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Abstract

Whole-genome analysis of cancer specimens is commonplace, and investigators frequently share or re-use specimens in
later studies. Duplicate expression profiles in public databases will impact re-analysis if left undetected, a so-called “doppel-
g€anger” effect. We propose a method that should be routine practice to accurately match duplicate cancer transcriptomes
when nucleotide-level sequence data are unavailable, even for samples profiled by different microarray technologies or by
both microarray and RNA sequencing. We demonstrate the effectiveness of the method in databases containing dozens of
datasets and thousands of ovarian, breast, bladder, and colorectal cancer microarray profiles and of matching microarray and
RNA sequencing expression profiles from The Cancer Genome Atlas (TCGA). We identified probable duplicates among more
than 50% of studies, originating in different continents, using different technologies, published years apart, and even within
the TCGA itself. Finally, we provide the doppelgangR Bioconductor package for screening transcriptome databases for dupli-
cates. Given the potential for unrecognized duplication to falsely inflate prediction accuracy and confidence in differential ex-
pression, doppelg€anger-checking should be a part of standard procedure for combining multiple genomic datasets.

Sufficient germ-line sequence markers provide a “fingerprint”
that can be matched uniquely in a database of genotypes (1).
Publicly available human genomic data is therefore normally
summarized at a level that cannot be identified uniquely to pro-
tect patient privacy. Cancer transcriptomes undergo alterations
that are highly distinctive but much more difficult to identify
uniquely in summarized form. Re-use of tissue specimens is
widespread in clinical genomic studies, creating a “doppelg€anger
effect” in publicly available datasets: hidden duplicates that, if
left undetected, can inflate statistical significance or apparent ac-
curacy of genomic models when combining data from different
studies (Figure 1A). The proposed method relies on exhaustive
comparisons of dataset pairs and sample pairs to empirically es-
timate the distribution of pairwise transcriptome correlations be-
tween biological replicates within a dataset or between two
datasets where potentially different profiling technologies were

used. The key aspects to identifying duplicates in a pair of data-
sets are 1) using transcript identifiers available in both datasets,
2) batch correction (2), 3) calculating Pearson’s Correlation
Coefficient (PCC) between every sample in one dataset against
every sample in the other dataset, and 4) duplicate-oriented out-
lier detection. The background distribution of pairwise PCC
values varies depending on the tissue assayed and the technolo-
gies used, and must be estimated for every dataset pair.
Doppelg€angers can be identified as outliers at the high end of the
distribution of batch-corrected correlations. The detailed meth-
odology of package development and validation can be found in
the Supplementary Material (available online).

We studied databases of ovarian, breast, bladder, and colorec-
tal cancers and of cell lines and assessed their accuracy against a
“gold standard” of duplicated samples generated through further
manual inspection of expression data, clinical annotations, and

B
R

IEF
C

O
M

M
U

N
IC

A
T

IO
N

Received: July 26, 2015; Revised: February 25, 2016; Accepted: May 2, 2016

© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

1 of 4

JNCI J Natl Cancer Inst (2016) 108(11): djw146

doi: 10.1093/jnci/djw146
First published online July 5, 2016
Brief Communication

mailto:mbirrer@part�ners.org
Deleted Text: [
Deleted Text: ]
Deleted Text: ,
Deleted Text: ,
Deleted Text: [
Deleted Text: ]
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djw146/-/DC1
Deleted Text: ,
Deleted Text: ,
Deleted Text: its
http://www.oxfordjournals.org/


Figure 1. Demonstration and benchmarking of the doppelgangR method for identifying expression profiles of the same biological specimen. A) The “doppelg€anger” ef-

fect: hidden duplicates can inflate the apparent accuracy of predictive and prognostic models. Models of overall survival for high-grade, serous ovarian cancer were

trained and then validated in two studies containing duplicates identified by doppelgangR (see Supplementary Methods, available online). Validation set hazard ratio

(HR) was calculated with duplicates incrementally removed so that between 0% and 30% cross-study duplication of samples remained. Thirty percent duplication in-

flates the apparent hazard ratio from 1.1 to 1.7. B) doppelgangR identifies duplicate expression profiles as outliers with unusually high pairwise correlation compared

with other pairs of unrelated expression profiles. This histogram is the diagnostic plot produced by doppelgangR software, showing the best fit to the distribution of

pairwise correlations, with vertical darklines showing outliers that are probable duplicates in the UNT (3) and Miller et al. breast cancer datasets (4). C) Batch correction

allows RNA-seq profiles to be matched accurately to Affymetrix microarray profiles in the The Cancer Genome Atlas (TCGA) ovarian cancer dataset. True positives are

tumors whose RNA-seq and microarray profiles are more highly correlated to each other than to any other profile. Batch correction increases area under the receiver

operating characteristic plot (AUC) from 0.79 to AUC ¼ 0.94, and removing 50 microarray profiles incorrectly labeled by TCGA further increases AUC to>0.995. D and E)

Benchmarking. We estimated the accuracy of the doppelgangR approach by applying it to pairs of datasets with confirmed duplicates (see Supplementary Methods,

available online). D) Shows AUC for identifying the 43 cell lines present in two different panels (CCLE [n¼1037] and NCI60 [n¼59]). E) The performance on primary tu-

mor data in four cancer types. The AUC averaged across the four cancer types is 0.97. F) Suitability to TCGA cancer types. The doppelgangR approach only works for

cancer types in which expression profiles of individual tumors are sufficiently distinct. Violin plots depict distributions of Pearson Correlation Coefficients (PCCs) for all

pairs of expression profiles within each TCGA dataset, in order (left to right) of increasing distinctiveness. In cancer types with high pairwise PCCs, such as thyroid car-

cinoma, patients have very similar expression profiles and are hard to distinguish based on expression data only. In contrast, in cancer types with low PCCs, such as

bladder cancer, extensive genomic alterations generate unique expression fingerprints that make doppelg€anger identification possible.
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sample identifiers (Supplementary Table 1, available online).
Confirmed doppelg€angers were identified in more than half of all
studies (Table 1). For example, among the 1467 breast cancer
gene expression profiles, doppelgangR identifies 59 samples pre-
sent in both the Sotiriou et al. (3) and Miller et al. (4) studies
(Figure 1B; additional samples are duplicated by the TRANSBIG
dataset, see Table 1). Although these studies were published by
Belgian and Singaporean groups, respectively, careful reading of
the papers reveals that their datasets shared a cohort of samples
originating from Uppsala County, Sweden. Such international
collaborations are beneficial to the cancer research community,
but pose challenges to investigators developing independent vali-
dations and meta-analyses. In the ovarian cancer database,
which we have inspected in great detail (5), we identified 17% of
records as nonunique, including duplicates in different datasets
originating from the same institution (6,7), between the TCGA
dataset and datasets of institutions that contributed samples to
the TCGA project (8,9) and within the TCGA dataset itself. In ap-
proximately 75% of duplicate pairs, samples matched by expres-
sion data had identical or compatible clinical and tumor data, but
in the other 25% of cases the clinical data were discordant (10).
Previous work on identifying duplicate microarray profiles has
been limited to matching identical raw data files (11), and this
would not identify any of these duplicates.

In addition to identifying samples reprofiled by microarray,
our approach accurately aligns microarray and log-transformed
RNA-seq profiles for the same patients with area under the
receiver operating characteristic curve (AUC) greater than 0.9 for

10 of 12 TCGA cancer types where both microarray and RNA-seq
are available (Supplementary Table 2, available online). AUC is
less than 0.9 for two cancer types among the 10 “quietest” ge-
nomes (Figure 1F), kidney renal clear cell and papillary cell carci-
noma. Batch correction across datasets is critical: For example, in
ovarian cancer, batch correction increases AUC from 0.80 to 0.94.
Further inspection of the remaining errors reveals that almost all
were because of an experimental RNA mix-up in the original
TCGA Affymetrix microarray dataset, resulting in erroneously du-
plicated profiles attributed to different patients. Correction of the
mixed-up samples increases AUC for matching RNA-seq to mi-
croarray profiles to greater than 0.995 (Figure 1C). We reported
this sample mix-up to the TCGA Data Coordinating Center, which
in turn removed these 50 profiles on August 25, 2015 (12).

Our approach of duplicate identification reliably works when
individual tumors have distinctive expression profiles, as is the
case for cell line panels (Figure 1D) and for primary tumors from
breast, ovarian, bladder, and colorectal cancers (Figure 1E). We
expected it to be more prone to false positives for less differenti-
ated expression profiles such as low-grade and early-stage tu-
mors, and, generally observed, this where sufficient numbers of
annotated samples were available: Samples falsely identified as
duplicates were enriched for low-grade (CRC: 95% confidence in-
terval [CI] ¼ 1.2 to 2.2; ovarian: 95% CI¼ 1.0 to 1.5) and early-
stage (bladder: 95% CI¼ 1.3 to 4.2; CRC: 95% CI¼ 1.6 to 2.6). The
exception was early-stage ovarian cancer samples, for which
doppelgangR was extremely effective. These samples have dis-
tinctive profiles, and their rate of sharing was high, possibly

Table 1. Overview of confirmed doppelg€angers in all studies*

Dataset identifier by type of cancer
Total No.
samples

No. of
doppelg€angers Institutional source of doppelg€angers

Bladder
GSE1827, GSE13507, GSE31189, GSE31684,
GSE37317, PMID: 17099711

570 0 Various, no doppelg€angers identified

GSE19915, GSE32894 490 84 University Hospital of Lund, Sweden
GSE89, GSE5287 70 2 Aarhus University Hospital, Denmark

Breast
MAINZ, NKI, VDX 881 0 Various, no doppelg€angers identified
TRANSBIG, UNT, UPP 586 78 Uppsala County, Sweden

Colorectal
GSE2109, GSE3964, GSE4045, GSE11237,
GSE12225, GSE12945, GSE13294, GSE26682,
GSE27544, GSE28702, GSE45270, TCGA (READ)

1275 0 Various, no doppelg€angers identified

GSE13067, GSE14333 364 41 Royal Melbourne Hospital, Australia
GSE4526, GSE14095 225 37 Teikyo University School of Medicine, Japan
GSE14333, GSE17538 754 569 H. Lee Moffitt Cancer Center, USA
GSE18105, GSE21510, GSE21815 400 95 Tokyo Medical and Dental University Hospital, Japan
GSE26906, GSE39582 656 90 Various, France
GSE33113, TCGA (COAD) 226 2 Academic Medical Center, Netherlands

Ovarian
GSE14764, GSE19829, GSE26712, GSE30161,
GSE44104, GSE49997, GSE6008, GSE6822,
GSE8842, GSE9891, GSE12418, GSE13876

1415 0 Various, no doppelg€angers identified

E-MTAB-386, GSE18520 192 1 Brigham and Women’s Hospital, USA
GSE12470, GSE17260, GSE32062, GSE32063 463 139 Niigata University, Japan
GSE20565, GSE26193 247 93 Resource Biological Center of the Institut Curie, France
TCGA, GSE2109, GSE51088, PMIDs: 15897565,
17290060, 19318476

1176 2 International Genomics Consortium (IGC)
10 Cedars-Sinai Medical Center, USA
88 Duke University Medical Center, USA

*Gene expression data were obtained from several R/Bioconductor packages (Supplementary Methods, available online), and the listed ids are the study ids given in

these packages.
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because of the rarity of early-stage ovarian cancer and the high
importance of specimens.

We investigated the potential for applying this method to
each of the 32 TCGA cancer types based on individual distinc-
tiveness of transcriptomic aberrations. Using log-transformed
level III RNA-seq data, which are summarized at the level of
gene symbols, we calculated correlations between all sample
pairs (Figure 1F). Our ranking of the cancer types for transcrip-
tome distinctiveness, based on the 99.9th percentile of correla-
tion between expression profiles, is very similar to Lawrence
et al. (13), in which tumors were ranked by mutation rate. We
do not expect our method to be effective for cancer types with
“quiet” genomes and high correlation between nonduplicate ex-
pression profiles, such as kidney renal papillary cell carcinoma
and the cancer types to its left in Figure 1F. We also note the ex-
istence of highly distinctive expression subtypes, such as in
glioblastoma multiforme IDH1 mutant vs wild-type cases (14),
which produce bimodal pairwise correlations that may compli-
cate duplicate identification if these subtypes are not separated.
Several other cancer types from TCGA exhibit distinctive sub-
types that should be considered (Supplementary Figure 1, avail-
able online). Known subtypes in the datasets we examined in
detail did not impact performance, however, such as prevalence
of estrogen receptor–positive breast cancer tumors.

We note the potential utility of the doppelg€anger approach
also for identifying duplicates within a single study with as few
as five samples (see Supplementary Results and Supplementary
Figures 2-3, available online). In the databases we studied,
within-study duplication was less common than between stud-
ies, but we found likely duplicates in six ovarian cancer studies
and one CRC study. These profiles were such extreme outliers
in terms of similarity of gene expression profiles that they are
unlikely to have originated from different tumors, assuming the
samples passed basic QC metrics (eg, coverage, tumor purity,
RNA integrity scores). The approach reliably grouped together
healthy tissues, which have much more homogeneous expres-
sion profiles than cancer tissues. Although our benchmarking is
limited to microarray and RNA-seq data, we see no reason why
this approach should not work for other quantitative mRNA as-
says such as nanoString and multiplexed quantitative real-time
polymerase chain reaction, or even proteomic or other molecu-
lar profiles, provided that biological replicates are sufficiently
distinct relative to technical replicates.

As genomic databases grow and collect tumor specimens
from international collaborators, the chance of inter- and in-
trastudy duplication increases. Analysis of duplicate samples
is a substantial concern that could alter the identification of
subsets of patients with clinical differences or the develop-
ment of specific gene signatures. While this approach can help
identify duplicate profiles even when germ-line sequences are
not available, we note some limitations. Automatic setting of
the threshold defining “outliers” is a difficult problem to solve
generally and should be reviewed using diagnostic histograms
generated by the doppelgangR package. A thorough review

should take into consideration potential collaborations and/or
multiple institution clinical management of individual pa-
tients, as well as suspiciously similar clinical patient data and
identifiers.
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