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Abstract

Background: Composite endpoints (CEP), such as progression-free survival, are commonly used in cancer research.
Notwithstanding their popularity, however, CEP analyses suffer from a number of drawbacks, especially when death is com-
bined with a nonterminal event (ie, progression or recurrence), exemplifying the semicompeting risks setting. We investi-
gated the semicompeting risks framework as a complementary analysis strategy that avoids certain drawbacks of CEPs.
Methods: The illness-death model under the semicompeting risks framework was compared with standard analysis approaches:
CEP analyses and (separate) univariate analyses for each component endpoint. Data from a previously published phase III ran-
domized clinical trial in metastatic colon cancer including 1419 participants in the N9741 trial (conducted between 1997 and
2003) were used to determine the impact of the loss of information associated with combining multiple endpoints, as well as of
ignoring the potentially informative role of death. A simulation study was conducted to further explore these issues.
Results: Failure to account for critical features of semicompeting risks data can lead to potentially severely misleading
conclusions. Advantages of semicompeting risks analyses include a clear delineation of treatment effects on both events, the
ability to draw conclusions about a patient’s joint risk of the two events, and an assessment of the dependence between the
two event types.
Conclusions: Embedding and analyzing component outcomes in the semicompeting risks framework, either as a supplement
or alternative to CEP analyses, represents an important, underutilized, and feasible opportunity for cancer research.

When designing clinical trials, investigators often define out-
comes using a composite endpoint (CEP) for which patients are
said to experience an “event” the first time they experience one
of a set of predetermined events of interest (1–7). In cancer re-
search, the canonical example of a CEP is progression-free sur-
vival (PFS). Much has been written on the advantages of using
PFS as a primary endpoint (8,9), including that it is less sensitive
to effects of second-line therapy than overall survival (OS) (10), it
incorporates a broader range of informative events indicative of
treatment quality (10), and its use shortens trials because of the
potential increase in statistical power due to the increased (over-
all) event rate (11,12).

Despite these potential benefits, however, PFS remains contro-
versial. In particular, progression may not always be consistently
defined across or even within studies (13), and the accuracy of the
measured time to progression also raises concerns as progression
is typically assessed at scheduled physician visits rather than in
real time (12–16). Moreover, although PFS is often interpreted as a
surrogate for OS, progression and death do not necessarily corre-
late well, particularly for cancers characterized by long survival
post-progression (13,17–22). This, in turn, could lead to misleading
conclusions in either direction—researchers have found statisti-
cally significant differences between treatments based on PFS but
not OS (18), and vice-versa (23–25).
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PFS is also subject to a number of drawbacks associated with
the use of CEPs more generally. First, because treatment effect
estimates reported from CEP analyses represent a mixture of
the treatment effects associated with the component end-
points, their interpretation can be complex and unintuitive (26),
and even more so if the component endpoints are not of compa-
rable importance (2). Second, when death is one of the compo-
nents, its potentially informative role (ie, patients who die may
have been at higher risk to experience other events even if they
did not) is masked once the individual components are com-
bined. Finally, and perhaps less well known, is that, in contrast
to conventional wisdom, the use of a CEP may, in fact, result in
a loss of statistical power to detect treatment effects, particu-
larly if treatment effects differ across component endpoints and
if they are in opposite directions (5). Furthermore, the degree of
this power loss is also influenced by the relative frequencies of
and dependence between component endpoints (6).

Each of these drawbacks can be linked to the loss of informa-
tion that results from combining several outcomes into a single
endpoint. Toward making full use of the available information,
we present the semicompeting risks framework. As we elaborate
upon, this framework provides a means for evaluating semicom-
peting risks data wherein the occurrence of a nonterminal event
(eg, disease progression or tumor recurrence) may be influenced
by a terminal event (eg, death). While the recent statistical litera-
ture is rich with methods for semicompeting risks data, they
have not been widely adopted in the clinical/epidemiological lit-
erature. The purpose of this paper, therefore, is to describe and il-
lustrate the semicompeting risks framework, as well as to
contrast it with a number of standard analysis strategies. In addi-
tion, a simulation study is conducted to explore the potentially
informative role that the terminal event plays in CEP analyses.

Methods

The N9741 Trial

To help illustrate semicompeting risks data analyses, we use
data on 1419 participants in the N9741 trial. Briefly, N9741, con-
ducted between 1997 and 2003 and published in 2004, was a
phase III study of patients with previously untreated metastatic
colorectal cancer, designed to compare combinations of the
standard of care—5-fluorouracil and leucovorin (5-FU/LV)—with
irinotecan (CPT-11) and oxaliplatin (OXAL) (27–29). While the
trial originally had seven treatment arms, it was reconfigured in
2000 to have only three: 5-FU/LVþCPT-11, 5-FU/LVþOXAL, and
OXALþCPT-11. For consistency with previously published re-
ports, we label these arms as A, F, and G, respectively. All partic-
ipants provided written informed consent, and institutional

review board approval was obtained for the study. Additional
baseline characteristics of these patients can be found in
Supplementary Table 1 (available online).

To illustrate the semicompeting risks framework, we con-
sider PFS, defined as the first of: 1) tumor progression or 2) death
from any cause. During follow-up, tumors were measured in
N9741 approximately every six weeks for the first 42 weeks or
until tumor response was confirmed. Measurements were taken
every 12 weeks thereafter. Progression was defined as a greater
than 25% increase in measurable tumor size, an increase in tu-
mor size in patients who were not considered to have measur-
able disease, tumor measurements above 50% of the largest
previously observed reduction in patients who experienced a
partial response, or any new lesion (27).

Semicompeting Risks Data

Here we show how PFS, as defined, can be cast within the
semicompeting risks framework (30–42). In its most general
form, semicompeting risks refers to the setting when the occur-
rence of some so-called nonterminal event of interest is subject
to some terminal event, in the sense that individuals may only
experience the nonterminal event if the terminal event has not
occurred. For PFS, the nonterminal event is tumor progression,
with the terminal event being death. Note the distinction from
the more familiar competing risks framework, in which the
multiple events are typically various causes of death (43,44).

Given specific definitions for the nonterminal and terminal
events, and finite follow-up, patients will ultimately be classi-
fied into one of four outcome groups: 1) those who experience
neither event before being censored (ie, neither progression nor
death), 2) those who experience the nonterminal event but are
censored prior to experiencing the terminal event (ie, progres-
sion but no observed death), 3) those who experience the termi-
nal event without having experienced the nonterminal event
(ie, death without progression), and 4) those who experience
both (ie, progression followed by death). Note that groups 2
through 54 would be combined into a single outcome category
in a CEP analysis.

Statistical Analysis

Given outcome information on the two events, an analysis
could proceed in a number of ways. Here we focus on three op-
tions: 1) a composite endpoint analysis, 2) separate univariate
analyses, and 3) a semicompeting risks analysis based on an
illness-death model. Figure 1 provides graphical representa-
tions of these choices, with the boxes indicating “states” that a

Figure 1. Flowcharts illustrating the three analysis approaches described in the main text in the context of the progression-free survival (PFS) endpoint. (A)

Corresponds to a composite endpoint (CEP) analysis, (B) to separate univariate analyses for the nonterminal and terminal events, and (C) to the illness-death model in

the semicompeting risks framework.
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patient can be in at any given point in time and arrows indicat-
ing the transitions between states. In Figure 1A, we see that pa-
tients begin in an “initial” state (eg, time of diagnosis in N9741)
and can only experience a single transition (eg, into the state of
progression or death). In the subfigure, the label “hC” refers to
the hazard function that would be modeled, for instance, with a
Cox model in a standard CEP analysis; the corresponding hazard
ratios in the Results section are labeled “HRC”. Instead of col-
lapsing the two events into a single state, Figure 1B illustrates
how one could build separate univariate models for the hazards
for the nonterminal and the terminal events (1,45). To distin-
guish these transitions/hazards from the one in the CEP analy-
sis, Figure 1B labels the hazard for the nonterminal event “h1*”
and the hazard for the terminal event “h2*”; corresponding haz-
ard ratios in the Results are labeled “HR1*” and “HR2*”. While this
focuses the analysis on the component outcomes that are, argu-
ably, more interpretable than a collapsed composite, consider-
ation of the independent censoring assumption requires special
care. For example, in separating the component outcomes for
PFS, the progression model implicitly treats death as an inde-
pendent censoring mechanism, and yet it may not be plausible
to assume that patients who die are representative of the pa-
tients at risk for progression at that time (4). Indeed, it may be
inappropriate to view death as a censoring mechanism alto-
gether (43,44).

Toward explicitly recognizing the potentially informative
role that the terminal event may play and distinguishing be-
tween the transitions into the terminal state before and after
experiencing a nonterminal event, Figure 1C provides the
illness-death model representation of the semicompeting risks
setting (31,37). For each of the three transitions, one can specify
a model for the corresponding hazard function (eg, a Cox
model). Thus, three distinct hazard ratios can be estimated to
distinguish the effects of a particular covariate on each transi-
tion. For PFS, this would permit estimation of HR1, the hazard
ratio for progression; HR2, the hazard ratio for death given that
a patient has not progressed; and HR3, the hazard ratio for death
given that a progression event has occurred. Thus, in contrast
to the CEP and separate univariate analyses, the illness-death
model formulation makes full use of the information in the
semicompeting risks data to explicitly allow the risk of the ter-
minal event to depend on whether the nonterminal event has
occurred. Furthermore, one can introduce a common patient-
specific frailty, analogous to a random effect in a mixed-effects
model, into each of the three models to account for dependence
between the nonterminal and terminal events. Typically, the
variance of these frailties, denoted h, is used to indicate the ex-
tent of residual dependence (ie, beyond that explained by the
risk factors included in the three transition-specific hazard

models). While other methods have been developed for analyz-
ing semicompeting risks data (30–41), we focus on the illness-
death model because of its interpretability and the availability
of software for its implementation (46,47).

Additional, detailed information about the models for each
of the three analyses, as well as the software used to fit them to
the N9741 data, can be found in the Supplementary Materials
(available online).

Simulation Study

We conducted a simulation study to investigate hazard ratio es-
timates from CEP analyses, in particular to examine the influ-
ence of dependence between the nonterminal and terminal
events (as characterized by h) on the value of HRC. Toward this,
we used a fit of the illness-death model to the observed data
from the N9741 trial to generate a series of simulated datasets;
see Supplementary Table 2 (available online) for details. Across
the simulated datasets, we varied the “true” values of HR1 and
HR2 for Arm F, as well as the frailty variance h. With the excep-
tion of the baseline hazard for death without progression, the
remaining components of the data-generating mechanism were
held at the values from the illness-death model fit (see the
Supplementary Materials, available online). For death without
progression, we considered two cases for the 60-month event
rate: 1) 6%, based on the original fit (see Table 1); and 2) 35% (see
Supplementary Table 2, available online, for details).

Results

Observed Outcome Data

Table 1 presents the observed outcomes for the 1419 patients in
N9741 across the four outcome groups, where administrative
censoring was applied at 60 months. We see, for example, that
for PFS the majority of patients (1229, 86.6%) experienced both
progression and death. Supplementary Figures 1 and 2 (avail-
able online) display the timing of these outcomes in greater
detail.

Statistical Analysis

Table 2 provides results from the three statistical analyses rep-
resented in Figure 1 applied to PFS. From the CEP analysis in
Table 2, we see that patients in arm F are estimated to have a
32% lower hazard for PFS than patients in arm A (HRC ¼ 0.68,
95% confidence interval [CI] ¼ 0.60 to 0.78), which is corrobo-
rated by the results from the separate univariate analyses: the

Table 1. Outcomes of 1419 patients in the N9741 trial data, overall and by treatment arm, corresponding to PFS

Outcome categories

Overall
Treatment arm

A F G
No. (%) No. (%) No. (%) No. (%)

Total* 1419 390 670 359
1) Progression and death 1229 (86.6) 353 (90.5) 557 (83.1) 319 (88.9)
2) Death without progression 80 (5.6) 20 (5.1) 43 (6.4) 17 (4.7)
3) Progression and censored prior to death 74 (5.2) 0 (2.6) 50 (7.5) 14 (3.9)
4) Censored prior to progression or death 36 (2.5) 7 (1.8) 20 (3.0) 9 (2.5)

*Censoring was performed administratively at 60 months. Treatment arm A: 5-FU/LV (5-fluorouracil and leucovorin) with CPT-11 (irinotecan); treatment arm F: 5-FU/

LV with OXAL (oxaliplatin); treatment arm G: OXAL with CPT-11. PFS ¼ progression-free survival.
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HR1* for tumor progression is estimated to be 0.67 (95% CI ¼ 0.59
to 0.77) while the HR2* is estimated to be 0.66 (95% CI ¼ 0.58 to
0.75).

When the illness-death model is applied to PFS, we find
rather striking effects of the informative role of death. In com-
paring arms A and F, the discrepancy between an HR1* of 0.67
(95% CI ¼ 0.59 to 0.77) for the univariate analysis of progression
in Table 2 and an HR1 of 0.49 (95% CI ¼ 0.40 to 0.60) for progres-
sion in the illness-death model suggests that treating death as
an independent censoring mechanism and/or introducing a
frailty to account for between-patient variation substantially re-
duced the strength of the effect estimate. Such a reduction is
also visible, although somewhat less dramatic, when comparing
arms A and G.

Finally, the illness-death model also allows us to gather in-
formation about the hazard of the terminal event before and af-
ter the nonterminal event has occurred. In Table 2, for example,
comparing arms A and F, the univariate HR2* was reported to be
0.66 (95% CI ¼ 0.58 to 0.75). Under the illness-death model, this
is adjusted into an HR2 of 0.60 (95% CI ¼ 0.34 to 1.09) for death
conditional on progression not having occurred and an HR3 of
0.59 (95% CI ¼ 0.48 to 0.72) for death given that progression has
occurred, which are markedly lower than what we would have
concluded from the univariate hazard ratio.

We have also performed analogous analyses on another CEP
that could, in principle, have been an endpoint in the N9741
trial, combining grade 4 toxicity with the first of progression or
death. These results provide a slightly different numerical per-
spective and can be found in the Supplementary Methods and
Supplementary Table 3 (available online).

Simulation Study

Figure 2 presents results for treatment F relative to treatment A
for the simulations investigating CEP analyses. Figure 2, A
through C, reports results when the 60-month death-without-
progression event rate was set to 6%; Figure 2, D through F, re-
ports results when the rate was set to 35%. Supplementary
Figure 3 (available online) reports on parallel simulations re-
garding HR1* in a univariate analysis of the nonterminal event.

From the results in Figure 2, we make a number of observa-
tions. First, as is well known, HRC is generally a compromise

between HR1 and HR2 and, for the most part, the numerical
value of HRC is attenuated relative to the “true” value of HR1.
Exceptions to this arise in Figure 2, D through F, when the true
value of HR1 is approximately 1.0 and the value of HR2 is high.
For example, in Figure 2D when HR1 equals 1.0 and HR2 equals
3.0, then HRC equals 1.4.

Second, the impact of HR2 on the compromise represented
by HRC depends heavily on the rate at which patients experi-
ence death events in the absence of progression. In Figure 2, A
through C, HR2 has little impact even when relatively large,
whereas it plays a more prominent role in Figure 2, D through F.
For example, focusing on Figure 2D, when HR1 equals 0.8, the
value of HRC varies between 0.7 (ie, protective) and 1.3 (ie, detri-
mental), depending on the value of HR2.

Third, examining the panels from left to right, we see that
dependence between progression and death, as represented by
h, plays an important role in determining the value of HRC. For
example, in Figure 2, A through C, when HR1 equals 2.0 and HR2

equals 1.5, as h increases from 0.5 to 3.0, the value of HRC de-
creases from 1.59 to 1.22.

Finally, any given value of HRC produced by a CEP analysis
may be the result of a wide variety of configurations of the true
HR1 and HR2. To highlight this, the dashed horizontal lines in
each subfigure indicate HRCs of 0.7, 1.0, and 1.5. Consider, for ex-
ample, an HRC of 0.7 in Figure 2B for which h equals 1.0 (the
value closest to the observed h ¼ 0.85 in the N9741 data). The
dashed line indicates that this “overall protective” effect can be
produced if HR1 equals 0.56 and HR2 equals 0.30 (protective for
both events), and also if HR1 equals 0.33 and HR2 equals 3.0 (pro-
tective for progression but harmful for death). Similarly, from
Figure 2D, a null CEP hazard ratio HRC of 1.0 can be produced if
HR1 equals 1.30 and HR2 equals 0.50, if HR1 equals 0.72 and HR2

equals 1.50, and many other scenarios in between. Note that, in
these cases, using a composite endpoint would lead to a sub-
stantial loss of power to detect a treatment effect.

Discussion

Although the term “semicompeting risks” is rarely used in the
clinical/epidemiological literature, data following the semicom-
peting risks structure are ubiquitous in cancer research. The re-
sults we present based on the N9741 data demonstrate that

Table 2. HR estimates and 95% CIs comparing treatment arms F and G to the reference arm A in the N9741 trial data based on PFS as a compos-
ite endpoint, using three analysis strategies*

Analysis HR (95% CI)

Composite endpoint HRC (95% CI)

Arm F 0.68 (0.60 to 0.78)
Arm G 0.93 (0.80 to 1.07)

Univariate HR1* (95% CI) HR2* (95% CI)

Arm F 0.67 (0.59 to 0.77) 0.66 (0.58 to 0.75)
Arm G 0.93 (0.80 to 1.08) 0.90 (0.77 to 1.04)

Semicompeting risks HR1 (95% CI) HR2 (95% CI) HR3 (95% CI)

Arm F 0.49 (0.40 to 0.60) 0.60 (0.34 to 1.09) 0.59 (0.48 to 0.72)
Arm G 0.83 (0.66 to 1.04) 0.82 (0.34 to 1.65) 0.82 (0.66 to 1.03)

*Treatment arm A (reference arm): 5-FU/LV (5-fluorouracil and leucovorin) with CPT-11 (irinotecan); treatment arm F: 5-FU/LV with OXAL (oxaliplatin); treatment arm

G: OXAL with CPT-11. CI ¼ confidence interval; HR ¼ hazard ratio; HR1 ¼ HR for progression in semicompeting risks analysis; HRC ¼ HR for composite endpoint; HR1* ¼
HR for progression in univariate analysis; HR2 ¼ HR for death given that progression has not occurred in semicompeting risks analysis; HR2* ¼ HR for death in univari-

ate analysis; HR3 ¼ HR for death given that progression has occurred in semicompeting risks analysis; PFS ¼ progression-free survival.
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reframing CEP analyses within the semicompeting risks frame-
work makes full use of the available information and can provide
key insights that cannot be obtained with more well-known
frameworks, including traditional competing risks analysis
(43,44). Moreover, by explicitly distinguishing the possible transi-
tions that a patient can experience, treatment effects estimated
via an illness-death model are more readily interpretable in the
sense that they correspond to actual physical events. In contrast,
the interpretation of treatment effects for a CEP is seldom
straightforward, especially if the components vary greatly in clin-
ical importance, which is particularly common for CEPs relating
to toxicity or safety (3). Additionally complicating the matter is
that the relative clinical importance of component events is often
difficult to assign and can vary substantially across patients, re-
searchers, and clinicians (48). Indeed, as shown in the simulation
study, hazard ratios estimated via CEP analyses can be viewed as
a complex mixture of component-specific hazard ratios influ-
enced by dependence and component event rates that do not
correspond to any actual physical event. In a semicompeting
risks analysis, these difficulties are avoided altogether.

Throughout this study, we have focused on the illness-death
model as a means to analyzing semicompeting risks data, in
part because of its connection to standard methods for survival
analysis but also because software is readily available; readers
are referred to the freely available “frailtypack” (47) and

“SemiCompRisks” (46) packages for the statistical programming
language R (49). However, the illness-death model is not the
only way to analyze semicompeting risks data (30,50); in this
sense, this study is limited because we have not explored these
other methods. It is also worth noting that our simulations are
not exhaustive and the phenomena we describe may not appear
in all settings.

Perhaps most importantly, we emphasize that the semicom-
peting risks framework broadens the range of scientific ques-
tions that researchers can address beyond those that can be
addressed with a CEP. For example, in the case of PFS, although
being both alive and progression-free is clearly an important
clinical goal, by focusing the design and analysis on a CEP one
loses the ability to distinguish treatment effects on different
outcomes, as well as the ability to learn about how multiple out-
comes covary across treatments. Additionally, by exploiting the
full information in the data, one can investigate relatively com-
plex phenomena, including the so-called rebound effect in
which disease becomes more aggressive after progression
(51,52), or the impact of different salvage treatments by incorpo-
rating additional covariates into the hazard for death after pro-
gression. Thus, embedding and analyzing component outcomes
in the semicompeting risks framework as a supplement to CEP
analyses, we believe, represents an important, underutilized,
and feasible opportunity for cancer research.

A B C

D E F

Figure 2. Graphical representation of the hazard ratio estimated in a composite endpoint analysis, denoted HRC, under various hypothetical scenarios for the true val-

ues of the hazard ratio for progression (HR1), the hazard ratio for death (HR2), and h from the illness-death model. In all cases, data were simulated to replicate the gen-

eral structure of the progression-death data from the N9741 trial. In (A-C), the 60-month rate of death prior to progression was approximately 6%; in (D-F), the hazard

was modified to increase this 60-month rate to approximately 35%.
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