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Abstract

The ability to computationally predict protein-small molecule binding affinities with high accuracy 

would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error 

synthesis and experimental evaluation of candidate ligands. As academic and industrial groups 

work toward this capability, there is an ongoing need for datasets that can be used to rigorously 

test new computational methods. Although protein–ligand data are clearly important for this 

purpose, their size and complexity make it difficult to obtain well-converged results and to 

troubleshoot computational methods. Host–guest systems offer a valuable alternative class of test 

cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a 

consequence, host–guest systems have been part of the prior two rounds of SAMPL prediction 

exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and 

thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit 

of focusing multiple researchers on a common set of molecular systems, so that methods may be 

compared and ideas exchanged. The present paper provides an overview of the host–guest 

component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-

based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of 

methods were applied, including electronic structure calculations with implicit solvent models; 

methods that combine empirical force fields with implicit solvent models; and explicit solvent free 

energy simulations. The most reliable methods tend to fall in the latter class, consistent with 

results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable 

computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, 

electronic structure methods, and solvent models, hold promise for future improvements.
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Introduction

Structure-based computer-aided drug design (CADD) methodologies are widely used to 

assist in the discovery of small molecule ligands for proteins of known three-dimensional 

structure [1–3]. Docking and scoring methods can assist with qualitative hit identification 

and optimization [4–6], and explicit solvent free energy methods [7–10] are beginning to 

show promise as an at least semi-quantitative tool to identify promising variants on a defined 

chemical scaffold [11–14]. However, despite numerous efforts to improve the reliability of 

CADD by going beyond docking and scoring methods, ligand design still includes a large 

component of experimental trial and error, and the reasons why CADD methods are often 

not predictive are unclear. Although likely sources of substantial systematic error are well 

known—such as inaccuracy in the energy models used and uncertainty in protonation and 

tautomer states—it is difficult, and perhaps impossible, to analyze systematic errors in any 

detail, because incomplete conformational sampling of proteins adds large, ill-characterized 

random error.

As a consequence, host–guest systems [15–25] are finding increasing application as 

substitutes for protein– ligand systems in the evaluation of computational methods of 

predicting binding affinities [26–28]. A host is a compound much smaller than a protein but 

still large enough to have a cavity or cleft into which a guest molecule can bind by non-

covalent forces. Host–guest systems can be identified that highlight various issues in 

protein–ligand binding, including receptor flexibility, solvation, hydrogen bonding, the 

hydrophobic effect, tautomerization and ionization. Because host molecules tend to be more 

rigid and always have far fewer degrees of freedom than proteins, random error due to 

inadequate or uncertain conformational sampling can be dramatically reduced, allowing a 

tight focus on other sources of error. Additionally, host–guest systems arguably represent a 

minimalist threshold test for methods of estimating binding affinities, as it is improbable that 

a method which does not work for such simple systems could succeed for more complex 

proteins.

Accordingly, host–guest systems have been included in rounds 3, 4 and now 5, of the 

Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) project, a 

community-wide prediction challenge to evaluate computational methods related to CADD 

[29–32]. The SAMPL project has traditionally posed challenges involving not only binding 

affinities but also simpler physical properties, such as hydration free energies of small 

molecules, and, in the present SAMPL5, distribution coefficients of drug-like molecules 

between water and cyclohexane. Importantly, SAMPL is a blinded challenge, which means 

that the unpublished experimental measurements are withheld from participants until the 

predictions have been made and submitted. This approach avoids the risk, in retrospective 

computational studies, of adjusting parameters or protocols to yield agreement with the 
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known data, leading to results which appear promising but are not in fact reflective of how 

the method will perform on new data. In addition, SAMPL challenges facilitate comparisons 

among methods, because all participants address the same problems, and the consistency of 

the procedures offers the possibility of comparing results from one challenge to the next, in 

order to at least begin to track the state of the art.

The most recent challenge, SAMPL5, included 22 host–guest systems (Fig. 1), which 

attracted 54 sets of predictions from seven research groups. Here, we provide an overview of 

this challenge and the results. (Note that many participants also have provided individual 

papers on their host–guest predictions, most in this same special issue, and that additional 

papers address the distribution coefficient challenge that also was part of SAMPL5.) The 

present paper is organized as follows. We first introduce the design of the current SAMPL 

challenge, including descriptions of the host–guest systems and measurements, information 

on how the challenge was organized, and the nature of the submissions. We then analyze the 

performance of the various computational methods, using a number of different error 

metrics, and compare the results with each other and with those from prior SAMPL host–

guest challenges.

Methods

Structures of Host–Guest Systems and Experimental Measurements

The SAMPL5 host–guest challenge involves three host molecules, which were synthesized 

and studied in the laboratories of Prof. Bruce Gibb and Prof. Lyle Isaacs, who kindly 

allowed the experimental data to be included in the SAMPL5 challenge before being 

published. The first two hosts, OAH [33] and OAMe, from the Gibb laboratory, are also 

known as octa-acid (OA) and tetra-endo-methyl octa-acid (TEMOA) [34, 35]. The third, 

CBClip [36], was developed in the Isaacs laboratory. Representative 3D structures along 

with the 2D drawings of their respective SAMPL5 guest molecules, are shown in Fig. 1. 

Host OAH was used in the SAMPL4 challenge [31], but with a different set of guests. One 

end of it has a wide opening to a bowl-shaped binding site, while the other end has a narrow 

opening that is too small to admit most guests. The bowl's opening is rimmed by four 

carboxylic acids, and another four carboxylic groups extend into solution from the closed 

end. The carboxylic groups were added to promote solubility and are not thought to interact 

closely with any of the guests. Host OAMe is identical to OAH, except for the addition of 

four methyl groups to the aromatic rings at the rim of the portal. The common guest 

molecules of OAH and OAMe, OA-G1–OA-G6 were chosen based on chemical diversity, 

solubility, and an expectation that they would exhibit significant binding to these hosts. Host 

CBClip is an acyclic molecular clip that is chemically related to the cucurbiturils used in 

previous SAMPL projects [30, 31]. It consists of two glycoluril units, each with an aromatic 

sidewall, and four sulfonate solubilizing groups. Ten molecules, CBC-G1–CBC-G10, were 

chosen as guests of CBClip, with the aim of attaining a wide range of affinities.

The experimental binding data for all three sets of host–guest systems are listed in Table 1. 

A 1:1 binding stoichiometry was confirmed experimentally in all cases. The binding 

affinities of most OAH/OAMe complexes were measured using two different techniques, 

NMR and ITC, and binding enthalpies are also available for the ones studied by ITC. The 
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NMR experiments were carried out in 10 mM sodium phosphate buffer at a pH of 11.3, 

while the ITC experiments were performed in 50 mM sodium phosphate buffer at pH 11.5. 

Both sets of experiments were conducted at 298 K, except that the NMR results for OAMe-

G4 were obtained at 278 K. In the SAMPL5 instruction file (see Supplementary Material), 

we provided expected buffer conditions for OAH/OAMe systems as “aqueous 10 mM 

sodium phosphate buffer at pH 11.5, at 298 K, except for OA-G6, for which the buffer was 

50 mM sodium phosphate”, based on information from Dr. Gibb. Therefore, the binding 

affinities measured under these conditions were used for the present error analysis when-

ever they are available; i.e., the ITC values for OA-G6 and NMR values for the rest. Note 

that OA-G4 with OAH was measured only by ITC, so this value was used in the present 

analysis. For the CBClip systems, the experimental studies were carried out in 20 mM 

sodium phosphate buffer at pH 7.4, at a temperature of 298 K. Most of the CBClip binding 

affinities were measured by either NMR or UV/Vis spectroscopy. However, CBC-G6 and 

CBC-G10 were measured by both techniques; for these, the present analysis uses the results 

with the highest confidence level indicated by the experimentalists: UV/Vis measurement for 

CBC-G6 and fluorescence for CBC-G10. Detailed experimental data for OAH and OAMe 

system are provided in the SAMPL5 special issue [37], and data for CBClip systems are 

provided elsewhere [38]. Note that a different set of numbering was used for both hosts and 

guests in the octa acid experimental paper.

Design of the SAMPL5 host–guest challenge

The SAMPL5 challenge was organized in collaboration with the Drug Design Data 

Resource (D3R). The general information, detailed instructions, and input files for SAMPL5 

were posted on the D3R website (https://drugdesigndata.org/about/sampl5) mostly before 

September 15, 2015; the information for three guest molecules in the CBClip series was 

added in mid-October. Submissions were accepted from registered participants until the 

February 2 deadline. Multiple sets of predictions were allowed for any or all of the host–

guest series. Experimental measurements and error analyses of all predictions were released 

shortly after the submission deadline, and many participants discussed their results and the 

challenge at the D3R workshop held March 9–11, 2016, at University of California San 

Diego. All participants were invited to submit a manuscript about their calculations and 

results before a June 20, 2016 deadline, and the resulting papers accompany this overview in 

the special issue of the Journal of Computer-Aided Molecular Design.

The SAMPL5 host–guest instruction files provided the expected experimental conditions for 

each set of host–guest systems, including pH, buffer composition and temperature, though 

these were subject to adjustment because some experiments were still being done when the 

instructions were distributed. The instructions noted that all acidic groups of the host 

molecules seemed likely to be ionized at the experimental pH values (above), leading to net 

charges of net charges of −8, −8 and −4 for OAH, OAMe and CBClip, respectively; but also 

noted that this assumption was open to modification by each participant. Plausible three-

dimensional coordinates of host CBClip were provided by Prof. Lyle Isaacs, while the 

starting 3D structures of OAH and OAMe were built and energy-minimized with the 

program MOE [39]. The protonation states of all guest molecules in their unbound state 

were also suggested, based on their expected pKas and the experimental pH values (Fig. 1), 
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but, again, it was made clear that each participant had to make his or her own judgment 

regarding the ionization states and whether they remained unchanged on binding their 

respective hosts. The initial structures of the free guest molecules were constructed by 

conformational search with MOE. The resulting structures of free hosts and guests were 

provided in the download as PDB, mol2 and SD files. (A bond order issue in a few SD files 

of the free CBClip guests were reported by SAMPL users at the workshop; two submissions 

using the Movable Type method were adversely affected [40].) When submitting their 

predictions, participants were required to provide not only estimated binding free energies, 

but also computational uncertainties, in the form of standard errors of the mean (SEM). New 

in SAMPL5, participants were also invited to provide predictions of the binding enthalpies 

for the octa-acid host–guest systems, OA and OAMe, but this aspect of the challenge is not 

discussed in the present overview paper because only one group predicted enthal-pies [41].

In prior rounds of SAMPL, it was observed that participants using ostensibly equivalent 

force fields and simulation procedures to compute binding free energies sometimes reported 

rather different predictions. To help resolve such situations in case they arose in SAMPL5, 

participants using explicit solvent free energy methods were encouraged to submit additional 

“standard” runs with a prescribed set of force field and simulation parameters. The systems 

selected for these standard runs were OAH-G3 and OAH-G4. The input files for plausibly 

docked host–guest complexes solvated in TIP3P water with counterions were provided to 

participants in Amber [42], Gromacs [43], Desmond [44], and LAMMPS [45] formats, 

along with the other SAMPL5 starting data. The procedures used to ascertain that all four 

standard setups were equivalent across all four software packages are detailed in another 

paper in this issue [46].

Error analysis

Details of the experimental measurements for the host–guest complexes in SAMPL5 are 

available elsewhere [37, 38]; all available data were provided to the participants after the 

close of the challenge. For most of the OAH and OAMe cases, affinities were measured by 

more than one technique [37]. Some SAMPL5 participants used the averaged affinities for 

their error analysis, while others selected affinities measured by either NMR or ITC. It is up 

to the participants to determine which set of experimental affinities to use for their own 

analyses, as long as consistent criteria are used, rather than choosing ones that generate the 

best agreement with the computational estimates. In any case, given that the different 

affinities measured for the same host–guest pairs vary only slightly, this factor should not 

influence the judgement of the performance of any submissions to a significant extent. In the 

present paper, the error analysis for OAH and OAMe is based on comparisons with the 

selected NMR/ITC affinities listed in Table 1, which were chosen to best match the 

experimental conditions that participants were told to expect when the challenge was set. 

However, our statistical analyses change little on comparing instead with, for example, the 

average of all available affinities (ITC and NMR) for each host–guest pair. For example, the 

RMSE values change by at most 0.1 kcal/mol; see the error metric spreadsheet in SI. For 

completeness, detailed error metrics based on both sets of experimental affinities (those 

listed in Table 1, and averaged) are provided in the SI. The SI also provides the experimental 
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replicates (Prof. Bruce Gibb, personal communication), which we used to estimate the 

experimental uncertainties in Table 1.

All binding affinity prediction sets were compared with the corresponding experimental data 

by four measures: root mean-squared error (RMSE), Pearson coefficient of determination 

(R2), linear regression slope (m), and the Kendall rank correlation coefficient (τ). Evaluating 

these statistics was straightforward for predictions of absolute (also known as standard) 

binding free energies, and the results are presented here as “absolute error metrics”. For 

OAH and OAMe, some submissions included only relative binding free energies, and 

comparing these with experiment is more complicated. One approach for handling relative 

free energies would be to reference all of the relative binding free energies to a single guest 

molecule, but then the apparent accuracy can become particularly sensitive to the quality of 

the calculations for the reference guest. Another approach would be to consider all pairwise 

free energy differences, but this becomes cumbersome and redundant. Additionally, a 

method is needed to compare the accuracy of relative and absolute free energy calculations 

on a uniform footing.

Here, we adopted an approach used in analyzing the SAMPL4 challenge [31], in which the 

mean signed error (MSE) of each submission set, whether relative or absolute, is subtracted 

from each prediction leading to “offset” binding affinity estimates. The error metrics for 

comparisons to experiment are less sensitive with this approach than using any particular 

host–guest system as a reference. We compute the offset binding free energies for each 

method as follows

(1)

(2)

where  is the reported (absolute or relative) binding affinity for each prediction i, 

 is the corresponding absolute experimental binding affinity,  is the offset 

binding affinity, and n is the total number of guests considered. By offsetting both relative 

and absolute predictions, we can make a fair comparison of their agreement with 

experiment. We term the error metrics computed with this approach “offset error metrics” 

and they are named RMSEo, , mo, and τo.

Given the similarity of the OAH and OAMe hosts, the fact that the same guests were studied 

for both, and the fact that most submissions included results for both subsets, we provide 

error statistics for the combined OAH/OAMe datasets. Note that, in the submissions that 

reported relative affinities, the binding estimates of OAH-G1 and OAMe-G1 were both 

arbitrarily set as zero, even though the experimental binding affinities of OAH-G1 and 

OAMe-G1 are not identical. We addressed this problem by applying a separate MSE offset 
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to the data for these two hosts; that is, by subtracting the MSE of the OAH subset from the 

OAH estimates, and the MSE of the OAMe subset from the OAMe estimates. For instance, 

in a combined set of OAH/OAMe predictions which contains six relative binding affinity 

estimates for host OAH and six for OAMe, the offset RMSE error metric, termed RMSEo, is 

given by

(3)

We also tested how well the computational predictions performed by comparison with two 

simple null models, Null1 and Null2. In Null1, all binding free energies were set to 0.0 

kcal/mol and the statistical uncertainty for each data point was set to 0.0 kcal/mol. In the 

Null2 model, the binding affinity estimate for each guest was computed via a linear 

regression of the experimental binding free energies versus the number of heavy atoms in the 

corresponding guest molecule, for identical or similar host molecules used in the SAMPL3 

[30] and SAMPL4 [31] exercises; the resulting expression is ΔG = −1.11 × number of heavy 

atoms +5.06 (kcal/mol) for OAH and OAMe systems and ΔG = −0.25 × number of heavy 

atoms −1.81 (kcal/mol) for the CBClip systems. In order to simulate a real submission, we 

assigned a statistical uncertainty of 1.0 kcal/-mol to each data point in Null2.

In addition to evaluating how each calculation method performed in this specific challenge 

(i.e., the two types of error metrics described above), we wanted to provide an estimate of 

how well each method would perform in general. In other words, we wanted to compute 

error metric uncertainties which accounted for how the reported statistical error and 

composition of the data set influences the error metric results. The uncertainty in the error 

metrics was determined via bootstrap resampling with replacement. Conceptually, this 

involves creating thousands of hypothetical “experiment versus calculation” data sets which 

are consistent with the reported uncertainties, and then recording the distribution of the error 

metrics across all of the hypothetical sets. More specifically, we considered each data point, 

whether experiment or calculated, as a normal distribution centered on the reported mean 

value with the width determined by the reported SEM. For each bootstrap cycle, we selected 

a single random value from that distribution for each data point, which we term “re-

sampling”. Additionally, while each bootstrap cycle always had the same total number of 

host–guest systems (12 for OAH/OAMe, 10 for CBClip), the composition of the data set was 

selected “with replacement”, meaning that in some cycles there were multiple copies of a 

host–guest pair, while other pairs were absent. The error metric distributions were generated 

with a sufficient number of bootstrap cycles, 100,000 in this case, such that the mean and 

standard deviation of the distributions were reproducible to the second decimal place. For 

submissions which did not report an uncertainty (see Tables 3, 4 footnotes), the resampling 

step was omitted. The code for generating the error metrics and plotting the distributions is 

available both in the SI and on Github.

Yin et al. Page 7

J Comput Aided Mol Des. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

The SAMPL5 host–guest challenge received a total of 54 submissions from 7 research 

groups, comprising 12 submissions for host CBClip, 21 submissions for OAH and 21 

submissions for OAMe. Key aspects of all prediction methods—the conformational 

sampling method, the force field used for the host and guest, and the water model—are 

summarized in Table 2. After merging submissions that used identical methods for both 

OAH and OAMe, the 42 OAH/OAMe submissions reduce to 20 sets of combined 

predictions, along with two subset predictions: TI-BAR (Table 2) for only OAH, and 

MMPBSA-OPLS (Table 2) for only OAMe. The conformational sampling techniques used 

include docking, molecular dynamics (MD) simulations with explicit or implicit solvent, and 

Monte Carlo methods. Compared with SAMPL3 and SAMPL4 exercises, docking was less 

frequently used as the sole sampling technique, but it was commonly used for obtaining the 

starting structures for more detailed computational approaches. Extensive use was made of 

generalized classical force fields with fixed charges and no explicit treatment of electronic 

polarizability, and methods using explicit solvent models employed chiefly the TIP3P water 

model [47]. However, a few methods focused less on conformational sampling and more on 

the quality of the energy calculations, through the use of various quantum methods. For the 

quantum methods to obtain configurational entropy, low-lying vibrational modes were 

treated by the free-rotor approximation, using the interpolation model implemented by 

Grimme [48]. The methods to derive affinities or relative affinities range from relatively 

established approaches, such as thermodynamic integration (TI) [49], Bennett acceptance 

ratio (BAR) [50], metadynamics [51], and MM/PBSA [52], to the more recently developed 

Movable Type method [53].

Error statistics

Error statistics for all 17 sets of absolute binding free energy predictions for the combined 

OAH/OAMe dataset are summarized in Table 3 (left-hand side) and Fig. 2. These absolute 

binding free energy predictions, in addition to three sets of relative binding free energy 

predictions: DFT/TPSS-n, DFT/TPSS-c, and DLPNO-CCSD(T), were then converted to 

offset binding free energies, using Eq 1, and the error statistics are presented in Table 3 

(right-hand side) and Fig. 3. The offset free energy statistics for all methods for the separate 

OAH and OAMe sets are presented in Table 4. All 12 sets of CBClip predictions are 

absolute binding free energies, and error statistics for these are presented in Table 5 and Fig. 

4. Scatter plots of original data and offset predictions versus experimental binding free 

energies for all methods and systems are provided in Figure S1 and S2 respectively.

Inspection of the absolute binding free energy results for OAH and OAMe (Fig. 2; Table 3) 

reveals that most prediction sets outperformed both Null models for this dataset, and that 

comparatively favorable results were provided by several explicit solvent free energy 

methods with fixed charge models and the GAFF parameters [68]. The attach-pull-release 

(APR) method [60] with either the TIP3P or the OPC water model, performed well, as did 

the SOMD-3 method (Fig. 5a, b), followed closely by the SOMD-1 and SOMD-2 methods. 

The APR method obtains the binding free energy in terms of the reversible work to pull the 

guest from the host along a physical pathway [60, 76], while the SOMD calculations use the 
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double-decoupling approach [77]. The APR-TIP3P, APR-OPC and SOMD-3 methods all 

yielded R2 ≥ 0.8, linear regression slopes 1.3 < m < 1.4, and 1.6 ≤ RMSE ≤ 2.1 kcal/mol. 

The other two SOMD predictions, SOMD-1 and SOMD-2, which closely resemble SOMD-3 

but use different correction protocols, provide similar correlations with experiment, but 

larger RMSE values, 3.6 kcal/mol. The Metadynamics method uses the funnel 

metadynamics approach [78] to obtain the binding free energy via the potential of mean 

force along a physical binding pathway, again using molecular dynamics with GAFF and 

TIP3P; this method also performed relatively well, with R2 of 0.7, slope near 1, and RMSE 

of 3.1 kcal/mol. It is not immediately clear why the Metadynamics and APR-TIP3P differ, as 

the force fields used appear to match, but it is worth noting that the Metadynamics 

calculations actually provided relative binding free energies, which were converted into 

absolute binding free energies for submission by referring to a known octa-acid guest result 

from SAMPL4. The accurate absolute binding free energies cannot be obtained by 

Metadynamics due to the special treatment of the unbound state as a “dry state”, in which all 

water molecules were restrained from entering the host cavity [56].

The analysis of relative binding free energies (Fig. 3; Tables 2, 3) provides a similar overall 

picture, but allows the three sets of relative predictions—DLPNO-CCSD(T), DFT/TPSS-n 

and DFT/TPSS-c to be compared with the other predictions on an equal footing. The DFT/

TPSS-n and DFT/TPSS-c predictions were generated with dispersion-corrected density 

functional theory calculations, in conjunction with the COSMO-RS continuum solvation 

model [75], while DLPNO-CCSD(T) approach used the DLPNO-CCSD(T) level of theory, 

again combined with COSMO-RS. Both DLOPNO-CCSD(T) and DFT/TPSS-n treated the 

host as neutral and the guest as fully charged, while the DFT/TPSS-c assumed charges 

appropriate to the experimental pH for both host and guest molecules. According to the 

participant, the correlations shown in DFT/TPSS-n ( ; Fig. 5c) and other two quantum 

submissions actually resulted from including the OAMe-G4 data point based on a faulty 

binding configuration. When the proper configuration was used in later calculations, no 

correlations were found with experimental data [54].

The offset error analysis also provides separate statistics for OAH and OAMe, and it is 

noteworthy that, despite their relatively low correlations for the OAH/OAMe combined set, 

the MovTyp-1 and MovTyp-2 methods yield good error statistics for the OAH subset (Table 

4), with  of 0.8 and regression slopes near 1. However, the two Movable Type methods 

yield anti-correlations for the OAMe subset, and this degrades the overall performance of 

these methods for the combined OAH/OAMe set. Similar performance deterioration by 

including estimates from the OAMe subset was also observed for several other methods, 

including Metadynamics, TI-raw and TI-ps, and to some degree for MMPBSA-GAFF 

predictions. Interestingly, although the Null2 model showed a large RMSEo value of 3.1 

kcal/mol and anti-correlation for the OAMe subset, it seems to be able to generate 

reasonable predictions for the OAH subset, with the RMSEo value of 1.7 kcal/mol,  value 

of 0.4 and mo value of 0.8. Null2 model resembles what was observed in about one third of 

the predictions for OAH and OAMe systems: a method that performed well on OAH 

systems could totally fail on OAMe systems. It is also worth noting that methods that 

showed much weaker correlation for the OAMe set also yielded larger RMSEo values for 
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OAMe, suggesting that the narrower spread of experimental binding energies in the OAMe 

dataset, relative to OAH, cannot fully account for the weak correlations.

Fewer methods were applied to the CBClip set (Fig. 4; Table 5), and results are in general 

less favorable than those for OAH and OAMe. Indeed, the Null-2 model, which estimates 

affinity based on the number of guest heavy atoms, outperformed all methods in terms of 

RMSE and regression slope, and turned in a mid-range performance for the measures of 

correlation (Fig. 5d). The SOMD methods again provided high correlations with experiment, 

yet large regression slopes of 2.7 and RMSE values on the order of 6 kcal/mol (Table 5; Fig. 

5e). The BEDAM method provided a balanced performance, with an R2 value of 0.4, a 

RMSE value of 4.8 kcal/mol, and a regression slope of 1.7 (Table 5; Fig. 5f). MovTyp-1 and 

MovTyp-2 submissions showed near-zero correlations. However, according to the 

participant, moderate correlations and lower RMSEo values were obtained when structures 

with corrected bond orders were used [40]. The remaining five sets of predictions generated 

by either TI or HREM/BAR approach, yielded either zero or negative correlations with 

experiment. One possible explanation for the worse performance of multiple methods for 

CBClip, versus the octa-acids, is that CBClip is acyclic and hence may be more flexible and 

slower to converge. However, this would presumably lead to greater scatter of the binding 

estimates and thus lower correlation, yet the SOMD method still showed good correlations 

for the CBClip set (R2 ~ 0.8). Instead, the large errors in this case seem to derive from the 

fact that the slopes (m) are as high as 2.7 for the CBClip cases. This would suggest some 

systematic error, such as finite-size effects or problems in the treatment of short-range 

electrostatics, since the four sulfonate groups are positioned where they can interact strongly 

with the guests.

Comparison with SAMPL3 and SAMPL4 host–guest challenges

Host–guest systems were first introduced to SAMPL for the SAMPL3 challenge, and all 

SAMPL hosts to date have been drawn from the cucurbituril and octa-acid families of hosts, 

a trend which reflects the continuing data contributions of Professors Lyle Isaacs and Bruce 

Gibb. Although some hosts are new chemical variants, others have recurred across 

challenges. Thus, the current OAH host is identical to the OA host in SAMPL4; and the 

present CBClip resembles the glycoluril-based molecular clip Host H1 in SAMPL3 and the 

glycoluril host CB7 in SAMPL4. The structures of H1 and CB7 are shown in Fig. 6. In 

addition, some SAMPL5 participants used closely related methods to generate predictions 

for prior rounds of SAMPL. One may thus begin to look for trends in computational 

performance over time.

Two methods, BEDAM and TI/BAR, applied to the present CBClip case, were also used to 

predict the binding affinities for the chemically related H1 in SAMPL3 [30, 79]. Both 

methods yielded larger RMSE values in the present study: 4.8 kcal/mol (Table 5) versus 2.5 

kcal/mol in SAMPL3 for BEDAM, and 4.0 kcal/mol versus 2.6 kcal/mol for TI/BAR. 

However, the correlations were similar: R2 values between 0.4 and 0.5 for BEDAM, and R2 

values near zero for TI/BAR in both SAMPL exercises.

Binding data for the octa-acid host OAH were also used in the SAMPL4 challenge [31], 

where this host was termed OA instead of OAH, and several identical or similar 
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computational methods were applied to this host in both SAMPL challenges. Note that, 

since the error analysis in SAMPL4 was based on relative binding affinity predictions, we 

compared the SAMPL4 error metrics of OA with the offset error metrics of OAH in the 

current challenge. In particular, RMSE_o in SAMPL4 was obtained in a similar manner to 

RMSEo here by using offset binding affinity estimates. The BEDAM method yielded 

substantially more accurate predictions for this host in SAMPL4, with R2 of 0.9 then versus 

0.04 now, and the offset RMSE 0.9 kcal/mol then and 4.8 kcal/mol now. It is important to 

note that, although the methods, energy models, solvent models and sampling techniques 

appear mostly the same between SAMPL3 and SAMPL5 for this approach, the more diverse 

guest set in SAMPL5 may pose a challenge to BEDAM's implicit solvent model. An in-

depth discussion on the performance of BEDAM can be found in the SAMPL5 special issue 

[54].

It also seemed appropriate to compare the present DFT/TPSS-n predictions with RRHO-551 

(SAMPL4 ID:551), which used DFT-D, an early version of dispersion-corrected DFT with 

COSMO-RS; and the DLPNO CCSD(T) predictions with RRHO-552 (SAMPL4 ID:552), 

which used LCCSD(T), a local coupled-cluster method with COSMO-RS [80]. Comparable 

performance was observed in both cases on going from SAMPL4 to SAMPL5 for the OAH 

set only. For the DFT methods, the prior offset RMSE, R2 and regression slopes were, 

respectively, 5.8 kcal/mol, 0.5 and 3.9, while the current values are 4.4 kcal/mol, 0.5, and 

2.2. For the coupled-cluster methods, the prior offset RMSE, R2 and regression slopes were, 

respectively, 6.1 kcal/mol, 0.4 and 3.3, while the current values are 7.0 kcal/mol, 0.5, and 

3.3. However, as mentioned above, the quantum submissions showed essentially zero 

correlation on the mixed OAH/OAMe set after the faulty configuration of OAMe-G4 was 

replaced with a more proper one [55]. Given this adjustment, the quantum methods 

performed worse in SAMPL5 compared with SAMPL4.

The Metadynamics approach yielded more accurate predictions in SAMPL5 than in 

SAMPL4 (ID:579), though it is important to note that, for this method, the hosts studied are 

largely distinct, and a different force field was used previously [81]. The SAMPL4 

predictions with this method showed near-zero or anti-correlations for the CB7 host, 

whereas the SAMPL5 predictions showed moderate correlations in the OAH/OAMe 

combined set and fairly good agreement with experiments in the OAH subset.

Although two top-ranked SAMPL5 methods, SOMD and APR, were not tested in prior 

SAMPL challenges, it is of interest to compare each with one of the free energy perturbation 

(FEP) methods that also employed GAFF parameters, RESP charges and TIP3P water model 

in SAMPL4. APR-TIP3P and SOMD-1 were thus compared with FEP-526 (SAMPL4 ID: 

526) [80] for the octa acid predictions. In spite of the increased chemical diversity of the 

SAMPL5 set of guests, all three methods performed equally well: the R2 values in all three 

methods are no less than 0.9; the offset RMSE measures ranged from 0.8 to 0.9 kcal/mol, 

and slopes ranged from 1.3 to 1.5. APR-TIP3P and SOMD-1 even showed slightly better 

performance for the OAH/OAMe combined datasets than FEP-526 for OAH alone.
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Discussion

The SAMPL5 host–guest blinded prediction challenge has provided a fresh opportunity to 

rigorously test the reliability of computational tools for predicting binding affinities, and the 

fact that host–guest systems were also used in two prior rounds of SAMPL makes it possible 

to look for consistencies and trends over time. A full analysis of the varied prediction 

methods used is beyond the scope of this overview, and readers desiring greater detail are 

referred to the more focused articles provided by SAMPL5 participants. However, some 

general observations may be made.

Overall, the reliability of methods based on explicit solvent free energy simulations and of 

those based on electronic structure calculations appear to be fairly consistent across SAMPL 

challenges, with the simulation-based methods generally providing greater reliability. 

However, it should be emphasized that the number of observations is still modest, even 

across three SAMPL rounds and that each class of methods includes multiple variants with 

different levels of performance. Moreover, there is significant variation in performance 

across different host–guest series, even within SAMPL5. Thus, predictions for the octa-acid 

hosts tend to be more accurate than those for CBClip, and accuracy is somewhat greater for 

the OAH systems than for OAMe, although OAMe differs from OAH only by the addition of 

four methyl groups. Based on informal discussions at the D3R/SAMPL5 workshop, it 

appears that the methyl groups, which are disposed around the opening of the binding site, 

increased difficulties in sampling guest poses in the bound state.

Even the best performing simulation-based methods in SAMPL5 yield absolute RMSE 

values on the order of 2 kcal/mol and tend to overestimate binding affinities (Figure S1). 

Previous binding calculations have shown that extensive sampling and small statistical 

uncertainties of binding estimates can be feasibly achieved on host–guest systems nowadays, 

with the aid of high-performance computing capabilities [60, 82]. Given that adequate 

conformational sampling can be achieved for such moderatesized systems, and that the 

ionization states of these systems are relatively straightforward to ascertain at the 

experimental pH, the errors in predictions from carefully executed calculations presumably 

trace to limitations in the potential functions, or force fields, used in the simulations. It 

should be emphasized that, if current force fields yield errors of this magnitude on host–

guest systems, one should not expect to achieve any better in blinded predictions of protein-

small molecule binding free energies, even with greater simulation times and a correct 

treatment of protonation states. Although a recent report describes encouraging results for 

alchemical calculations of relative protein–ligand binding free energies [11], the statistics 

come from a retrospective analysis, rather than from blinded prediction along the lines of 

those described in the present paper. The present results thus underscore the need for 

improvements in force field parameters and perhaps functional forms.

Electronic structure methods, such as the DFT and coupled cluster methods discussed above, 

offer an alternative route to improved accuracy in the potential function, since they largely 

avoid the need for empirical force fields. However, such methods still are, arguably, 

restricted by the challenge of achieving adequate conformational sampling, due to the high 

computational cost of evaluating the energy for each conformation. In addition, their 
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accuracy may be limited by the fact that it is difficult to couple them to an explicit solvent 

model. Although implicit solvent models have predictive power for molecular systems that 

are essentially convex in shape (see, e.g., SAMPL5 papers regarding the calculation of 

distribution coefficients for drug-like molecules), it is unknown whether they can capture the 

properties of water in confined spaces, such as the binding sites of host molecules or 

proteins, well enough to provide binding free energies with kcal/mol accuracy. It seems 

probable that continued improvements in computer power and algorithms will make 

quantum methods, perhaps hybridized with classical methods, increasingly competitive with 

classical free energy methods. More computationally efficient methods, such as BEDAM 

and Movable Type, also generated some encouraging results and are amenable to continued 

refinement, such as through the development of improved solvent models, and the 

incorporation of more accurate force fields as they become available.

In the current host–guest challenge, a number of groups submitted multiple predictions, and 

the results often provided clear signals as to the relative merits of the various approaches 

tested. Indeed, the simplicity of host–guest model systems makes it relatively easy to 

evaluate errors and isolate their sources, and the blinded nature of the SAMPL challenges 

eliminates the risk of even unintentionally adjusting one's method to agree with known data. 

Thus, submission of multiple predictions is encouraged for future rounds of SAMPL. It is 

also hoped that more groups will participate, so that an even wider range of methods may be 

tested; additional methods may also be evaluated by participants using software developed 

outside their own research groups, including commercial packages.

SAMPL is a community effort. It depends on the generosity of experimentalists who make 

their data available on a prepublication basis, which is not always convenient, and it requires 

courage on the part of the computational chemists, who are making truly blinded predictions 

in a public setting. It is indeed encouraging that so many groups contributed to and 

participated in the SAMPL5 host–guest challenge, and thus to the continuing improvement 

of the entire field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structures of host OAH, OAMe, CBClip and their guest molecules. OA and OAMe are also 

known as OA and TEMOA, respectively. All host molecules are shown in two perspectives. 

Silver carbon, Blue nitrogen, Red oxygen, Yellow sulfur. Non-polar hydrogen atoms were 

omitted for clarity. OA-G1–OA-G6 are the common guest molecules for OAH and OAMe, 

and CBC-G1–CBC-G10 are guests for CBClip. Protonation states of all host and guest 

molecules shown in the figure were suggested by the organizers based on the expected pKas 

and the experimental pH values
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Fig. 2. 
OAH/OAMe submissions ranked based on the original values of absolute error metrics 

(white circles), which were computed from reported binding affinities without resampling or 

considering any uncertainty sources. The violin plot describes the shape of the sampling 

distribution for each set of predictions when bootstrapping 100,000 samples with 

replacement, and the vertical bar represents the mean of the distribution. The computational 

uncertainties are absent in the Null1, MovTyp-1, and MoveTyp-2 predictions. Two null 

models are shown in red. The violin plot area, here and below, are normalized not to unity, 

but instead to give the same maximum thickness
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Fig. 3. 
OAH/OAMe submissions ranked based on the original values of offset error metrics (white 
circles), which were computed from reported binding affinities without resampling or 

considering any uncertainty sources. The violin plot describes the shape of the sampling 

distribution for each set of predictions when bootstrapping 100,000 samples with 

replacement, and the vertical bar represents the mean of the distribution. The computational 

uncertainties are absent in Null1 model, MovTyp-1, MoveTyp-2 DFT/TPSS-n, DFT/TPSS-C 

and DLPNO-CCSD(T) predictions. Two null models are shown in red
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Fig. 4. 
CBClip submissions ranked based on the original values of absolute error metrics (white 
circles), which were computed from reported binding affinities without resampling or 

considering any uncertainty sources. The violin plot describes the shape of the sampling 

distribution for each set of predictions when bootstrapping 100,000 samples with 

replacement, and the vertical bar represents the mean of the distribution. Two null models 

are shown in red. The computational uncertainties are absent in Null1 model, MovTyp-1 and 

MoveTyp-2 predictions
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Fig. 5. 
Combined OAH/OAMe predictions with MSE offsets using a APR-TIP3P, b SOMD-3, and 

c DFT/TPSS-n method. CBClip predictions without MSE offset using d the Null2 model, e 
SOMD-3, and f BEDAM method. Purple dots OAH, red dots OAMe, cyan dots CBClip, 

solid black line of identity
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Fig. 6. 
Structures of host H1 and cucurbit[7]uril (CB7) tested in prior SAMPL host–guest 

challenges. Silver carbon, Blue nitrogen, Red oxygen. Hydrogen atoms were omitted for 

clarity

Yin et al. Page 24

J Comput Aided Mol Des. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yin et al. Page 25

Table 1

Experimental standard binding affinities (ΔG°) of OAH, OAMe and CBClip (1 M standard concentration) 

used as references for SAMPL5 host-guest affinity predictions. All binding affinities discussed in the present 

work denote standard binding affinities

Compd ID Technique Buffer Conc (mM) Ka (M−1)
a

ΔG° (kcal/mol)
b Uncertainty (kcal/mol)

OAH
c

    OA-G1 NMR 10 (5.00 ± 0.07) × 103 −5.04 0.01

    OA-G2 NMR 10 (1.31 ± 0.04) × 103 −4.25 0.01

    OA-G3 NMR 10 (5.16 ± 0.09) × 103 −5.06 0.01

    OA-G4 ITC 50 (7.43 ± 0.04) × 106 −9.37 0.00

    OA-G5 NMR 10 (1.996 ± 0.005) × 103 −4.50 0.00

    OA-G6 ITC 50 (8.15 ± 0.07) × 103 −5.33 0.00

OAMe
c

    OA-G1 NMR 10 (6.94 ± 0.76) × 103 −5.24 0.05

    OA-G2 NMR 10 (4.96 ± 0.37) × 103 −5.04 0.03

    OA-G3 NMR 10 (2.31 ± 0.66) × 104 −5.94 0.12

    OA-G4
d NMR 10 (5.58 ± 0.28) × 101 −2.38 0.02

    OA-G5 NMR 10 (7.29 ± 0.33) × 102 −3.90 0.02

    OA-G6 ITC 50 (2.05 ± 0.10) × 103 −4.52 0.02

CBClip

    CBC-G1 NMR 20 (1.9 ± 0.1) × 104 −5.83 0.03

    CBC-G2 NMR 20 70 ± 8 −2.51 0.07

    CBC-G3 NMR 20 (8.8 ± 0.5) × 102 −4.02 0.03

    CBC-G4 UV/VIS 20 (2.0 ± 0.1) × 105 −7.24 0.03

    CBC-G5 UV/VIS 20 (1.8 ± 0.2) × 106 −8.53 0.07

    CBC-G6
e UV/VIS 20 (2.2 ± 0.2) × 106 −8.64 0.05

    CBC-G7 UV/VIS 20 (6.2 ± 0.2) × 103 −5.17 0.02

    CBC-G8 UV/VIS 20 (3.3 ± 0.2) × 104 −6.17 0.04

    CBC-G9 UV/VIS 20 (2.6 ± 0.1) × 105 −7.39 0.02

    CBC-G10
f Fluorescence 20 (3.9 ± 0.2) × 107 −10.35 0.03

a
All Ka values are reported as mean ± standard deviation (SD), where the SD was computed from the experimental replicates

b
The uncertainties of experimental ΔG° values are reported as standard error of the mean (SEM), obtained from the experimental replicates of Ka 

(see Table S1)

c
For the complete set of NMR and ITC data for OAH/OAMe systems, please see ref [37]

d
Ka values were measured at 298 K except OAMe-G4 was measured at 278 K

e
The binding constant of CBClip-G6 measured by fluorescence titration is (2.3 ± 0.2) × 106 M−1

f
The binding constant of CBClip-G10 is (2.4 ± 0.4) × 107 M−1 measured by UV/Vis titration and (6.6 ± 0.7) × 107 M−1 measured by UV/Vis 

competition assay
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Table 2

Summary of computational methods in all SAMPL5 host-guest submissions

Method Conformational sampling Energy model Solvent model SAMPL5 Refs.

OAH/OAMe

    APR-OPC (C, E) MD; docking GAFF/RESP OPC [41]

    APR-TIP3P (C, E) MD; docking GAFF/RESP TIP3P [41]

    BEDAM (C, I) MD OPLS-2005 AGBNP2 [54]

    DFT/TPSS-c
a
 (Q, I)

Manual DFT-D3 (TPSS functional) COSMO-RS [55]

    DFT/TPSS-n
a
 (Q, I)

Manual DFT-D3 (TPSS functional) COSMO-RS [55]

    DLPNO-CCSD(T)
a
 (Q, I)

Manual DLPNO-CCSD(T) COSMO-RS [55]

    Metadynamics (C, E) Funnel metadynamics GAFF/RESP TIP3P [56]

    MMPBSA-GAFF (C, I) MD GAFF/RESP PBSA; TIP3P [56]

    MMPBSA-OPLS
b

 (C, I)
MD OPLS/RESP PBSA; TIP3P [56]

    MovTyp-1 (C, I) Mixed torsion/low mode KECSA 1 Implicit [40]

    MovTyp-2 (C, I) Mixed torsion/low mode KECSA 2 Implicit [40]

    TI/BAR
c
 (C, E)

MD; docking CGenFF TIP3P [57]

    TI-ps
c
 (C, E)

MD; docking CGenFF TIP3P [57]

    TI-raw
c
 (C, E)

MD; docking CGenFF TIP3P [57]

    HBAR
d
 (C, E)

MD; docking CGenFF TIP3P [57]

    HBAR-ps
d
 (C, E)

MD; docking CGenFF TIP3P [57]

    HBAR-ps1
d
 (C, E)

MD; docking CGenFF TIP3P [57]

    HBAR-ps2
d
 (C, E)

MD; docking CGenFF TIP3P [57]

    SOMD-1
e
 (C, E)

MD GAFF/RESP TIP3P [58]

    SOMD-2 (C, E) MD GAFF/RESP TIP3P [58]

    SOMD-3 (C, E) MD GAFF/RESP TIP3P [58]

    SOMD-4 (C, E) MD GAFF/RESP TIP3P [58]

CBClip

    BAR-ab-initio
f
 (C, E)

MD CGenFF TIP3P [59]

    BAR-dock
f
 (C, E)

MD; docking CGenFF TIP3P [59]

    TI-ab-initio
f
 (C, E)

MD CGenFF TIP3P [59]

    TI-BAR
f
 (C, E)

MD; docking CGenFF TIP3P [59]

    TI-dock
f
 (C, E)

MD; docking CGenFF TIP3P [59]

    BEDAM (C, I) MD OPLS-2005 AGBNP2 [54]

    MovTyp-1 (C, I) Mixed torsion/low mode KECSA 1 Implicit [40]

    MovTyp-2 (C, I) Mixed torsion/low mode KECSA 2 Implicit [40]

    SOMD-1
e
 (C, E)

MD GAFF/RESP TIP3P [58]

    SOMD-2 (C, E) MD GAFF/RESP TIP3P [58]
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Method Conformational sampling Energy model Solvent model SAMPL5 Refs.

    SOMD-3 (C, E) MD GAFF/RESP TIP3P [58]

    SOMD-4 (C, E) MD GAFF/RESP TIP3P [58]

APR attach-pull-release approach [60], OPC “optimal” 3-charge, 4-point rigid water model [61]; TIP3P transferable interaction potential three-
point [47]; BEDAM binding energy distribution analysis method [62]; DLPNO-CCSD(T) domain based, local pair natural orbital-coupled-cluster 
single double and perturbative triple excitations [63]; DFT-D3 density functional theory with the latest dispersion corrections [64]; MovTyp 
Movable Type method [53]; SOMD single topology relative free energy calculations performed with Sire/OpenMM6.3 software [65, 66]; BAR 
Bennett acceptance ratio [50]; TI thermodynamic integration [49, 67]; GAFF generalized AMBER force field [68]; CGenFF CHARMM 
generalized force-field [69]; RESP restrained electrostatic potential [70]; OPLS-2005 optimized potentials for liquid simulations 2005 force field 
[71, 72]; KECSA knowledge-based and empirical combined scoring algorithm [73]; AGBNP2 analytical generalized born plus non-polar 2 [74]; 
COSMO-RS conductor-like screening model for real solvents [75]; MMPBSA molecular mechanics Poisson Boltzmann/solvent accessible surface 
area [52]. The classifications of the energy model: quantum (Q) or classical (C), as well as the solvent model: implicit (I) or explicit (E) are listed in 
parentheses following the name of each method

a
DLPNO-CCSD(T) and DFT/TPSS-n (n indicates neutralized) used neutralized hosts, yet fully charged guests. DFT/TPSS-c (c indicates charged) 

used both fully charged hosts and guests

b
The MMPBSA-OPLS approach was only used to generate predictions for the OAMe subset

c
TI was used to compute binding affinities in both TI-raw and TI-ps. Lowest values of the computed binding free energies were reported in TI-raw. 

In TI-ps, possible corrections were added through calculating the relative pKa/pKb of the ligands to known analogs

d
Binding free energies in HBAR submission were computed by Hamiltonian replica exchange method (HREM) combined with the BAR method. 

The protonation state correction was used in HBAR-ps, HBAR-ps1 and HBAR-ps2. Results from the neutralized-only systems were reported as 
HBAR-ps1 and those from systems at the experimental ionic strength were reported as HBAR-ps2. TI/BAR prediction only reported binding 
affinities for the OAH subset based on the averaged results computed by TI and HREM/BAR for each guest

e
All SOMD predictions were produced based on single topology relative free energy calculations combined with multistate Bennet acceptance ratio 

(MBAR) method, but with different protocols. SOMD-1: No corrections; SOMD-2: includes a correction term for long-range dispersion 
interactions; SOMD-3: same as SOMD-2, but a correction term for the use of the flat-bottom distance restraints was also applied to bring the 
decoupled guest to a standard concentration; SOMD-4: same as SOMD-3 but with an additional correction term for electrostatic energies

f
Predictions were generated by either TI (labeled with TI-) or HREM/BAR (label by BAR-). Also the starting structures were obtained by quantum 

calculations (labeled with “ab initio”) or docking (labeled with “dock”). TI/BAR reported the lowest binding affinity from either method
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Table 5

Absolute error metrics of binding affinity predictions for the CBClip datasets

Method RMSE R2 m τ

Null1
a 6.9 (6.9 ± 0.7) – – –

Null2
b 2.2 (2.4 ± 0.5) 0.2 (0.2 ± 0.2) 0.4 (0.4 ± 0.3) 0.4 (0.3 ± 0.2)

BAR-ab initio 4.0 (4.0 ± 0.8) 0.0 (0.1 ± 0.1) −0.1 (−0.1 ± 0.4) −0.2 (−0.1 ± 0.2)

BAR-dock 4.7 (4.9 ± 1.0) 0.1 (0.1 ± 0.1) −0.4 (−0.4 ± 0.6) −0.2 (−0.2 ± 0.2)

TI-ab initio 4.7 (4.8 ± 0.8) 0.2 (0.2 ± 0.2) −0.6 (−0.6 ± 0.5) −0.2 (−0.2 ± 0.3)

TI-dock 3.4 (3.6 ± 0.7) 0.0 (0.1 ± 0.1) −0.1 (−0.1 ± 0.5) −0.2 (−0.1 ± 0.2)

TI/BAR 4.0 (4.0 ± 0.9) 0.0 (0.1 ± 0.1) −0.1 (−0.1 ± 0.4) −0.2 (−0.1 ± 0.2)

BEDAM 4.8 (4.6 ± 1.3) 0.4 (0.5 ± 0.2) 1.7 (1.8 ± 0.8) 0.4 (0.4 ± 0.2)

MovTyp-1
c 3.5 (3.5 ± 0.7) 0.0 (0.1 ± 0.1) 0.0 (0.0 ± 0.3) 0.0 (0.0 ± 0.3)

MovTyp-2
c 4.2 (4.1 ± 0.8) 0.0 (0.1 ± 0.1) 0.0 (0.0 ± 0.5) 0.0 (0.0 ± 0.3)

SOMD-1 6.4 (6.4 ± 0.9) 0.8 (0.7 ± 0.2) 2.7 (2.7 ± 0.5) 0.7 (0.6 ± 0.1)

SOMD-2 6.3 (6.3 ± 0.9) 0.8 (0.7 ± 0.2) 2.7 (2.7 ± 0.5) 0.7 (0.6 ± 0.1)

SOMD-3 5.7 (5.7 ± 0.7) 0.8 (0.7 ± 0.2) 2.7 (2.7 ± 0.5) 0.7 (0.6 ± 0.2)

SOMD-4 18.4 (17.7 ± 5.3) 0.5 (0.5 ± 0.3) 5.6 (5.6 ± 2.4) 0.5 (0.5 ± 0.3)

The values before the parentheses are raw error metrics computed from the original data. The mean values and uncertainties inside the parentheses 

were obtained through resampling the original data using replacement. The absolute error metrics RMSE, R2, m and τ are provided

a
Null1 model with a constant value 0.0 and no computational uncertainties were assigned to guests

b
Null2 model based on the linear regression equation ΔG = −0.25 × number of heavy atoms −1.81 kcal/mol (based on SAMPL3 Host1 data); SEM 

was set to 1.0 kcal/mol

c
Computational uncertainties were not reported. Results were adversely affected by bond order issues in the provided SD files of free guests [40]
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