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Regulatory T (Treg) cells expressing the transcription factor
FOXP3 play a pivotal role in maintaining immunologic self-tol-
erance. We and others have shown previously that EZH2 is
recruited to the FOXP3 promoter and its targets in Treg cells.
To further address the role for EZH2 in Treg cellular function,
we have now generated mice that lack EZH2 specifically in Treg
cells (EZH2*/AFOXP3"). We find that EZH2 deficiency in
FOXP3™" T cells results in lethal multiorgan autoimmunity. We
further demonstrate that EZH22/AFOXP3* T cells lack a regu-
latory phenotype in vitro and secrete proinflammatory cyto-
kines. Of special interest, EZH2*/AFOXP3* mice develop spon-
taneous inflammatory bowel disease. Guided by these results,
we assessed the FOXP3 and EZH2 gene networks by RNA
sequencing in isolated intestinal CD4" T cells from patients
with Crohn’s disease. Gene network analysis demonstrates that
these CD4* T cells display a Th1/Th17-like phenotype with an
enrichment of gene targets shared by FOXP3 and EZH2. Com-
bined, these results suggest that the inflammatory milieu found
in Crohn’s disease could lead to or result from deregulation of
FOXP3/EZH2-enforced T cell gene networks contributing to
the underlying intestinal inflammation.
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CD4™" T cells, crucial for physiologic immune response to
pathogens, are increasingly recognized to be key players in
human immune-mediated diseases such as multiple sclerosis,
rheumatoid arthritis, and Crohn’s disease (1). T cell receptor
for antigen activation coupled with co-stimulation and cyto-
kine signaling networks induces naive CD4" T cells to acquire
differentiated phenotypes characterized by cytokine produc-
tion and function (i.e. Th1, Th2, Th17, and Treg®) (2). Of these
phenotypes, the Treg cell, defined by constitutive expression of
the lineage-specific transcription factor FOXP3, plays a unique
role in maintaining homeostasis between tolerizing and activat-
ing immune responses (3). Treg cells can either be generated in
the thymus or induced in the periphery or in vitro from naive T
cells activated in the presence of TGF-B and IL-2 (4). The
importance of FOXP3-expressing Treg cells is highlighted by
the fact that humans with FOXP3 mutations develop the life-
threatening autoimmune disorders, immune dysregulation,
polyendocrinopathy and enteropathy, X-linked syndrome
(IPEX) (5, 6). Similarly, mice lacking FOXP3 succumb to a
severe lymphoproliferative autoimmune disease also attributed
to the lack of functional Treg cells (7). Thus, FOXP3 represents
the major transcriptional regulator maintaining the normal
Treg cellular phenotype, and disruption leads to severe human
disease.

The central role for epigenetic complexes in the determina-
tion of T cell lineage fate decisions has yet to be fully character-
ized. However, the importance of the histone methyltransferase
enhancer of Zeste homolog 2 (EZH2) in these processes has

3 The abbreviations used are: Treg, regulatory T; HMT, histone methyltrans-
ferase; H3K27, histone H3 at lysine 27; H3K27me3, trimethylated histone
H3 atlysine 27; IBD, inflammatory bowel disease; CRE, CAMP response ele-
ment; DZNep, 3-deazaneplanocin A; DSS, dextran sodium sulfate; CD,
Crohn'’s disease; CTRL, control; RPKM, reads per kilobase per million
mapped reads; DEG, differentially expressed gene; FDR, false discovery
rate; TF, transcription factor; regulon, regulatory network; GSEA, gene set
enrichment analysis; SET, drosphila su(var)3-9 and enhancer of zeste pres-
ent in trithorax protein.
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been recently recognized (4). EZH2, the catalytic subunit of the
Polycomb repressive complex 2 (PRC2), is a histone methyl-
transferase (HMT) that catalyzes the methylation of histone
H3 at lysine 27 (H3K27) to generate trimethylated H3K27
(H3K27me3) (8). Although the canonical function of EZH2 is
the regulation of gene repression, the role of this enzyme in T
cell immune responses is controversial. EZH2 has been impli-
cated in T cell development (9), cytokine production (10), and
Th1/Th2 lineage fate determination in vitro (11). In fact, we
demonstrated previously that EZH2 is recruited to the silenced
Foxp3 promoter through a Polycomb response element (12).
Others extended this observation, demonstrating the histone
mark of EZH2 activity (H3K27me3) at silenced FOXP3 target
genes in Treg cells (13), and disruption of EZH2 in Treg cells led
to either impaired in vivo function (14) or senescence (4). In
addition, FOXP3 binds to EZH2 (13), suggesting that this HMT
may function as a cofactor for the regulation of Treg-specific
gene networks. However, the role these interactions may have
in either initiating or maintaining inflammation in human dis-
ease remains to be established.

In this report, we ascribe a proinflammatory phenotype to
FOXP3™ cells deficient in EZH2 and, most importantly, dem-
onstrate evidence for deregulation of this critical epigenetic
pathway in human inflammatory bowel disease (IBD). Specifi-
cally, we show that EZH2 deficiency in FOXP3™ T cells in mice
results in multiorgan autoimmunity and decreased survival.
We further demonstrate that EZH2-deficient FOXP3™" T cells
do not maintain a regulatory phenotype but instead secrete
proinflammatory cytokines. Of special interest, these mice
developed spontaneous IBD of both the small and large intes-
tine. Congruently, analysis of gene expression networks of
human CD4™" T cells isolated from the intestine of patients with
human IBD indicated disruption of EZH2-regulated networks
and differential expression of proinflammatory genes typical of
Th1/Th17 effector T cells. Thus, these data support the idea
that deregulation of EZH2-enforced T cell gene networks per-
petuates intestinal inflammation in both murine models and
human IBD. Therefore, these data provide insight into the
mechanisms of human disease.

Results

Deletion of the EZH2 SET Domain in FOXP3™ Cells Results in
Multiorgan Inflammation and Early Mortality—To extend our
previous observations that the FOXP3 core promoter repre-
sented a Polycomb recruitment element (12), we generated a
conditional knockout model for EZH2 in FOXP3-expressing
cells. Mice with transgenic expression of CRE recombinase
under promotional control of the FOXP3 promoter (B6-
Tg(Foxp3"SF"*)1aJbs/]) were bred with mutant mice bearing
LoxP insertion sites flanking the enzymatically active EZH2
SET domain (EZH2"") (Fig. 14). The majority of pups
homozygous for conditional EZH2 deficiency (EZH24/4
FOXP3™") were moribund by 3 weeks of age and displayed
increased mortality (85.2%; Fig. 1, B and C). Conditional EZH2
deletion was particularly lethal in male mutants (100%; Fig. 1B,
right panel). The analysis of serum for cytokines by multiplex
ELISA supported a marked inflammatory process. We identi-
fied significantly elevated levels of TNF-« (11.9 pg/ml versus 6.5
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pg/ml, p = 0.003) and IFN-vy (3.35 versus 0.8 pg/ml, p = 0.0002)
in the serum of 14- to 17-day-old EZH2*/*FOXP3 ™" mice com-
pared with littermate control animals (Fig. 1D). Homozygous
mutant mice surviving beyond 3 weeks developed multiorgan
inflammatory disease by 6 — 8 weeks of age (Fig. 2). Clinically,
the EZH2*/*FOXP3 " animals distinguished themselves from
FOXP3-null animals (scurfy mutation) in early lethality (14
days versus 24 days (15)) and the absence of inflammation
around the ears, eyes, or tail (Fig. 1C). Thus, the severe clinical
phenotype demonstrates the critical role for EZH2 in Treg
function in vivo and suggests an altered function rather than a
lack of function of EZH2-deficient Treg cells.
EZH2**FOXP3" Lymphocytes Transform to a Proinflam-
matory Phenotype—To address the role for EZH2**FOXP3™
T cells in this severe multiorgan inflammatory phenotype, we
systematically assessed the phenotype and function of EZH24/4
FOXP3™ cells through cell surface marker characterization,
cytokine production, and an in vitro functional assay. Analysis
of splenocytes from EZH2**FOXP3" mice showed a normal
distribution of CD4" and CD8™ T cells. In addition, CD4" T
cells displayed similar frequencies of naive, memory, and
FOXP3™ T cell subsets compared with WT mice (data not
shown). Similar to control Treg cells, EZH2*/*FOXP3™" T cells
displayed enhanced expression of the IL2Ra chain, CD25, and
glucocorticoid-induced tumor necrosis factor receptor (TNFR)
(glucocorticoid-induced TNFR family related gene (GITR))
(Fig. 3A). (16) Suggestive of an activated effector phenotype of
EZH2** and EZH2*"FOXP3" cells, we observed greater
expression of inducible T-cell costimulatory (ICOS), CTLA-4,
CD39, and CD73 compared with FOXP3™ cells of littermate
control mice (Fig. 34, red and blue histograms versus yellow W'T
histogram) (14, 17-19). EZH2**FOXP3™" cells displayed an
impaired in vitro suppressive function when co-cultured with
responder T cells (1:1 ratio, 159,211 = 11,989 versus 73,418 =
2825, mean * S.E. thymidine counts, p = 0.0073, Fig. 3B). Thus,
despite the enhanced expression of regulatory molecules,
EZH2**FOXP3" cells do not properly function in vitro.
Indeed, the intermediate suppressive capacity of FOXP3™ cells
isolated from littermates heterozygous for EZH2 suggested a
dose-dependent effect of EZH2 on regulatory function.
Having established impaired function in cellular assays, we
subsequently addressed the possibility that the EZH24/%
FOXP3™ cells contribute to inflammation through the pro-
duction of proinflammatory cytokines. To phenotype the
EZH2-deficient CD4" lymphocytes by gene expression profil-
ing, RNA was isolated from FACS-sorted FOXP3™ splenocytes
isolated from individual 14- to 21-day-old EZH2**FOXP3*
(n = 3), EZH2**FOXP3" (n = 3), and WT control (n = 3)
animals. In these moribund young animals, limited cell recov-
ery precluded genome-wide RNA sequencing; thus, we
performed gene-targeted microarray. Genes differentially
expressed between experimental groups are listed in Fig. 3C.
The color shading represents the degree of differential expres-
sion concordant between homozygous and heterozygous EZH2
mutant mice compared with the WT control. The pattern of
gene expression within EZH2-deficent Treg cells demonstrated
broad deregulation of proinflammatory genes across Th1, Th2,
and Th17 profiles (Fig. 3C). To confirm this finding at the level
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FIGURE 1. Conditional deletion of the SET domain of EZH2 in FOXP3™ Treg cells in mice (EZH2*/* FOXP3 ™ or EZH2*/* FOXP3 ™) results in poor survival.
A, exon map of mouse EZH2 indicating the EZH2 catalytic SET domain that was conditionally deleted by flanking LoxP insertion sites (green arrowheads). B,
survival analysis of EZH24/2 (n = 27) or EZH2*" (n = 31) mice compared with WT (n = 51) (left panel) and mutant mice distinguished by gender (right panel).
The data are cumulative of over 10 litters, and all offspring are represented. C, representative images depicting the clinical appearance of experimental
littermates and the size of FOXP3"* EZH2" (WT, 7), EZH2"YA FOXP3™ (EZH2%/*, 2) and EZH2%/* FOXP3™ (EZH2*’, 3) pups and lack of ear, eye, and tail
inflammation 21 days after birth. D, mean (S.E.) serum cytokine concentrations as measured by multiplex cytokine analysis. Data are from 15 biological
replicates (unique animals) and represent independent experiments. Error bars denote S.E., n = 15 mice/group. Non-parametric unpaired t test was performed

using Mann-Whitney t test, and p < 0.05 was considered statistically significant. **, p < 0.01.

of protein expression, we demonstrate in Fig. 3D that stimu-
lated EZH2**FOXP3" CD4" T cells produce significantly
more IL-17A, TNF-a, and IFN-vy compared with WT FOXP3™"
CD4™ T cells. Specifically, the levels of IFN-vy (3807.8 versus
240.2 pg/ml, p = 0.0005), IL-17A (2763.1 versus 31.8 pg/ml, p =
0.006), and TNF-« (652.7 versus 107.1 pg/ml, p = 0.0004) in
culture supernatants were significantly higher compared with
WT CD4" Treg cells following ex vivo stimulation with anti-
CD3/anti-CD28 antibodies. Taken together, our data support
the concept that, in FOXP3™ T cells, EZH2 is critical in main-
taining the regulatory T cell phenotype and suppresses proin-
flammatory cytokine production, which is consistent with the
previously established functional and physical interaction
between this HMT and FOXP3. Indeed, TNFa (20) and IFNvy
(4) are established EZH?2 targets.

Pharmacologic Inhibition of EZH2 Results in Heightened
Intestinal Immune Reactivity—EZH2 hyperactivation or muta-
tions are found in various malignancies (21, 22), and EZH2
inhibitors are under investigative protocols for cancer therapy.

708 JOURNAL OF BIOLOGICAL CHEMISTRY

Interested in an effect of systemic EZH?2 inhibitory therapy on
immune-regulatory function, we first demonstrated the in vitro
capacity of EZH2 inhibitors to disrupt global H3K27me3 in
differentiated, freshly isolated Treg cells (Fig. 44) and through-
out the differentiation process of Treg induction (Fig. 48). To
varying degrees, all four inhibitors tested decreased H3K27me3
levels under both conditions. Furthermore, 3-deazaneplanocin
A (DZNep) decreased EZH2 levels, most closely mimicking our
genetic KO without significant cellular toxicity (Fig. 4B). Thus,
we treated WT mice with DZNep, an inhibitor of EZH2 (23—
25). Over 7 days, no obvious clinical or histologic abnormalities
were evident (data not shown); thus, we stimulated the mucosal
immune response using oral dextran sodium sulfate (DSS)
dosed to induce minimal chemical colitis in WT C57/BL6 mice
(2% DSS (26)). DZNep-treated mice experienced a marked
mucosal immune response to DSS, as demonstrated by weight
loss, gross colitis at necropsy, shortening of the colon, and
severe colitis upon blinded histologic assessment (Fig. 5). Rem-
iniscent of the activated effector phenotype of EZH2*/* Treg
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FIGURE 2. EZH2*/* FOXP3*mice develop end organ lymphoid infiltrates, either diffuse, nodular, or both. Shown are the heart, colon, small bowel,
pancreas, lung, femoral-tibial joint, kidney, brain, liver, and mesenteric lymph node. Abnormal lymphoid infiltrate is evident in both a diffuse and nodular
pattern (arrows). Four EZH2"“Y"*FOXP3* and 7 EZH2%/ FOXP3™" animals of both sexes were examined by histology. Representative images are shown.
Histology was assessed by our participating pathologist blinded to study grouping.

cells, FOXP3™ cells isolated from DZNep-treated animals dis-
played greater expression of CD25, ICOS, and CTLA-4 com-
pared with FOXP3™" cells of vehicle-treated control mice (Fig.
5F, yellow histograms versus blue histograms). Furthermore, we
confirmed an expected global reduction in H3K27me3 levels in
lymphocytes and tissue from DZNep-treated animals (Fig. 6).

To substantiate the pharmacological results and control for
off-target effects, we developed a tamoxifen-inducible genetic
KO mouse model under promotional control of FOXP3.
EZH2"" and EZH2""** animals were treated with tamoxifen
and concurrent DSS. EZH2"" mice experienced a marked
mucosal immune response to DSS, as demonstrated by weight
loss, gross colitis at necropsy, shortening of the colon, and
severe colitis upon blinded histologic assessment (Fig. 7).

Thus, from these data, we infer that inhibition of the FOXP3
cofactor EZH2 by genetic and pharmacologic approaches leads
to heightened immune responsiveness with potential inflam-
matory consequences in the mucosa. Given these findings and
our interest in translating experimental data to human disease,
we subsequently assessed the status of the FOXP3/EZH2 regu-
latory network in human patients with the IBD Crohn’s disease
(CD).

Deregulation of Common FOXP3 and EZH2 Gene Regulatory
Networks Is a Hallmark of Human Crohn’s Disease—In the
mouse, EZH2 functions as a cofactor for FOXP3 in mediating
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gene-silencing activity (13). More specifically, EZH2-mediated
H3K27me3 marks FOXP3-bound enhancer elements poised
for repression in murine Treg cells (13, 27). However, the rele-
vance of this interaction to human disease remains to be estab-
lished. We comparatively studied the gene expression profile in
CD4™ lymphocytes isolated from the ileum of 21 CD-affected
individuals and 12 age/gender-matched control individuals
(CTRL) by performing RNA sequencing (RNA-Seq).

Using normalized RPKM data, we conducted both principal
components and unsupervised clustering analyses, which
showed that the samples from CD patients and CTRLs sepa-
rated into two distinct groups (Fig. 8, A and B), demonstrating
marked differences in their gene expression patterns. Differen-
tial expression analysis between CD and CTRL samples
revealed 8674 (40%) differentially expressed genes (DEGs) at a
false discovery rate (FDR) of <0.05 from the read count-based
edgeR statistical model. After filtering out the genes minimally
expressed (the mean RPKM values in both groups less than 1)
and those with a -fold change of less than 1.5-fold, we obtained
5328 confident DEGs, among which 2512 were up-regulated
and 2816 were down-regulated in CD samples compared with
CTRL (Fig. 8C).

Subsequently, we assessed the importance of FOXP3 as a key
transcriptional regulator in CD pathology through upstream
regulator analysis for gene expression. Among the DEGs, 83
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FIGURE 3. EZH2*/AFOXP3" lymphocytes transform to a proinflammatory phenotype. A, the expression of cell surface markers in Treg cells
(CD4+FOXP3+) measured by flow cytometry. Data are representative of three independent experiments (n = 3 mice/experimental group). B, suppression
assay measuring the degree of Treg-mediated suppression of CD4* T responder cells (10°) in response to anti-CD3 + CD4 " CD25* Treg titrations (10, 0.5 X
10°, or 0.25 X 10° cells) from either EZH2%/2, EZH2%/*, or WT mice. The rate of cell proliferation is directly proportional to titrated [*H]thymidine uptake but
inversely proportional to Treg-suppressive capability. The result demonstrated represents the mean (S.E.) of four independent experiments (n = 4 biological
replicates). Additionally, each independent experiment was performed in triplicate. Statistical significance was performed via non-parametric unpaired t test
(Mann-Whitney t test). **, p < 0.01; ***, p < 0.001; NS, not significant. C, gene-targeted microarray demonstrating broad deregulation of inflammatory genes.
Color shading corresponds to -fold change (Fold) in mutant sample (EZH2KO or heterozygous, EZH2het) compared with WT samples. Note the general
up-regulation (red shading) of gene sets associated with Th1/Th17 T cell phenotypes. D, cytokine concentrations from supernatants of stimulated FOXP3™ cells
as measured by multiplex cytokine analysis. Data are mean (S.E.) of four unique biological replicates (n = 4 mice/group). Statistical significance was determined
via Mann-Whitney t test for significance. **, p < 0.01; ***, p < 0.001.
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FIGURE 5. Pharmacologicinhibition of EZH2 results in heightened intestinal immune reactivity. A-D, demonstration of weight change (A), clinical disease
activity index (DA, B), colon length (C), and blinded histologic inflammatory index (D) in DZNep-treated animals versus sham-treated controls exposed to 2%
DSS. E, representative colon histologic section demonstrating significant inflammation and ulceration. Statistical significance for weight change was deter-
mined using the Holm-Sidak method, with & = 5.000% (p < 0.05). Each time point was analyzed individually without assuming a consistent S.D. For colon
length and histologic and disease activity index, significance was determined using a non-parametric unpaired t test of significance (Mann-Whitney), p < 0.05.
The data are generated from n = 20 animals, 10/group. F, expression of cell surface markers in Treg cells (CD4 *FOXP3™) measured by flow cytometry. Data are

representative of n = 4 mice/experimental group. *, p =< 0.05; ***, p < 0.0001.

were well defined transcription factors (TFs) (28). Notably,
FOXP3 was among the top three up-regulated TFs (supplemen-
tal Table S1 and Fig. 8D). Through master regulatory analysis
(29, 30), we tested the importance of FOXP3 and its associated
regulatory network (regulon) among the key transcriptional
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regulators and their networks altered in patient samples. Of
these 83 TFs, 69 were significantly differentially expressed at an
FDR ofless than 0.05 (red dots, Fig. 8D, and supplemental Table
S2). 41 of 69 were also significant through gene set enrichment
analysis (FDR < 0.05, supplemental Table S2). Of these 41 reg-
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FIGURE 6. Pharmacologicinhibition of EZH2 reduces global H3K27me3 levels in vivo. A, representative immunoblot analysis of EZH2 and H3K27me3 levels
in CD47CD25* cells, colon, and pancreas harvested from DZNep + 2% DSS-treated animals. B, quantification by densitometry of H3K27me3 immunoblot
bands from isolated Treg cells in four independent experiments. For densitometry analysis, significance was determined using a non-parametric, unpaired t
test of significance (Mann-Whitney). *, p < 0.05. The data are generated from n = 8 animals, 4/group.

ulatory networks, the FOXP3 regulon, with 80 gene members
(green tracing GSEA, Fig. 8E, observed score 0.63, p = 0.000999,
adjusted p = 0.002) was a significant and consistently changed
regulon in both analyses (supplemental Table S2). Approxi-
mately half (39 of 80) of the FOXP3 regulon members were
direct targets of FOXP3, as defined by ChIP sequencing meth-
odology (31). 68 of the 80 regulon gene members were overrep-
resented in patient samples (red cells, Fig. 9, A and B), whereas
only 12 were down-regulated (blue cells, Fig. 9, A and B). This
marked up-regulation of FOXP3 regulon members suggested
impairment of the established FOXP3-mediated gene repressor
function (13). As EZH2 functions as a co-factor for FOXP3-
mediated gene repression, we next tested whether a set of
shared EZH2 and FOXP3 gene targets were enriched within the
set of DEGs in Crohn’s-associated T cells.

We analyzed the expression of the 1894 EZH2-associated
gene targets previously identified in human CD4™" cells (32).
There was significant enrichment of EZH?2 targets in our sam-
ple, as 863 (45.6%) were differentially expressed (p < 2.2e—16).
To infer a potential coordinated function between FOXP3 and
EZH2 in human CD4™" T cells, we analyzed common gene tar-
gets (n = 275) established in a previous study (13). Of these, 187
were differentially up-regulated, and 88 were down-regulated,
in CD subjects compared with CTRL (Fig. 10A). Furthermore,
80 of 187 (42.4%) up-regulated common gene targets are
marked by H3K27Me3 (the histone mark of EZH2 activity asso-
ciated with gene silencing) in normal primary Treg cells derived
from the Roadmap Epigenomics Project. Pathway analysis of
the common gene targets showed the most enriched pathway to
be T helper cell differentiation, with 9 of 10 genes being up-reg-
ulated (Fig. 10B). To demonstrate the specificity of this putative
EZH2 and FOXP3 interaction, we performed parallel analyses
for two additional T cell lineage-specific transcription factors,
TBX21 and GATA3. Although we observed that the enrich-
ment of FOXP3 and EZH2 shared gene targets in the set of
DEGs was not due to chance (enrichment common targets ver-
sus non-common targets, chi-squared test value 2.5e—12, Fig.
10C), the same was not true for common targets of EZH2 with
either TBX21 or GATA3 (both p 0.05). Together, the results
from these analyses support a model whereby deregulation of
genes that are normally repressed by the FOXP3-EZH2 path-
way is a transcriptional hallmark of CD4" lymphocytes from
CD-affected patients.
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Finally, we compiled T cell-specific signature gene sets from
a previously reported study (33) from which we sought to clarify
the T helper cell phenotype in CD lesions using GSEA. This
important experimental set is clinically relevant to therapeutic
drug selection, as more precise cytokine signaling pathways are
targeted in CD. We found that Th17 signature up-regulated
genes were most significantly enriched in CD4* expression
profiles of CD patients (Fig. 114). Th17-associated down-reg-
ulated genes were enriched in controls with a nominal p value of
0.08 (Fig. 11A). Besides Th17 signature genes, we found a sim-
ilar enrichment of up-regulated signature genes representing T
cell activation and Th1 profiles in CD patients (nominal p <
0.25; Fig. 11, B and C). Collectively, this analysis suggested that
the transcriptional profile of CD4+ lymphocytes in CD is most
consistent with a Th1/Th17 signature. Thus, the data reported
here further extend our knowledge of pathophysiological
mechanisms underlying IBD by supporting a role for the epige-
netic writer EZH2 in the enforcement of key lineage-specific
CD4™ T cell gene networks deregulated in human CD.

Discussion

The significant contribution of this study is the identification
of a proinflammatory phenotype of EZH2-deficient FOXP3™"
lymphocytes in mutant mice. Furthermore, we identified a
deregulated EZH2-dependent gene expression network to be a
phenotypic feature of T cells that reside within the active
inflammation of Crohn’s disease. Last, as human trials have
begun testing anti-EZH2 therapy in lymphoma, we evaluated
the mucosal inflammatory response to a chemical irritant in the
setting of pharmacologic deregulation of EZH2. Combined,
these experiments support the conclusion that EZH?2 is critical
to maintaining intestinal immunologic homeostasis. Moreover,
deregulation of EZH2-enforced gene networks contributes to
colitis in both mice and humans, and EZH2 pharmacologic
inactivation affects these pathways, leading to increased muco-
sal immune responsiveness. Thus, this knowledge is highly rel-
evant to better understand the mechanisms of human diseases
and define the potential iatrogenic effects of the novel anti-
EZH2 therapy.

During the conduct of our studies, two additional reports
have been published indicating an important role for EZH2 in
the regulation of both T effector and Treg cells (4, 14). Our
study confirms and extends key results in an original and bio-
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medically relevant manner. Key confirmatory experimental
sets include the spontaneous autoinflammatory phenotype of
mutant mice bearing Treg-specific ablation of EZH2 (14) and
the impaired in vitro suppressive function of these cells (4).
However, the extreme phenotype of EZH2*/*FOXP3" mice
as defined by generalized autoimmunity at 21 days was
unique to our report and may represent the efficiency of
excision related to CRE expression within founder FOXP3-
GFP-hCRE mouse lines. More importantly, our work
advances previous data by ascribing, for the first time, a pro-
inflammatory phenotype to the EZH2-deficient FOXP3™"
cell and providing insights into this critical inhibitory net-
work in human disease.

We find that deregulation of an EZH2-enforced pathway is a
signature of the gene expression network found in T cells from
Crohn’s-affected mucosa. These data suggest the potential
impact of a single chromatin modifier on many transcriptional
pathways previously associated with IBD. Unlike in cancer,
where it is reported that most driver mutations occur in various
epigenetic modifiers upstream of mediator genes (34), genome-
wide association study (GWAS) conducted in IBD has not to
date identified epigenetic complexes of interest (1). However,
our data suggests significant interplay between epigenetic path-
ways and IBD-relevant transcriptional programs. Thus it is
tempting to speculate that epigenetic complexes regulate rele-
vant gene networks in genetically susceptible individuals in
response to environmental factors. Further investigation is
warranted given the observation that any single established
genetic variant carries a low odds ratio of being associated with
disease (1) and that epigenetic modifiers serve as conductors of
large complex gene networks. We now understand the immune
cellular pathophysiology of IBD to be more complex than the
disruption of individual signaling pathways (i.e. the RAR-re-
lated orphan receptor gamma (ROR+yt)-driven Th17 cellular
phenotype and, more recently, the SMAD3 pathway (35, 36)),
as evidenced by the identification of T cells co-expressing mul-
tiple lineage-specific transcription factors (i.e. FOXP3 and
RORyt (37-39)) within the inflamed mucosa. We suggest that
focusing on better understanding how writers, readers, and
erasers of the histone code function as the ultimate effectors
of these key disease-associated transcriptional pathways will
significantly advance our knowledge of the mechanisms of
disease and provide more effective therapeutic alternatives.
Now we explore evidence that currently exists in support of
a postulated link between IBD-associated inflammatory
pathways and EZH2 (and, by analogy, other important epi-
genetic regulators).

EZH2 function may be regulated in several ways. The most
commonly reported mechanism of EZH2 regulation is through
posttranslational modifications leading to protein stabilization
or, conversely, protein degradation. The most consistently

EZH?2 as a Cofactor for FOXP3 in IBD

reported physiologic modification is the phosphorylation of
EZH2 at the Thr-345 and Thr-487 position by CDK1, leading to
ubiquitination and degradation (40). This event is critical for
cell cycle progression and has recently shown to be blocked by
p300/CBP-associated factor (PCAF)-induced acetylation at the
Lys-348 position (41), leading to enhanced EZH2 stability.
These modifications have clear implications for cancer biology,
as EZH2 modifications promoting protein stability have been
recently associated with lung cancer (42) and lymphoma (43).
An example of a critical motif with clear human evidence of
disease pathogenesis is Tyr-641; variable mutations in humans
lead to lymphoma, reportedly through hyperactivation (Y641S)
(44) or altered substrate specificity or affinity (45, 46). It is
tempting to speculate that cytokine signaling pathways com-
mon in the intestinal milieu of CD may lead to kinase activation
regulating EZH2 function, as has been suggested for Akt- and
Stat3-dependent pathways (47, 48). Indeed, JAK2-dependent
ubiquitination of EZH2 resulting in protein degradation has
recently been described (43). Given the emergence of small-
molecule inhibitors of JAK signaling in clinical trials for IBD,
further mechanistic information about the effect of these ther-
apies on EZH2 biology is urgently needed.

Anti-EZH2 therapy has emerged as a promising therapy
for cancer, with the drug development programs being most
advanced in B cell non-Hodgkin’s lymphoma (NCT01897571).
Promising preliminary results support the continued devel-
opment of this form of therapy. It is notable that all inhibi-
tors disclosed to date block EZH2 activity through a co-fac-
tor S-adenosylmethionine-competitive mechanism. These
current therapies do not appear to disrupt complex forma-
tion or protein stability (49). Our observation that systemic
anti-EZH2 therapy leads to mucosal hypersensitivity in mice
deserves follow-up experimentation. Furthermore, insight
into the mechanisms of EZH2 dysfunction particular to
immune cells in the setting of inflammatory signaling path-
ways is of critical importance; further tailoring therapy to
particular protein interactions may spare immune off-target
effects.

In conclusion, we have examined the capacity of the epige-
netic writer EZH2 to regulate T cell pathways aberrant in
human Crohn’s disease. Using genetic mouse models, we
mechanistically dissected the capacity for EZH2 to regulate one
such lineage-specific master transcription factor, FOXP3.
Models of human IBD demonstrated that interfering with
EZH2 by genetic or pharmacologic methods resulted in
increased susceptibility to colitis. Based on previous data that
characterize the regulation of EZH2 by distinct signaling cas-
cades, we believe that the inflammatory milieu found in IBD
leads to deregulation of EZH2-enforced T cell gene networks,
perpetuating intestinal inflammation. Thus, future investiga-
tion into cytokine-dependent EZH2 modifications is warranted

FIGURE 10. Up-regulation of differentially expressed FOXP3 and EZH2 targets indicates deregulation of a FOXP3-EZH2 pathway in Crohn’s disease. A,
heatmap of differential expression of 275 gene targets co-regulated by EZH2 and FOXP3. 187 of 275 gene targets were up-regulated. Shown is the rank order
of ingenuity pathway application canonical pathways of up-regulated (top bracket) and down-regulated (bottom bracket) genes of patients compared with
control subjects. B, ingenuity pathway analysis demonstrating the top enriched canonical pathways (x axis), the enrichment of DEGs within each pathway (y
axis), and the status as up-regulation (red) or down-regulation (green). C, the ratio of TF (FOXP3, TBX21, or GATA3) and EZH2 common targets over non-common
targets represented within the set of DEGs were compared using chi-squared test. Although the DEGs were significantly enriched for the common targets of
FOXP3 and EZH2, there was no significant difference for the common targets of either TBX21 or GATA3 with EZH2.
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FIGURE 11. GSEA of signature gene sets within 5328 DEGs. A, GSEA demonstrating the up-regulated Th17-specific gene set to be significantly enriched in the
patient expression dataset (left panel), whereas the down-regulated Th17 dataset is enriched in the expression set from the CTRL subjects (right panel). Similar
patterns are evident for the Th1 gene set (B) and the core T cell activation gene set (C).
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and may elucidate novel treatment paradigms and tools to pre-
dict disease progression and/or severity.

Experimental Procedures

Mouse  Strains—B6.Cg-Foxp3'm2(EGFITCh = Bg 12957-
Ragl'™!mem B6 NOD-TgFoxp3-EGFP/cralalbs and C57BL/6]-
Tg(Foxp3tm?(EGEP/cre/ERIDAYI T mice were initially purchased
from the Jackson Laboratory and backcrossed to a C57BL/6
background in conventional housing in the Mayo Clinic animal
facility. The EZH2 floxed mouse model was generated at Rock-
efeller University (50).

C57BL/6] mice and C57BL/6] RAG-1 mice were initially pur-
chased from the Jackson Laboratory and bred in conventional
housing in the Mayo Clinic animal facility. The Coxsackie
adenovirus receptor (CAR) transgenic mouse was obtained
through the NIAID, National Institutes of Health Exchange
Program: Balb/cJ[Tg]CARdeltal-[Tg]DO11.10 mouse line
4285 (51). The CAR mouse expresses the Coxsackie adenovirus
receptor transgene and is optimal for adenoviral transduction
studies in resting lymphocytes. All of the mice used in the
experiments were males 4—20 weeks of age. The mice were
co-caged and sibling-matched in experiments comparing
EZH2"" with EZH2%/2. All animal work was done in accord-
ance with and reviewed/approved by the Mayo Clinic Institu-
tional Animal Care and Use Committee.

Cytokine Analysis—Cytokine levels were determined in
supernatants using the BD cytometric bead array mouse Th1/
Th2/Th17 kit (BD Bioscience) according to the instructions of
the manufacturer and analyzed using FCAP Array version 3
software (Soft Flow Hungary Ltd., Pécs, Hungary).

Isolation of Primary T Cells—Murine naive CD4" spleno-
cytes were isolated using a combination of magnetic separation
kits (Miltenyi Biotec). Sequential use of the CD4"CD25™ reg-
ulatory T cell isolation kit and the CD4"CD62L" T cell isola-
tion kit resulted in naive FOXP3-negative T cells used for in
vitro induction of FOXP3.

Cell Stimulation—In vitro activation of the isolated T cells
followed similar conditions among the different cell types.
Anti-CD3 (145-2C11, BD Biosciences) for the mouse T cells
was plate-bound at 2 ug/ml. Soluble anti-CD28 (BD Biosci-
ences) at 2 ug/ml plus 100 units/ml IL-2 was added to the cul-
tures throughout the incubation period. In vitro activation of
the isolated T cells followed similar conditions Anti-CD3 plate-
bound, soluble anti-CD28, and IL-2 were added to the cultures
throughout the incubation period. Human TGFB1 recombi-
nant (PeproTech) at a concentration of 5 ng/ml was used to
generate adaptive Treg cells.

Suppression Assays—For suppression assays, CD4"CD25%"
cells were sorted from splenocytes using anti-CD4/anti-CD25-
conjugated beads (Miltenyi Biotec) as described previously
(52). Mixed lymphocyte reactions (MLRs) were performed
using 1 X 10° CD4"CD25 T responder cells and 1 X 10°
irradiated (3300 rads) T cell-depleted antigen presenting cells
(APCs) isolated from the same animals. Treg cells were added
to the cell culture at titrations of 1:12—1:1. The culture medium
was complete RPMI supplemented with 10% FBS and 2.5 ug/ml
anti-CD3 (UCHT1) and anti-CD28 (BD Biosciences) at 2
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pg/ml. Proliferation was read at 4 days upon addition of 1 uCi
tritiated thymidine for the last 18 h of culture.

RNA Isolation, cDNA Synthesis, and Quantitative Real-time
PCR—Total RNA was isolated using the protocol of the manu-
facturer in the RNeasy Mini Kit (Qiagen). cDNA was synthe-
sized from 0.5-1 ug of total RNA with random primers using
the SuperScript® Kit III First-Strand (Invitrogen). 2 ul of
reverse transcription products was used for each real-time
PCR. PCRs were performed in 20 ul of total volume that con-
tained primers and 10 pl of Express SYBR Green ER Quantita-
tive PCR Supermaster Mix (Invitrogen).

Targeted Microarray—The CD4+ cells were first sorted
from the spleens of 21- to 34-day-old mice using a Miltenyi
magnet prior to the isolation of the Foxp3 GFP cells using an
Aria FACS sorter. The 15,000 — 40,000 cells collected were then
immediately processed with the Micro RNAeasy kit from Qia-
gen to isolate the RNA needed for the microarrays.

Transcript levels were compared between EZHKO (1 = 4) or
EZH heterozygous (1 = 4) and WT Cre (n = 3) mice utilizing
SABioscience pathway-focused mouse T helper cell differenti-
ation PCR arrays. PCR cycles were completed, and SYBR was
detected with the Bio-Rad CFX96 real-time PCR machine.
Arrays were analyzed, and -fold up/down-regulation (AACt)
calculated with SABioscience RT 2 Profiler PCR array data
analysis software.

DSS Colitis—The mice were given water supplemented with
2% dextran sulfate sodium salt for 5 days. The water was then
replaced with normal drinking water for 3 more days prior to
the mice being sacrificed for tissue removal for histology. The
mice were weighed every day, and their colon lengths were
determined during autopsy. The degree of colitis was quanti-
fied using three outcome variables: weight loss, colon histology,
and a disease activity index. The disease activity index is an
established clinical index of colitis severity encompassing clin-
ical signs of colitis (wasting and hunching of the recipient
mouse and the physical characteristics of stool) and an ordinal
scale of colonic involvement (thickness and erythema) (53). We
adapted an existing histology damage score for the DSS colitis
model (54). This score assesses eight parameters, including
extent of crypt loss, depth of erosions/ulcers, and semiquanti-
tative assessment of inflammatory cells. We added one addi-
tional parameter: extent of re-epithelialization when erosions/
ulcers were present/expressed as ratio of re-epithelialized ulcer
to non-epithelialized ulcer. Tamoxifen (Sigma) was dissolved
40 mg/ml in corn oil and injected three times over 5 days at a
dose of 0.2 mg/g.

EZH?2 Inhibitors—DZNep (Calbiochem) was injected i.p. at 5
mg/kg three times every other day for 5 days concurrently with
2% DSS treatment. Vehicle control mice received equivalent
200-ul injections (1% ethanol/PBS). Each group had a total of
10 mice. For in vitro EZH2 inhibitor treatment, CD4*CD25™,
CD4"CD62L" cells were cultured as described and treated
with either vehicle or 5 um DZNep (Calbiochem), 5 um EPZ-
6438 (Cayman Chemical), 5 um GSK503 (ApexBio), or 5 um
GSK126 (Sellekchem).

Human Patient Sample Collection, Processing, and IRB
Approval—Human samples were collected in accordance with
the Mayo Clinic Institutional Review Board guidelines.
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RNA-Seq of Human Samples—Isolation of lamina propria
CD4" lymphocytes has been described previously (52). Briefly,
resection specimens or mucosal biopsies of the terminal ileum
were obtained from patients with Crohn’s disease or age/sex-
matched healthy control individuals. The tissue initially under-
went mechanical disruption in the presence of 1 mM EDTA in a
37 °C CO, incubator for 30 min, followed by collagenase (1
mg/ml), DNase (1 mg/ml), and trypsin inhibitor (1 mg/ml)
overnight at 4 °C in cRPMI supplemented with 10% human
serum. After passage through a 70-um cell strainer, the buffy
coat was isolated using Ficoll gradient centrifugation. CD4™"
lamina propria cells were isolated using magnetic bead sorting
(CD4™ T cell isolation kit, 130-091-155, Miltenyi Biotec) and
two passes through the LS column on the MACS magnet
separator. Purification (>95% purity) was confirmed by flow
cytometry.

mRNA Sequencing—Total RNA extraction was performed
using the Exiqon miRCURY RNA isolation kit. For RNA
sequencing, we used the [llumina TruSeq RNA library prepara-
tion protocol and sequenced through a HiSeq2000 sequencer
(3—4 samples/lane), which generated 42—113 million pair-end
50-base reads for each sample.

Bioinformatics Data Analysis—MAPR-Seq v1.2 was used for
data processing. Briefly, sequence reads in fastq format were
aligned to the human genome build 37 using TopHat (2.0.6)
with Bowtie (0.12.7) (55, 56). HT Seq (0.5.3p9) (57) was used to
perform gene counting. Differentially expressed genes were
identified using edgeR 3.8.6 (58). Genes without any reads in
any of the samples were first removed. To focus on the genes
that were highly significant with sufficient expression, we
applied the filters of FDR < 0.05, -fold change >1.5 and at least
one group RPKM mean value >1 for each gene. For principal
components analysis and unsupervised clustering, log2 RPKM-
normalized data (59) were used. Pathway/gene network
enrichment analysis for differentially expressed genes was
performed using ingenuity pathway applications. Pathways
with at least one gene mapped were evaluated for enrich-
ment by hypergeometric test, and those with p < 0.01 were
considered significant.

The master regulator analysis was conducted using a method
described previously (29, 30). The algorithms infer a transcrip-
tional network by mutual information after multiple hypothesis
testing corrections and bootstrapping. Enrichment analysis was
conducted on each transcriptional network, which computes
the overlap between the transcriptional regulatory unities
(regulons) and the input signature genes using the hypergeo-
metric distribution with multiple testing corrections. GSEA
(60) was also applied to assess whether a given transcriptional
regulatory network is enriched for genes that are differentially
expressed between the patients and control CD4™ cell gene
expression. The regulons are treated as gene sets in this case.

Statistical Methodology—Statistical analyses were performed
using JMP version 9.0 (SAS Institute, Cary, NC). Non-paramet-
ric unpaired ¢ test was performed using Mann-Whitney ¢ test,
and p < 0.05 was considered statistically significant. For multi-
ple comparisons, statistical significance was determined using
the Holm-Sidak method, with « = 5.000% (p < 0.05). Each

720 JOURNAL OF BIOLOGICAL CHEMISTRY

variable was analyzed individually without assuming a consis-
tent S.D.
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