for variant 

detection that must be established for quality control. Many labs also provide variant 

validation using an orthogonal technology (typically Sanger sequencing) on a newly 

extracted DNA sample. Although these steps may seem redundant, they are excellent checks 

to ensure quality and guard against errors and sample switches.

Patient specific considerations

Patient family history (including inheritance and possible parental consanguinity) and 

ethnicity have a major impact on the diagnostic rate. With respect to the former, Moteki et 

al. and Sloan-Heggen et al. showed that a positive family history for autosomal dominant 

NSHL or ARNSHL versus sporadic hearing loss is associated with diagnostic rates of 35% 

(Moteki, autosomal dominant), 35% (Moteki, AR) and 19% (Moteki, sporadic), and 50% 

(Sloan-Heggen, AD), 41% (Sloan-Heggen, AR) and 37% (Sloan-Heggen, sporadic), 

respectively [23,25].

Bademci and colleagues looked at ethnic biases. They reported an overall diagnostic rate of 

56% but ethnic-specific rates of: Turkish–71% versus Iranian–24%. This variability reflects 

population specific coefficients of inbreeding and differences in the consanguinity rate (74% 

vs 35% for Turkey and Iran, for example) [49]. It may also reflect gene inclusion, as most 

ARNSHL genes have been identified in families from consanguinity belts in the Middle East 
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and India. Few studies have been done in African or African Americans, a limitation 

highlighted by Sloan-Heggen et al. In their analysis of 1119 probands, ethnic-specific 

diagnostic rates were 25% for African-Americans, 38% for European-Americans, and 72% 

for Middle Eastern ethnicities [32*].

Hearing loss phenotype and other physical findings suggestive of a syndrome are also 

important factors in the likelihood of a positive diagnosis. Of the 1119 clinical patients 

studied by Sloan-Heggen et al., 233 (20%) provided information indicating an additional 

finding (in addition to hearing loss) on physical exam. This sub-cohort had a lower-than-

average diagnostic rate (27%), which varied from 0% for patients with a CNS phenotype 

like epilepsy to 75% for the four patients with cleft lip and palate [32*].

The most significant aspect of the hearing loss impacting diagnostic rate is laterality of 

hearing loss with unilateral, asymmetric and bilaterally symmetric hearing loss having 

diagnostic rates of 1%, 22% and 44%, respectively [32*].

Thus a patient’s family history, ethnic background and physical examination can guide 

expectations during pretest counseling.

After testing, clinical correlation and segregation analysis

When a putative genetic diagnosis is returned, the diagnosis must be interpreted in the 

context of the patient. A 17-year-old given an Usher syndrome type 1 diagnosis but who did 

not have any motor milestone delays and has no photophobia or night blindness is incorrect 

due to unreasonable variance from the expected Usher 1 phenotype [55]. Similarly, a variant 

implicated in dominant deafness carried by an unaffected parent is not correct. Careful 

clinical correlation and segregation analysis are essential to proper diagnosis.

Genetic counseling is also an essential element, allowing for proper patient education and 

understanding of their testing results’ implications for them and their families. Within 

regions with few genetic counselors, this educational burden will fall to the ordering 

clinician. As such, otolaryngologists and other ordering physicians must continue their own 

education in order to pursue genetic literacy.

Possible future considerations

Although hereditary hearing loss is largely monogenic and Mendelian, as comprehensive 

genetic testing becomes widespread, it will become possible to identify genes that alter, in 

both a positive and negative way, the expected phenotype. Most studies assume Mendelian 

inheritance, complete penetrance, and no phenocopies, however this assumption will likely 

not be the case, especially in large families. For example, Rehman et al. found that in 294 

Pakistani families in whom they performed linkage analysis, 45 (15%) showed locus 

heterogeneity. They also identified a European-American family segregating 4 different 

hearing loss variants in 3 different genes. Presumed segregation in singleton cases may be 

simple, but in cases of large families, especially with multiple consanguinity loops, locus 

heterogeneity must be considered [56*].
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Conclusion

Our knowledge of genetic hearing loss continues to grow rapidly. Providing quality testing 

to a patient has a significant impact on their clinical care and is recommended by the 

ACMG. Among the currently available tests, clinicians should select comprehensive 

platforms that include in the analysis pipeline discovery of both SNVs and CNVs. Genetic 

results should be confirmed by an orthogonal technology and must be interpreted in the 

context of the patient phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• Comprehensive genetic testing is now possible for 

hearing loss.

• The ideal panel includes all genes known to cause 

NSHL and NSHL mimics.

• The analysis pipeline must identify both SNVs and 

CNVs.

• Clinical correlation is essential.

• The diagnostic rate of comprehensive genetic testing is 

impacted by family history, ethnic origin, type of 

hearing loss and phenotype.
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