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Abstract

Despite the development of powerful computational tools, the full-sequence design of proteins still 

remains a challenging task. To investigate the limits and capabilities of computational tools, we 

conducted a study of the ability of the program Rosetta to predict sequences that recreate the 

authentic fold of thioredoxin. Focusing on the influence of conformational details in the template 

structures, we based our study on 8 experimentally determined template structures and generated 

120 designs from each. For experimental evaluation, we chose six sequences from each of the 

eight templates by objective criteria. The 48 selected sequences were evaluated based on their 

progressive ability to (1) produce soluble protein in Escherichia coli and (2) yield stable 

monomeric protein, and (3) on the ability of the stable, soluble proteins to adopt the target fold. Of 

the 48 designs, we were able to synthesize 32, 20 of which resulted in soluble protein. Of these, 

only two were sufficiently stable to be purified. An X-ray crystal structure was solved for one of 

the designs, revealing a close resemblance to the target structure. We found a significant difference 

among the eight template structures to realize the above three criteria despite their high structural 

similarity. Thus, in order to improve the success rate of computational full-sequence design 
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methods, we recommend that multiple template structures are used. Furthermore, this study shows 

that special care should be taken when optimizing the geometry of a structure prior to 

computational design when using a method that is based on rigid conformations.
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Introduction

The ability to routinely design new functional proteins and protein-based systems will 

significantly impact the development of novel technologies and medicinal products and also 

our basic understanding of proteins. One of the major challenges in this regard is the ability 

to rationally design an entire amino acid sequence that will adopt a given three-dimensional 

structure. To handle the vast complexity of full-sequence design, computational methods are 

particularly interesting. Analytical or non-computational approaches have successfully been 

applied to the full-sequence design of α-helical structures [1–5], for example, by using 

heptad repeats [6,7]. Also, small and less regular structures have been designed by non-

computational consensus approaches and fragment assembly [8,9]. However, designing 

larger (>70 aa) globular αβ proteins with irregular contact patterns is a highly complex task 

and has only been achieved by employing computational methods [10–14]. In addition to 

this unique achievement, computational methods have been employed to full-sequence 

design of a variety of protein structures including early mini-proteins [15–17], tandem 

repeats [18,19], and ligand binders [20–21]. Despite much effort, however, the total number 

of full-sequence designed proteins for which an atomic resolution structure has been solved 

still remains low; to our knowledge, less than 10 larger globular αβ proteins have been 

reported in the literature [10,12–14,22]. Among the available computational methods used 

here, Rosetta is by far the best validated, and thus, we base this study on the Rosetta 

software.

This relatively low number of successful designs highlights the need for further development 

of computational protein design methods. To our knowledge, all computational methods 

capable of optimizing an entire amino acid sequence of more than 100 residues approximate 

side-chain degrees of freedom by a discrete, typically small number of rigid conformers 

referred to as rotamers [23], and the backbone is kept completely fixed during sequence 

optimization. We will refer to this setup as the use of rigid conformations. Today, most 

design protocols optimize sequence and conformation iteratively. However, in the sequence 

optimization step, the backbone and rotamer conformations are always fixed. With a vast 

number of sequence combinations to be explored, the use of rigid conformations greatly 

reduces the complexity of the sequence optimization.

While being a key enabling factor in terms of computational time, the use of rigid 

conformations is also considered to be the main factor limiting the accuracy, and in practice, 

it limits the application to relatively rigid proteins [24–27]. In particular, the appearance of 

molten globule characteristics in non-successful designs have been associated with a lack of 
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tight packing in the hydrophobic core caused by the use of rigid conformations [10,28]. To 

achieve a more accurate, comparative computational evaluation of structures, it is necessary 

to optimize the geometry using all degrees of freedom [29].

When based on a single template structure, design methods based on rigid conformations are 

known to converge to a narrow distribution of sequences [11]. In contrast, using more 

templates that display minor conformational differences increases the sequence variation of 

the output drastically [30,31]. Together, this indicates that computationally designed 

sequences based on a single rigid backbone template will only result in a small subset of the 

sequence solution space, as defined by the applied energy function, while another template 

of the same fold will yield another subset of solutions even assuming the same energy 

function.

To investigate this, we have conducted a full computational design study in which designed 

sequences based on several template structures were experimentally evaluated in an unbiased 

fashion. The thioredoxin fold was chosen as a design target because this fold is highly 

conserved throughout evolution and is also realized by a large variety of sequences in nature. 

Thus, we expect the thioredoxin fold to have a large sequence solution space and be highly 

designable in the sense that many sequences should be able to assume its fold. Furthermore, 

thioredoxin is a relatively rigid protein that is composed almost completely of segments with 

defined secondary structure (>90%) and has previously been shown to behave well in 

engineering contexts [32–34]. With a diversity of native sequences available, we tested 

templates with minor conformational changes (Cα RMSD = <2 Å), representing both a 

natural variation resulting from different wild-type sequences and a generated 

conformational variation resulting from computational geometry optimization. Starting with 

eight experimental template structures of the thioredoxin fold, we found a significant 

difference between the sequence outputs and, interestingly, also in the performance in 

experimental evaluations from template to template. In line with previous studies, we 

attribute these differences in template performance to the use of rigid conformations and 

show that these effects are enhanced by conducting thorough geometry optimization prior to 

design.

Results and Discussion

Design templates

To find a suitable set of templates to represent most of the natural thioredoxin sequence 

space, we searched the Protein Data Bank (PDB) for structures of the thioredoxin fold that 

shared high structural similarity despite low similarity in amino acid sequence. To enable a 

direct comparison of equivalent sequence positions in the resulting designs, we considered 

only the sets with a gap-free alignment. The search resulted in eight structures, which were 

truncated to the common, most structured 104 residues (Table 1). The structures are highly 

similar in backbone structure (Fig. 1) with an average Cα RMSD of 1.2 Å (0.7–1.8 Å) but 

are diverse in amino acid sequence with an average pairwise identity of 33% (15–61%; Fig. 

2). Although it should not matter in principle, we note that all structures have been 

determined from protein expressed in Escherichia coli, the same host that we used for 

expression here.
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Prior to computational design of an experimental structure, the Rosetta manual recommends 

preparing a structure that includes geometry optimization in an effort to remove 

disagreements between the experimental structure and the energy function, both of which 

potentially contain inaccuracies‡. The motivation is that a disagreement between the 

structure and the energy function, for example, an atomic overlap, would favor any change 

that removes this overlap, thus resulting in a bias away from the wild-type amino acid. By 

optimizing the geometry of the structure, an optimal energy of the wild type is achieved, 

resulting in a more fair comparison of energies.

In this work, we use the RosettaRelax application for geometry optimization. This 

application contains a stochastic element and therefore converges to a slightly different 

structure and energy in each run. Thus, 5 independent geometry optimizations were 

generated for each of the 8 experimental structures, resulting in a total of 48 template 

structures. The conformational variation among the 40 geometry-optimized structures is 

similar to the native variation with an average pairwise Cα RMSD of 1.2 Å. However, the 

optimizations of the same native structure are more similar (average Cα RMSD = 0.5 Å) 

than the optimizations of different structures (average Cα RMSD = 1.4 Å). Otherwise, the 

structural differences are distributed approximately homogenously over geometry 

optimizations and sequence positions.

Template assessment of designability

More attempts were made to assess the usefulness of the eight template structures in a 

design context (Table 2). Ideally, an energy function should have an experimental structure 

represented as a local energy minimum; in contrast, a large structural distortion upon 

geometry optimization may indicate a poor match between a structure and an energy 

function [35]. Also, the relative energy at which optimizations converge may be informative. 

For our set of 8 experimentally determined thioredoxin structures, the average structural 

distortions range between 0.5 Å and 1.0 Å RMSD (Table 2). We note that theX-ray structure 

at the lowest resolution and two NMR structures are slightly more distorted than the 

remaining structures. Geometry optimizations converged approximately to the same energy 

of −230 Rosetta energy units (REU) except for 3GNJ, 1DBY, and 2L4Q. The structure 

3GNJ converged to a significantly lower energy than the other structures and may thus 

appear to be a more promising design template, while the two NMR structures converged at 

higher energies than all the others, making them less promising (Table 2). Since we wanted 

to investigate a diversity of templates, we decided to proceed to the design phase using all 

eight structures including even those that may appear less promising from our geometry 

optimizations.

Calculating the percentage of side-chain conformations that can be reproduced in a 

repacking experiment has been suggested to provide another measure of template 

designability [36]. In contrast to the original report of this test, the application to our 

thioredoxin template set resulted in no significant correlation with structure resolution 

(Table 2). However, for geometry-optimized templates, more than 99% of the side-chain 

‡Rosetta documentation on structure preparation: https://www.rosettacommons.org/docs/latest/rosetta_basics/preparation/preparing-
structures.
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conformations were reproduced in the repacking experiments, which show that the minor 

conformational changes of the optimization were sufficient to make the same rotamer library 

match the structure completely.

The repacking experiment is sensitive toward the size of the applied rotamer library, so we 

used this experiment to evaluate this in the context of our thioredoxin redesign. Rosetta 

allows the inclusion of additional rotamers based on the dihedral angle standard deviation 

given in the original description of the rotamer library. Including more samples of a rotamer 

mode could possibly mean the difference between reproducing the experimentally 

determined conformation or not. On the other hand, due to combinatorial explosion, this 

addition to the rotamer library is limited by computer time and memory. In the current work, 

we were able to include two extra conformations per rotamer mode positioned at plus and 

minus one standard deviation for X1 and, for aromatic side chains, X2 dihedral angles.

Computational designs

For each of the 48 template backbones, we generated 20 computational designs, resulting in 

a total of 960 designs. The nomenclature used to designate these is dNyxx; d for “design”, N 

for the first letter in the PDB ID code (two letters may be used here in case of ambiguity), y 

for the geometry optimization run (1–5 and 0 for non-optimized), and xx for the design run 

(01–20).

For each template, the 20 designs converged to a relatively narrow distribution of energies 

and sequences as expected (data not shown). However, sequence populations resulting from 

different templates were far less similar despite the close structural relationship of the 

templates. As a result, multiple sequence alignment was able to cluster the pool of 960 

designs precisely according to template origin using only the information contained in the 

amino acid sequences (Fig. 3). The 120 designs based on one experimental template and its 

geometry-optimized templates (large clusters in Fig. 3) have, on average, 50% pairwise 

sequence identity compared to only 30% average identity to designs based on other 

experimental templates. Sequences based on geometry-optimized templates of the same 

experimental structure are clearly separated and collected into larger clusters for each 

experimental template. This observation shows that, in all cases, minor conformational 

changes in the backbone template change the population of the resulting amino acid 

sequences significantly and that a given template only reveals a part of the sequence solution 

space.

The sequence alignment further shows that the geometry-optimized templates result in 

slightly less diverse sequence populations (average pairwise sequence identity = 68%) 

compared to the experimental templates (average pairwise sequence identity = 61%). This 

trend in diversity is far more pronounced in how well the native amino acids are reproduced: 

comparing the individual sequence populations to its wild-type sequence shows that on 

average, 42% of the native amino acids are reproduced for geometry-optimized templates, 

whereas only an average of 29% are reproduced for experimental templates. This finding 

confirms that the intended effect of the initial geometry optimization is substantial and 

results in the reproduction of more wild-type identities. However, in the final section of this 
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paper, we present arguments that suggest that this preference for the wild-type sequence may 

be artificially biased.

Selecting sequences for experimental characterization

In selecting sequences for experimental characterization, we rely on objective criteria. We 

were unable to identify a computational assessment measure, such as unsaturated and buried 

hydrogen bond donors and acceptors, packing statistics, or a linear combination of these, 

which was able to convincingly isolate a population of designs as more promising (data not 

shown). Visual inspection of randomly selected designs did not reveal any obvious problems 

such as hydrophobic or highly charged patches on the surface. The naturally conserved Pro 

73 supports a cis peptide bond that is not always reproduced in our designs. However, a 

mutation to Ala, which was found in the majority of the designs that did not have a Pro, has 

been observed experimentally to enhance refolding properties [37]. The fact that it 

inactivates the enzyme [38] is not relevant to this study.

Thus, we opted for a simple objective criterion, and for each of the eight templates, we 

selected six designs with the lowest RosettaDesign energy, resulting in a total of 48 

sequences for experimental characterization. Interestingly, among all 960 designs, the 60 

best-scoring designs all originate from 3GNJ and thus represent a minor fraction of the 

sequence solution space shown in Fig. 3. By selecting uniformly from all templates, our 

sequences for experimental characterization represent a more diverse set.

All of the 48 selected designs are based on geometry-optimized templates, and for three of 

the eight templates, designs are based on a single geometry-optimized template (dL4xx, 

dTr4xx, and dG2xx). Within each individual group, the energies of the six best-scoring 

designs are all within less than 2 REU, which we judge to be below the general noise level.

Production in E. coli and solubility screen

We added a leading Met and a C-terminal His6 tag (for purification) to each of the 48 

sequences selected for experimental characterization. Plasmids containing codon-optimized 

sequences were custom synthesized, and the genes were expressed in E. coli at 37 °C under 

the control of an IPTG-inducible T5 promoter, followed by cell lysis and centrifugation.

To evaluate expression and solubility, we performed Western blots using an anti-His5 

antibody to enable the detection of the expressed protein in the pellet and supernatant 

fractions (Fig. 4). Proteins from the same amount of cells were loaded in each lane, allowing 

accurate determination of the relative amount of soluble and insoluble tagged protein. To 

quantify levels, we compared the band intensities to the intensity of a His6-tagged control 

protein in three 10-fold dilutions starting from 18 pmol, which was assigned to a value of 

100 (Fig. S1). Expression levels span roughly 3 orders of magnitude.

Of the 48 tested designs, 16 were not produced in E. coli to a detectable level (Fig. 4, absent 

bars). Of the remaining 32 designs, 20 were found in the supernatant to at least some extent 

(Fig. 4, black bars), suggesting that they were soluble and potentially folded. In repeated 

experiments, some of the 16 designs, which were initially found to be not produced, were 

found to express sporadically but never with a significant yield of soluble protein.
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A key issue in full-sequence design is to obtain significant amounts of soluble protein for 

further characterization and optimization. Without soluble protein, there is little basis for 

further efforts. To this end, we designated a design as promising if the soluble fraction was 

greater than 1 (as defined in Fig. 4). This resulted in a total of 9 promising designs out of the 

48 tested. Given the total statistics, the binomial probability of obtaining six promising 

designs out of six tested (as for 2I4A) in eight attempts is 8 × (9/48)6 ~ 0.03%, making it 

unlikely that template dependency shown in Fig. 4 is a coincidence. The solubility screen 

provides strong evidence that the outcome of a computational design is sensitive to minor 

conformational changes in the backbone template. We note that the success rate in the 

solubility screen is vastly better than the null hypothesis, since random sequences of 100 aa, 

for all practical purposes, are expected to be insoluble [39].

The solubility screen suggests that three templates (3GNJ, 1FB0, and 2I4A) are more 

successful than the others. Thus, we evaluated the computational template assessment (Table 

2) based on this solubility data (Fig. 4). The most promising template by energy was 3GNJ, 

the most promising by X1 reproduction was 1FB0, and the most promising by X-ray 

resolution was 2I4A. However, we found no measure that could consistently rank all 

templates in accordance with the solubility screen results. The energy and distortion upon 

geometry optimization suggest that the two NMR structures (2L4Q and 1DBY) and, to a 

lesser extent, the low-resolution structure 3HZ4 do not perform well with Rosetta.

Among the six designs on each template, we found no correlations between solubility and 

design energies or other computational post-evaluations, such as geometry-optimized 

Rosetta energies, which were able to predict the most successful of the six designs (data not 

shown).

Purification and monomer stability

We attempted to purify the most promising soluble designs using immobilized nickel affinity 

chromatography. Most of these proteins either did not elute from the column, presumably 

because of on-column aggregation, or were not stable or soluble enough to stay in solution 

after this initial purification step. To ensure that proteins that passed this step were not 

significantly multimeric, we subjected these proteins to size exclusion chromatography 

(SEC). Only two designs, dF106 and dF414, were stable enough to be purified using SEC. 

Of the two, dF106 showed better solubility but only at low pH. Interestingly, we predicted 

the isoelectric point (pI) of dF106 to be 4.8, which suggests that charge neutralization may 

be required to keep dF106 soluble. The low solubility of dF414 (~30 μM) was maintained 

over a broader pH range (from 4 to 10). Consequently, dF414 was analyzed in near-neutral 

pH buffers, whereas dF106 was analyzed in pH 4.8 buffers.

In the SEC, both dF106 and dF414 could be recovered from peaks eluting close to the 

expected retention volume, suggesting that these two proteins are monomeric in solution and 

reasonably compact (Fig. 5a). The slightly reduced retention time of dF106 could be 

indicative of it having a slightly extended structure. If kept at room temperature for several 

days, however, dF106 showed a significant amount of multimer formation (Fig. 5a, black 

curve). The peak eluting at 11.8 mL translates to a molecular mass corresponding to a trimer 

of dF106. A small peak is also visible around 13 mL for the freshly prepared dF106 sample 
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(Fig. 5a, red curve). For practical reasons, the gel filtration experiment was run at room 

temperature, which may have caused this minute dimer formation to occur. In the 

purification of dF106, all protein was collected from the monomer peak. For both dF106 and 

dF414, the recovered protein was >95% pure as determined by SDS-PAGE (data not shown).

Structural analysis

We biophysically characterized the two stable and monomeric designs, dF106 and dF414. 

Far UV CD spectra indicate an αβ structure with the correct amount of each secondary 

structure type (Fig. 5b), and the near-UV spectra are indicative of well-defined tertiary 

structures (Fig. S2). The structures of the two designs appear to be very resistant to thermal 

denaturation (Fig. S3) as is commonly observed for computationally designed proteins 

[1,2,4,10–12,14]; dF106 started unfolding at ~70 °C, whereas the CD spectra of dF414 

barely responded to the heat treatment. Both designs were responsive to chemical 

denaturation with guanidine hydrochloride (GuHCl), which caused significant changes in 

Trp fluorescence intensity (Fig. 5c) and shifts in the maximum intensity wavelength (λmax) 

(Fig. 5d). Whereas dF106 only has one buried Trp, dF414 has three Trp residues and, 

consequently, a much broader spectrum; thus, the shift in λmax for dF414 was much less 

pronounced (data not shown).

Chemical denaturation showed three-state unfolding for both designs (normalized data are 

shown in Fig. 5c and raw data in Fig. S4), which is in contrast to the simple two-state 

unfolding that is common to many, small naturally occurring proteins, including the native 

1FB0 template [40]. We note that complex folding mechanisms are commonly observed for 

designed proteins [41,42]. The unfolding of dF106 was fully reversible, but the stability of 

the intermediate state was dependent on the protein concentration (Fig. 5c, red and black). 

The intermediate state was significantly stabilized in the 5.3-μM samples compared to the 

0.9-μM samples, which suggests that the intermediate may tend to dimerize or oligomerize. 

To test whether the data indeed indicate an oligomerization, normalized fluorescence 

intensities were measured in 4.5 M GuHCl samples as a function of protein concentration. 

These data were fitted to a simple binding curve, which suggests that the intermediate state 

is a dimer or an oligomer (Fig. S5). The unfolding of dF414 revealed a highly stable 

intermediate state at the low protein concentration tested. Due to the low solubility of dF414, 

higher concentrations were not tested. The unfolding of dF414 was reversible in the second 

transition but not in the first (data not shown). This result is consistent with the observation 

that dF414 could not be refolded after purification from inclusion bodies (data not shown). 

In conclusion, the data do not suggest a simple three-state model for either of the two 

proteins, which consequently means that the fitted thermodynamic parameters are not easily 

interpreted.

The general difference in thermal and chemical unfolding characteristics between native and 

designed proteins observed here and elsewhere [1,2,4,10–12,14] suggests that cooperative 

protein folding is an optimized property in nature that is not easily recreated in 

computational protein design.

In previous computational protein design studies, a common problem has been that the 

designed proteins resembled molten globules lacking a uniquely defined tertiary structure 
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[43]. We therefore investigated the structure of dF106 by NMR spectroscopy. The 1H–NMR 

spectrum of dF106 (Fig. S6) has downfield-shifted amide protons (above 8.5 ppm), well-

dispersed peaks in the Hα region (around 5 ppm), and upfield-shifted methyl peaks (below 0 

ppm); all of these observations indicate that dF106 has a fold with a well-defined tertiary 

structure. Because of its low solubility, NMR spectroscopy was impractical for the structural 

analysis of dF414.

For dF106, we were able to obtain crystals that diffracted to 2.4 Å using purified protein that 

had been kept on ice for less than 2 weeks. The X-ray structure of dF106 was solved to an 

Rwork of 0.20 and Rfree of 0.28 (full statistics shown in Table S1) by molecular replacement 

using the structure of its template 1FB0 and another thioredoxin structure, 2PUK. To check 

if the final structure was affected by model bias, we calculated a composite simulated 

annealing omit map over all copies of the final structure. The excellent fit of the structure in 

the composite omit map demonstrates that the final structure is essentially free of model bias 

(Fig. 6a).

The X-ray structure of dF106 is in excellent agreement with the computational design (Fig. 

6b). The backbones of the seven, out of eight, molecules in the asymmetric unit are fully 

resolved, except for the His6 tag, and align to the design model with a Cα RMSD of 1.8–2.0 

Å. The structural difference between the X-ray structure and the design model primarily 

originates from a displacement of the N terminus and N-terminal helix (positions 1–16) (Fig. 

6b, right). This helix contains a surface-exposed hydrophobic patch consisting of four Leu 

side chains (positions 10, 11, 14, and 15). This patch constitutes the main packing contact of 

the crystal complex, implying that crystal contacts may contribute to the distortion seen from 

the design structure. Another noticeable difference is observed at the beginning of the long 

helix 2 (Fig. 6b, top left). Wild-type thioredoxin features a conserved kink in the long helix 

generated by Pro37, which is thought to be functionally important [44]. In the design, where 

function was not a design criteria, Pro37 is not present, and as a result, the encompassing 

helix lacks this kink. Excluding the 16 N-terminal Cα atoms and those distorted by Pro 37 

(residues 26–33) results in an RMSD of 0.7–0.9 Å to the template. Chain D has the lowest 

energy after geometry optimization of −260 REU, which is notably larger than the −275 

REU of the design.

The X-ray structure shows that most of the designed contacts are realized. In non-surface 

positions, 85% of χ1 dihedral angles are within 40° (Fig. 6c shows examples). An 

interesting exception is Val 2, which forms the contact to the hydrophobic core intended for 

Val4 due to the displacement of the N-terminal residues. Side-chain χ1 angles, which are not 

realized, are situated near the absent Pro 37 helix kink (Asp29 and Val35) or in the N-

terminal helix (Val4 and Leu12) or have little impact on the position of side-chain atoms 

(Leu96 and Arg97). The lack of designed contacts in the displaced N-terminal helix could be 

the origin of the slightly reduced retention time and the slow oligomerization of dF106 

observed experimentally (Fig. 5a).

Johansson et al. Page 9

J Mol Biol. Author manuscript; available in PMC 2017 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sequence post-analysis

We examined the success of dF106 and dF414 at the sequence level by comparing these two 

designs and the wild-type sequence of the template structure 1FB0 with the other 30 

sequences that had been expressed and found to be either soluble or insoluble (Fig. 7).

The backbone conformation of a position alone may, in some cases, have a high influence on 

the design outcome of that position. For example, position 89 in all templates populates a 

region of the Ramachandran plot that only allows Gly (ϕ = 95 ± 15°; ψ = 180 ± 30°), and 

thus, Gly89 is invariably reproduced in our designs. Val and Ile, known to have a high 

propensity for β-sheet structure, are reproduced in the central sheet at positions 20, 22, 52, 

75, and 88 in our designs. Compared to Gly89, we expect non-bonded and bonded energy 

terms to contribute here. Other conserved core positions include Val13, Phe24, Leu55, 

Thr74, Phe77, and Phe78, resulting in a highly conserved hydrophobic core among the 

designs selected for experimental characterization. However, since these positions are 

conserved in both the successful and non-successful designs (Fig. 7), no discriminative 

power can be assigned to this observation.

A buried hydrogen bond is formed between the side chains of Trp9 and Tyr67 in the native 

structure of 1FB0, and this is reproduced in the successful designs, dF106 and dF414, but 

rarely in the non-successful designs (Fig. 7). In the wild-type sequence of the other 

templates, one or both of these residues are Phe, which is also the case for the other tested 

designs (Figs. 2 and 7). Other positions also appear to correlate with solubility and/or 

stability, for example, Met21, Gly48, Glu82, and Lys84, but for less obvious reasons.

The wild-type Asp23 is highly conserved in native thioredoxins despite a 

thermodynamically unfavorable position in the hydrophobic interior of the protein. This has 

been shown experimentally by a significant pKa shift of the carboxyl acid to 7.5 [45]. Both 

dF106 and dF414, in contrast to most of other tested designs, have the isostructural Leu at 

position 23, which may contribute significantly to their success. Surprisingly, some designs 

reproduce the buried Asp, which we will discuss in the last section of the paper.

Reproduction of natively conserved positions

Since a significant fraction of the wild-type identities were reproduced, we were able to 

identify the template origin of each design from its sequence alone (Fig. 3). Thus, it is 

interesting to explore the correlation between naturally conserved positions and their 

template-dependent reproduction in the computational designs (Fig. 8 for 1FB0, and Figs. 

S7–S14 for all templates). Several positions in wild-type thioredoxins have previously been 

assigned as conserved for either a structural purpose (23 red positions in Fig. 8) or a 

functional purpose (14 green positions in Fig. 8) [44]. In all 960 designs, the reproduction of 

structural conserved positions is only slightly greater (41%) than the reproduction of 

functionally conserved positions (36%). The latter slight decrease in reproduction of 

functionally conserved positions is almost entirely accounted by the observation that the 

redox-active CysGlyProCys loop was rarely reproduced in the designs. On average, 39% of 

the wild-type amino acids were reproduced in the designs. Thus, naturally conserved amino 

acids are not reproduced more often than other residues in the computational designs. This is 

Johansson et al. Page 10

J Mol Biol. Author manuscript; available in PMC 2017 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



somewhat surprising since the energy function should recognize residues that are important 

for the fold but not those related to the function. In the following section, we will investigate 

the mechanism of residual reproduction in the computational design method.

The eight experimental template structures do not always contain the naturally conserved 

amino acids. In these cases, the reproduction in design follows the template rather than the 

natural consensus. For example, the wild-type sequence of 1FB0 does not have the naturally 

conserved Phe9, Leu21, Met34, Asn60, and Val88 residues, and in these cases, the 

computational design tends to reproduce the template identity rather than the naturally 

conserved identity (Fig. 8). The naturally conserved but thermodynamically unfavorable 

Asp23 is reproduced in 14% of designs but, interestingly, not in designs based on the 

successful template 1FB0. This reproduction of Asp23 is highly template dependent and is 

further explored in the following section.

Computational investigation of template dependency

To investigate the apparent high sensitivity toward minor conformational changes in the 

template, we conducted five additional in silico experiments based on the observation that 

two templates, dTr4xx and dT2xx, tend to reproduce the buried Asp23 (Figs. S12 and S9, 

respectively). This buried Asp is reproduced despite it having a thermodynamically 

unfavorable position evident from the significant pKa shift of the carboxylic acid to 7.5 [45]. 

All experimentally evaluated designs that were based on the two templates, dTr4xx and 

dT2xx, were found to be insoluble or unstable. In contrast, the two successful designs, 

dF106 and dF414, both have the isostructural Leu at position 23 (Fig. 7). We therefore 

conducted the following experiments to explore Leu as a better choice at position 23. In 

these experiments, we generated 100 new designs to enhance the statistics from the 20 

designs generated previously. We monitored the average positional energy of Asp and Leu 

under the approximation of rigid conformations (termed packer energy) and for a post-

design, geometry-optimized structure (termed relax energy). The latter is known to correlate 

better with stability [29].

In experiment A, we confirmed the reproduction of Asp23 by these two templates. In 

experiment B, position 23 was fixed to Leu to obtain energies for comparison. These data 

show that the original design settings mainly resulted in Asp at position 23 due to the use of 

rigid conformations, even though the relax energies indicate that the energy function 

recognized Leu as the better choice in the optimized geometry (Table 3, rows A and B). 

However, the energy of position 23 varies 1–2 REU between individual designs with the 

same identities, which makes the average energy difference insignificant, and consequently, 

we expect a population close to 1:1 of Asp and Leu with the knowledge of the relaxed 

energies. In experiment C, we used the highest number of rotamers available in Rosetta (12 

additional conformations per rotamer) for position 23. This resulted in a minor increase in 

the preference for Leu in 2TRX (from 2% to 8%), but no increase with 1T00. For both 

templates, Asp was still preferred. In experiment D, we used the more recent Talaris2013 

energy function [46], most notably featuring a Coulomb type of electrostatic energy term. 

This destabilized the Asp significantly, resulting in only 15% occurrence for 1T00 and 0% 

for 2TRX. However, the Asp was replaced to a large extent by Asn or Ala and, as expected, 
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not by a larger hydrophobic side chain like Leu. In order to compare energies, we optimized 

these designs with the score12 energy function used in all other aspects of this work. Finally, 

in experiment E, we made a new template by mutating position 23 to Leu, followed by 

geometry optimization and design using the original settings of experiment A. Interestingly, 

this resulted almost exclusively in Leu implying that the sequence used during geometry 

optimization strongly biases the outcome, as it is also seen in the initial repacking 

assessment of the templates (Table 2).

These experiments show that subtle conformational changes to the backbone template may 

be far more significant for the design outcome than the size of the rotamer library or choice 

of energy function in Rosetta. As a result of the initial geometry optimization used in this 

study, the unfavorable buried Asp23 was reproduced with two specific templates. Probably 

due to the inclusion of a Coulomb term, the use of the Talaris2013 energy function largely 

avoided the reproduction of the buried carboxylic acid, but only when the template was 

optimized with Leu at position 23 did the design unambiguously result in a hydrophobic side 

chain larger than Ala. Inspection of individual energy components showed that non-bonded 

energy components dominate the results in Table 3, which consistently indicates that the 

approximation of rigid conformations was the primary source of the reproduction of the 

unfavorable Asp23.

The approximation of rigid conformations is commonly considered to be one of the main 

limitations to accuracy and iterative optimization of sequence, and backbone conformation 

has been reported as critical to the success of computational design [10]. To further analyze 

these suppositions, we applied the RosettaRelax and RosettaDesign applications iteratively 

10 times for the two templates dTr4xx and dT2xx. After 10 cycles, the energy and sequence 

changed very little and the iterative design protocol was deemed to have converged. Again, 

both experiments resulted in the reproduction of Asp23. For one run, the first iteration 

suggested Met at position 23, but even then, in subsequent rounds, this reverted back to Asp.

The case of Asp23 highlights the risk of using thorough geometry optimization in the 

preparation of a design template. A conservative geometry optimization protocol seeks to 

reduce atomic displacements [47]; however, this assumes that the reproduction of native 

amino acids is always desirable. The large pKa shift of Asp23 in the native structure of 

thioredoxin and the observation that both of our successful designs have a Leu at position 23 

strongly indicate that the reproduction of native amino acids is not necessarily a good target 

for a designed sequence. The results in Table 3 further indicate that the reproduction of 

Asp23 is an artifact caused by the approximation of rigid conformations and is not 

representing any physical aspects of the model. Specifically, the relaxed energies suggest 

that the energy function recognizes Leu as the better choice, but these energies are not 

available in the sequence optimization step, which is based on rigid conformations. Only by 

adapting the two templates to Leu in experiment E can we enable the sequence optimization 

method to recognize the more stable Leu. The mechanism of artificial reproduction is thus 

an over-consistent match between the optimized backbone template and the rotamer library 

rather than the inaccuracies in the energy function.
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Can we, based on our observations, retrospectively predict which template(s) would be most 

promising? The answer is somewhat disappointing. None of the independent computational 

metrics applied clearly suggested 1FB0 as a superior template. The relative energy of 

designs based on different templates is not informative, since the 60 overall best-scoring 

designs are all based on the template 3GNJ, which did not yield any folded protein. In 

addition, the very practical solubility and expression screen (Fig. 4) also had little predictive 

power in its own right, and 1FB0 was not the best-scoring template by these criteria. We 

would like to note that the consistency with which E. coli distinguishes different templates, 

in spite of the fact that designs within the same template are only in the order of 50% 

identical, is surprising and obscure.

At this point, we can make three recommendations: (A) Multiple templates should be tested. 

(B) The preference for wild-type identities discussed above suggests that templates should 

be selected as diverse as possible in wild-type sequence. (C) In case of sparse resources, a 

template may be discarded if it scores significantly worse in more assessments, as is the case 

for 1DBY (Table 2).

Concluding remarks

We have shown that the success rate in redesigning the thioredoxin fold using Rosetta is 

highly dependent on minor conformational changes in the backbone template (Cα RMSD = 

<2 Å). We tested eight experimental structures with high structural similarity and low 

sequence similarity and found that one template resulted in two stable monomeric proteins. 

We were able to solve the structure of one of these designs using X-ray crystallography. Five 

of the eight template structures only resulted in poorly soluble protein in low yield. Three of 

these poor templates could be identified by objective computational criteria to some extent, 

but we were not able to identify the successful template 1FB0 without experimental 

assessment. Thus, we conclude that in computational design experiments, it is advantageous 

to use multiple templates and include all in the experimental evaluation.

We found that the reproduction of template wild-type amino acids is artificially enhanced 

when a template structure is geometry-optimized using RosettaRelax prior to design, and we 

link this to the use of rigid conformations in the sequence optimization. As in previous 

studies, our findings indicate that the use of rigid conformations is a major limitation to the 

accuracy of computational protein design.

Materials and Methods

Computational methods

The PDB was searched for homologs of the E. coli thioredoxin sequence, resulting in a list 

of 283 PDB entities. The identification of a suitable set of templates from this list was 

automated in a computer program based on the BLAST standalone tools version 2.2.23 [48] 

and the BioPython software library version 1.58 [49]. This was the largest set of structures 

we were able to obtain that met our conditions (high structural similarity, low sequence 

similarity, and gap-free alignment). For X-ray structures with more than one chain in the 

asymmetric unit, we always used the first chain, and for NMR structures, we always used 

Johansson et al. Page 13

J Mol Biol. Author manuscript; available in PMC 2017 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the first model. The quality of the X-ray structures was assessed by comparing Cα position 

deviations between the structures deposited in the PDB and those deposited in the 

PDB_REDO database [50]. The structures deviated 0.02–0.13 Å in Cα RMSD. The structure 

2TRX did not have deposited structure factors and could not be assessed for quality. The two 

NMR structures, 2L4Q and 1DBY, were assessed by ResProx [51] to have an equivalent 

resolution of 1.1 Å and 1.7 Å, respectively.

We used the RosettaDesign (fixbb) and RosettaRelax (fast_relax) applications from Rosetta 

version 3.1 for sequence and structure optimization. Unless stated otherwise, all work is 

based on the score12 energy function and Dunbrack 2002 rotamer library [52]. For protein 

design, we used the protocol described by Dantas et al. [11] except that the initial reduction 

of the search space was omitted so that the entire sequence space was searched with extra 

rotamers. We chose this protocol because it is the best validated for redesign of a native fold. 

Designs based on 3GNJ and 3HZ4 retained the active disulfide, resulting in an additional 

stability of ~8 REU, which was subtracted from all reported energies. However, this did not 

change rankings or conclusions. In the template repacking test, the native sequence was 

fixed and the side-chain conformations were considered reproduced if the first dihedral 

angle (χ1) of flexible and buried side chains were within 40° of the experimentally 

determined conformation. For all templates, the following non-surface positions were 

considered in the repacking test: 4, 9, 12, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

32, 35, 38, 39, 42, 43, 46, 50, 51, 52, 53, 54, 55, 56, 57, 60, 63, 64, 67, 69, 72, 73, 74, 75, 

76, 77, 78, 87, 91, 96, 97, 99, 100, and 103.

The designs reported in Table 3 that are based on the Talaris2013 energy function were 

generated using Rosetta 3.5 (2015.38.58158) and the Dunbrack 2010 rotamer library [53]. 

Geometry optimization of these designs was performed using the program and settings used 

for all other reported results to ensure comparable energies.

The phylogenetic tree (Fig. 3) was generated using ClustalX version 2.1 [54] with the 

bootstrapped neighbor-joining algorithm, and the figure was made using the unroot 

application of NJplot [55]. Protein structures were visualized (Figs. 1 and 6) using the open-

source version of PyMol [56], and graphs (Figs. 4 and 8) were made in R [57]. Sequences 

were visualized (Figs. 2 and 7) using WebLogo version 2.8.2 [58].

The pI was predicted for dF106 by geometry optimization using RosettaRelax, followed by 

an electrostatics evaluation using PropKa [59]. In contrast to many other pI prediction 

methods, this approach accounts for pKa shifts due to tertiary interactions in the folded 

protein.

Gene synthesis and protein expression

Codon-optimized genes were custom synthesized and inserted into expression vectors 

(pD441-CH) carrying an IPTG-inducible T5 promoter (DNA2.0). Expression was carried 

out in E. coli MC1061 at 37 °C. Tests of protein production in E. coli BL21(DE3) at 15 °C 

were also conducted, but yields were generally poorer than in MC1061 at 37 °C, and none of 

the designs stood out as particularly favored by this strain and temperature. Cultures 

containing 5 mL or 50 mL of a phosphate-buffered salt medium with the addition of 
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tryptone and yeast extract [60] supplemented with kanamycin (30 μg/mL) were grown to 

mid-log phase and induced with 1 mM IPTG for 3.5 h at 37 °C or overnight at 15 °C. For 

large-scale expression, 1-l cultures were grown to late log phase and induced with 1 mM 

IPTG.

Western blot

After expression, cell cultures were harvested by centrifugation, resuspended in 1/25 of the 

culture volume (Vstart) in lysis buffer [25 mM Tris–HCl (pH 8), 300 mM NaCl, 1 mM 

EDTA, and 1 mM PMSF], and lysed by sonication while kept on ice. The lysates were 

centrifuged at 14,100g for 20 min at 4 °C. The top of the supernatant was carefully pipetted 

to a new tube to avoid pellet debris, and any residual supernatant remaining was discarded. 

The pellet was resuspended in Vstart of lysis buffer. The supernatant and pellet samples were 

mixed 1:1 with sample buffer containing OPRTase-His6 [61], which we used as an internal 

standard, in three 10-fold dilutions. Equal volume samples were subjected to SDS-PAGE on 

15% gels and subsequently blotted to nitrocellulose membranes. The blots were developed 

with a primary mouse anti-His5 antibody (Qiagen) and a secondary rabbit anti-mouse 

antibody (Dako) linked to an alkaline phosphatase and developed with NBT/BCIP (Sigma).

Protein purification

After the harvest of large-scale cultures, the cells were kept on ice and lysed using a French 

press (American Instrument). The supernatant recovered from centrifugation of the lysate 

was subjected to immobilized metal affinity chromatography on NiNTA agarose (Qiagen) in 

Tris-containing buffers according to the recommendations of the supplier. SEC was 

performed using a Superdex-75 10/300 column (GE Healthcare) fitted to an Agilent 1100 

HPLC system. Protein-containing fractions from the NiNTA column were pooled, and 1-mL 

aliquots were applied to the column with a flow rate of 0.5 mL/min. The void volume was 

~8 mL. Buffers for size exclusion were 50 mM NaOAc (pH 4.8; dF106) or 50 mM Tris–HCl 

(pH 7.6; dF415), both with 150 mM NaCl. The same procedure was used for preparative and 

analytical SEC.

CD spectroscopy

CD data were collected on a Jasco800 spectrometer. Far-UV CD wavelength scans (260–195 

nm) at 25 °C were collected in a 1-mm path-length cuvette, and near-UV CD wavelength 

scans (320–250 nm) at 25 °C were collected in a 0.5-mm path-length cuvette, with the 

temperature controlled by a Peltier device. For the far-UV CD, samples contained ~0.1 

mg/mL protein, and for the near-UV CD, the dF106 and dF414 samples contained ~0.1 

mg/mL and ~0.37 mg/mL, respectively. The protein concentration was determined using a 

Specord S10 spectrophotometer (Zeiss). Protein spectra were buffer subtracted, and the CD 

signal was converted to mean residue ellipticity or molar ellipticity. In the temperature scans, 

the CD signal was recorded at 220 nm with a scan rate of 30 (dF414) or 120 °C/h (dF106). 

Buffers were 25 mM sodium phosphate at pH 7.2 and 4.8, respectively.
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Fluorescence

Chemically induced unfolding was followed by tryptophan fluorescence on a LS55 

spectrofluorometer (Perkin Elmer). Samples with varying concentrations of GuHCl in 50 

mM NaOAc (pH 4.8; dF106) and 50 mM phosphate (pH 7; dF414) were incubated for 24 h 

at 25 °C. In the fluorimeter, the samples were excited at 280 nm, and the signal at 340 nm 

(dF106) or 348 nm (dF414) was integrated for 10 s. The excitation slit was kept at 15 nm, 

and the emission slit was adjusted on the 0.5 M GuHCl sample and fixed to obtain the 

highest possible signal in the experiment. The obtained data sets were globally fit to a simple 

three-state model [62]. The baselines were extracted and the data were converted to fraction 

folded with the transformation,

where Ymax and Ymin are the baseline values of the native and unfolded state (Fig. S4).

To investigate dimer/multimer formation of dF106, we varied the protein concentration in 

samples containing 4.5 M and 6.0 M GuHCl, and the emission slit was adjusted to obtain the 

best signal. The signals in the 4.5 M samples were normalized to the 6.0 M samples and 

fitted to a simple binding model

where Bmax is the maximum binding, [P]0 is the total concentration of protein, and Kd is the 

association constant. All fitting was carried out in MatLab (MathWorks).

NMR spectroscopy

The sample for NMR contained 2 mg/mL dF106 in 100 mM sodium sulfate, 10% D2O, and 

DSS at a total volume of 600 μL. The pH was adjusted to pH 4.8 with acetic acid. A 1D 1H–

NMR spectrum was recorded on a Varian INOVA 750 Mhz (1H) NMR spectrometer with a 

5-mm room temperature probe at 5 and 25 °C. The spectrum (Fig. S6) represents 1000 

transients of 8 K data points. The chemical shifts were referenced to internal DSS at 0.00 

ppm. Data were processed in NMRPipe.

Crystallographic analysis

Single crystals of dF106 were obtained from hanging drops consisting of 2 μL protein 

solution (3 mg/mL protein in 25 mM sodium acetate pH 4.8) and 2 μL crystallization 

solution [10% (wt/vol) polyethylene glycol 4000, 100 mM imidazole (pH 7.0), 100–150 mM 

lithium citrate, 5 mM CuCl2, and 1 mM (NH4)2SO4]. Crystals were grown at 20 °C. To 

obtain the isolated, single crystals, we streak seeded the drop with crushed crystals grown 

from identical conditions in an earlier trial. X-ray diffraction data were collected at the 

European Synchrotron and Radiation Facility beamline ID30A-3 using a micro-focus 

beamline with 0.1° slicing. In total, 3600 frames were recorded. The images were analyzed 
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using iMosflm [63] and XDS [64]. The space group was determined to be P212121 with unit 

cell parameters a = 59 Å, b = 69 Å, and c = 230 Å, which suggests an asymmetric unit 

containing eight molecules.

To solve the crystal structure, we used the MRage automated molecular replacement 

pipeline in Phenix [65]. The input search models into MRage were 1FB0 and 2PUK. After 

molecular replacement, the top solution used for initial model building was performed with 

Phenix Phase and Build, followed by iterative model building and refinement using Coot 

[66] and Phenix Refine. To remove model bias, the first round of automated refinement after 

initial building included a simulated annealing refinement step. Non-crystallographic 

symmetries were not used in the refinement. Seven of the eight monomers in the asymmetric 

unit are essentially identical, with Cα RMSDs of 0.2–0.8 Å. By comparison of chain 

conformations and B-factors, the loop between position 25 and 33 is shown to be flexible. 

Disregarding this loop results in an RMSD of 0.2–0.4 Å. The only monomer to display any 

significant differences was partially unfolded at the C terminus, perhaps due to the 

uncleaved His6 tag used for purification. With the lowest average B-factor of 80.1 Å [2], 

chain D was chosen for visualization and comparison. Crystallographic data and refinement 

statistics are given in Table S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structural overlay of the eight experimentally determined template structures of thioredoxin 

showing the structural similarity.
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Fig. 2. 
Wild-type sequences of the eight thioredoxin structures used as templates for computational 

design. The height of each letter is scaled according to frequency, and the colors represent 

chemical properties.
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Fig. 3. 
Sequence alignment of the 960 designed and 8 wild-type sequences. The length of the lines 

gives the fraction of pairwise sequence identity difference (scale bar at lower left). The 2D 

projection here focuses on close relationships. The nomenclature is given in the text. All the 

designs precisely cluster according to the template, and one cluster represents most of the 

native thioredoxin sequences.
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Fig. 4. 
Expression and solubility evaluation of 48 designed sequences. Each panel shows the 

evaluations of one of the eight experimental templates. Protein levels in the pellet (gray bars) 

and supernatant (black bars) fractions were determined from anti-His5 Western blots by 

comparison to bands of control protein in known concentrations. Two pmol corresponds to 

approximately 0.2 mg/L of E. coli culture with an OD600 of 5. A missing bar indicates no 

detectable protein. Note the logarithmic scale, where <0.02 pmol and >200 pmol indicate the 

lower and upper detection limits, respectively.
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Fig. 5. 
Structural and biophysical characterization of the two stable and monomeric designs, dF106 

and dF414. (a) SEC of dF106 kept on ice (red) or left at room temperature for 3 days (black) 

and of freshly prepared dF414 (blue). (b) Far UV CD spectra of 11.1 μM dF106 in 25 mM 

sodium sulfate (pH 4.8) and of 7.6 μM dF414 in 25 mM sodium phosphate (pH 7). The inset 

shows the high-tension voltage, indicating reasonable accuracy over the entire spectrum. (c) 

Chemical denaturation of dF106 and dF414, with the data normalized using a fit to a three-

state model (raw data in Fig. S4). The fits are shown merely as a guide for the eye, as the 

simple model does not explain the data. (d) Representative spectra for the unfolding of 

dF106 in GuHCl showing the large shift in λmax.
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Fig. 6. 
Comparing the X-ray structure of dF106 to the template and the design model. (a) 

Composite simulated annealing omit map (2mFo-DFc) contoured at 2 σ. The high 

consistency between the model and the omit map demonstrates little to no model bias in the 

final structure. (b) Overlay of the template 1FB0 (green), design model (red), and design X-

ray structure (blue). Pro 37 is show shown with sticks. (c) Examples of the reproduction of 

core side-chain conformations.

Johansson et al. Page 27

J Mol Biol. Author manuscript; available in PMC 2017 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Sequences of the experimentally characterized designs compared to the wild-type 1FB0. A 

sequence logo constructed from the 18 designs that result in any soluble albeit unstable 

protein (black bars in Fig. 4, excluding dF106 and dF104) is shown below the template 

1FBO and the two stable and monomeric designs, dF106 and dF414. A sequence logo 

constructed from the 12 sequences that expressed but were insoluble, (gray bar and no black 

bar in Fig. 4), is shown at the bottom. The letters (amino acids) are colored according to 

chemical properties and heights of the soluble and insoluble sequences that are scaled 

according to frequency.
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Fig. 8. 
Reproduction of 1FB0 wild-type identities in computational designs based on 1FB0 and the 

correlation with evolutionary conservation. For each position, the reproduction frequency of 

the wild-type identity in designs based on the experimental template (black bars) and five 

geometry-optimized templates (white bars) is shown. The wild-type amino acid (letter below 

bars) is colored if naturally conserved with respect to structure (red) or function (green) [44].
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Table 1

Thioredoxin structures used as design templates

PDB ID 2I4A 1T00 2TRX 3GNJ 1FB0 3HZ4 2L4Q 1DBY

Residues 4–107 5–108 4–107 3–106 9–112 6–109 9–112 3–106

Resolution (Å) 1.00 1.51 1.68 1.99 2.26 2.30 NMR NMR

Organism Acetobacter aceti Streptomyces 
coelicolor 
A3 (2)

Escherichia coli Desulfitobacterium hafniense DCB-2 Spinacia oleracea Methanosarcina mazei Mycobacterium tuberculosis Chlamydomonas reinhardtii
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Table 2

Template designability evaluation by geometry optimization and core side-chain repacking

Template 2I4A 1T00 2TRX 3GNJ 1FB0 3HZ4 2L4Q 1DBY

Resolution (Å) 1.00 1.51 1.68 1.99 2.26 2.30 NMR NMR

Average energy (REU) −226 −230 −228 −243 −236 −230 −217 −198

Average distortion (Å) 0.7 0.7 0.5 0.6 0.7 0.9 0.9 1.0

X1 reproduction (%) 88 90 98 98 100 98 76 95

X1 reproduction
a
 (%) 100 100 100 100 100 100 99 100

a
Geometry-optimized templates.
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Table 3

Average energy of position 23 in Rosetta energy units (REU)

Asp Leu

1TO0 N Packer energy Relax energy N Packer energy Relax energy

A 85 −1.6 −2.0 0 - -

B 0 - - 100 −1.4 −2.4

C 95 −1.7 −2.0 0 - -

D 15 - −2.4 0 - -

E 0 - - 97 −2.4 −2.8

2TRX Asp Leu

A 92 −2.1 −2.3 2 −2.3 −2.9

B 0 - - 100 −2.2 −2.6

C 89 −2.1 −2.3 8 −2.0 −2.6

D 0 - - 9 - −2.9

E 0 - - 100 −2.4 −2.7

A: Original settings. B: Original settings with position 23 fixed as Leu. C: Maximal rotamer library at position 23. D: Talaris2013 energy function 
(relax using score12 energy function for comparison). E: D23L template with original settings.
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