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SUMMARY

Many cellular functions require the assembly of multiprotein-DNA complexes. A growing area of 

structural biology aims to characterize these dynamic structures by combining atomic-resolution 

crystal structures with lower-resolution data from techniques that provide distributions of species, 

such as small-angle X-ray scattering, electron microscopy, and atomic force microscopy (AFM). A 

significant limitation in these combinatorial methods is localization of the DNA within the 

multiprotein complex. Here, we combine AFM with an electrostatic force microscopy (EFM) 

method to develop an exquisitely sensitive dual-resonance-frequency-enhanced EFM (DREEM) 

capable of resolving DNA within protein-DNA complexes. Imaging of nucleosomes and DNA 

mismatch repair complexes demonstrates that DREEM can reveal both the path of the DNA 

wrapping around histones and the path of DNA as it passes through both single proteins and 

multiprotein complexes. Finally, DREEM imaging requires only minor modifications of many 

existing commercial AFMs, making the technique readily available.
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INTRODUCTION

DNA transactions in the cell, such as replication, repair, and transcription, require the 

assembly of multiple proteins on DNA. Determining the structures of these complexes is 

essential to understanding their function; however, several factors make characterization of 

multiprotein-DNA complexes particularly difficult. First, many of the individual proteins are 

large and contain structured domains connected to one another by intrinsically disordered 

regions, making them conformationally diverse. Second, the assembly of the different 

proteins is not necessarily an ordered process, which results in a heterogeneous population 

of complexes with different conformations and containing different protein stoichiometries 

(Luijsterburg et al., 2010). Finally, the assembly process may occur over long DNA lengths 

and/or bring distal DNA regions together. An emerging area of structural biology, which is 

beginning to address this problem, is the combination of high-resolution data from 

crystallography and NMR with lower-resolution data from techniques such as small-angle 

X-ray scattering, which provides estimates of the distribution of conformational states 

(Hennig and Sattler, 2014; Hura et al., 2013a, 2013b; Williams et al., 2014), and electron 

microscopy (EM) and atomic force microscopy (AFM), which provide images of individual 

complexes (Bustamante et al., 1994; Erie et al., 1994; Griffith, 2013; Griffith and 

Christiansen, 1978; Janićijević et al., 2003; Lohr et al., 2007; Lyubchenko et al., 2001; 

Maletta et al., 2014; Moreno-Herrero et al., 2005; Sanchez et al., 2013; Trinh et al., 2012; 

Villarreal and Stewart, 2014; Wanner and Schroeder-Reiter, 2008; Yang et al., 2003; Yeh et 

al., 2012). Although these hybrid methods are promising, a significant limitation to the 

existing lower-resolution techniques is their limited capability for resolving the location of 

the nucleic acids within protein-DNA complexes. Phosphorus mapping through electron 

spectroscopic imaging (ESI) has been used to characterize the nucleic acid distribution in 

transcriptionally active chromatin (Bazett-Jones et al., 1996). In addition, recent advances in 

the sorting of particles in cryoEM datasets are beginning to allow visualization of multiple 

conformations (Orlova and Saibil, 2010), and the trajectories of DNA have been estimated 
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by tagging the end of DNA with streptavidin (Miyata et al., 2005; Villarreal and Stewart, 

2014). Finally, recent EM studies revealed the location of the DNA in human RNA 

polymerase complexes (He et al., 2013) and the RNA in the ribosome (e.g., Brown et al., 

2014; Fernández et al., 2013). Currently, no microscopy method allows visualization of 

DNA within flexible and/or large heterogeneous protein-DNA complexes. Because scanning 

force microscopy methods can provide images of individual complexes and because both 

proteins and DNA are significantly charged and interactions between proteins and DNA 

result in charge neutralization, we reasoned that it may be possible to visualize the path of 

DNA within individual protein-DNA complexes by high-resolution imaging of their 

electrostatic properties.

Electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) have 

been used to image the electrostatic surface potential of a large variety of materials with high 

spatial resolution and sensitivity (Barth et al., 2011; Melitz et al., 2011). There are several 

different modes of EFM and KPFM. In many applications, a modulated bias voltage (VDC + 

VACsin(ωt)) is applied between the tip and sample. This bias generates an attractive 

electrostatic force between the tip and the sample, Fel = – (1/2)(∂C/∂z)ΔV2, where ΔV = 

(VDC – ΔϕTS) + VAC sin(ωt), which is expressed as the sum of three spectral components 

(Glatzel, 2003; Melitz et al., 2011; Nonnenmacher et al., 1991):

(Equation 1)

(Equation 2)

(Equation 3)

where ΔϕTS and ∂C/∂z are the contact potential difference and capacitance gradient, 

respectively, between the tip and the sample, and z is normal to the surface. This force is 

used to induce a vibration in the cantilever at the frequency of the AC bias (ω). In KPFM, a 

feedback loop is used to adjust VDC such that it compensates for ΔϕTS, thereby nullifying Fω 
and generating a potential map of the surface; whereas, in EFM, there is no feedback 

voltage, and although EFM does not measure surface potential, images of the electrostatic 

properties of the surface are produced by monitoring the amplitude and/or phase of the 

induced vibration. Dual-frequency single-pass techniques, where the topography and the 

surface electrical potential are monitored simultaneously have the highest sensitivity (Barth 

et al., 2011; Glatzel, 2003; Leung et al., 2010; Thompson et al., 2013). In fact, dual-

frequency KPFM has been used to obtain images of DNA (Leung et al., 2010) and 
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transcription complexes (Mikamo-Satoh et al., 2009); however, no details about the DNA in 

the transcription complexes were revealed.

Considering the weak electrostatic signals generated by DNA and proteins, we developed a 

sensitive high-resolution dual-resonance-frequency-enhanced EFM (DREEM) to resolve the 

DNA within protein-DNA complexes deposited on mica (Figure 1). This dual frequency 

technique enables simultaneous collection of AFM topographic and DREEM images. 

DREEM images reveal DNA wrapping around individual nucleosomes and the path of DNA 

passing through DNA mismatch repair (MMR) proteins. These data yield unprecedented 

details about DNA conformations within individual protein-DNA complexes.

DESIGN

We adapted and extended the dual-frequency single-pass techniques that take advantage of 

the resonance properties of the cantilever (Glatzel, 2003; Kikukawa et al., 1996; Leung et 

al., 2010; Stark et al., 2007; Thompson et al., 2013; Ziegler et al., 2007). To simultaneously 

obtain topographic and DREEM images, we mechanically vibrate the cantilever near the 

fundamental resonance (ω1), as is done in standard repulsive intermittent contact mode 

topographic imaging, while applying a static and a modulated bias voltage (VDC and VAC, 

respectively) to the tip at the first overtone (ω2) to monitor the surface electrical properties 

(Figure 1) (Stark et al., 2007). Instead of using the DC bias to nullify Fω as is done in 

KPFM, we use an AC bias at ω2 to generate a vibration at ω2 and apply the DC bias after 

engaging in repulsive mode to optimize the amplitude at ω2 for electrostatic imaging. We 

then monitor the vibration amplitude (Aω2) and phase (φω2) as a function of sample 

position. Because there is no feedback at the first overtone, the DREEM amplitude and 

phase signals depend on both the strength of the electrostatic force and force gradient, 

including the static force gradient ( ) (Supplemental Information) (Cleveland et al., 1998; 

Rodríguez and García, 2004; Tamayo, 2005; Thompson et al., 2013). In addition, other 

forces may contribute to the signal at ω2 if they are not canceled by the feedback at the 

fundamental frequency (Cleveland et al., 1998; Martínez and García, 2006; Martínez et al., 

2008; Rodríguez and García, 2004; Tamayo, 2005; Thompson et al., 2013). Generally, the 

phase image produces higher contrast due to the nonlinear dependence of the phase on the 

force gradient and energy dissipation (φω2 depends on the arcsine of the force gradient and 

the energy dissipation) (Cleveland et al., 1998; Rodríguez and García, 2004; Tamayo, 2005). 

For example, studies using dual-frequency AFM (with mechanically driven vibration at both 

frequencies) to image antibodies found that the signal to noise ratio for the phase signal is 

~50 times higher than that of the amplitude signal at ω2 (Martínez et al., 2008). Because the 

force gradient depends on both the capacitance and the electrostatic potential of the sample, 

changes in either of these properties will contribute to the observed signals. To maximize 

resolution in both the AFM topographic and DREEM images, we use highly doped sharp 

silicon cantilevers and operate in repulsive intermittent contact mode. Operating in repulsive 

mode keeps the tip at a constant minimal distance from the sample, which in turn maximizes 

the sensitivity of detection of the electrostatic force gradient. Although highly doped silicon 

cantilevers are the only available cantilevers that are sufficiently sharp to provide high-

resolution images, the variability of the oxidation layers on the silicon cantilevers limits the 
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possibilities for quantitative comparison of DREEM signals collected using different 

cantilevers (see Limitations).

Using the first overtone for electrostatic imaging and the fundamental frequency for 

topographic imaging has several advantages. First, it is preferable to conduct topographic 

imaging of soft samples with a minimal force to avoid damage, and the effective force 

constant at ω1 (~80 kHz) is approximately 40 times less than that at ω2 (~500 kHz) [k2 = 

k1(ω2/ω1)2] (Kokavecz and Mechler, 2008). Second, ω2 is more sensitive to changes in 

force gradient than ω1 because the minimal detectable force gradient is inversely 

proportional to the frequency and the Q-factor of the resonance peak, which is higher at ω2 

(Q(ω2) ~500) than at ω1 (Q(ω1) ~170) (Hoummady and Farnault, 1998). Third, the 

contribution of the electrostatic interaction between the cantilever and the sample to the 

electrostatic force is minimized at ω2, thereby enhancing spatial resolution in the DREEM 

image (Ding et al., 2009). Fourth, higher eigenmodes provide enhanced phase contrast 

compared to the fundamental mode of tip oscillation for both AFM and EFM imaging 

(Martínez et al., 2008; Stark et al., 1999; Thompson et al., 2013).

To determine the optimum voltage for obtaining the highest-resolution DREEM amplitude 

and phase images, we hold the AC bias constant (usually VAC = 10–20 V) and vary the DC 

bias between +2.5 V and −2.5 V. The optimum DC bias depends on the tip because the tips 

can have different extents of oxidation on their surfaces, which affects ΔϕTS (Rezek, 2005). 

Operating in repulsive mode using a cantilever with force constant of ~2.8 N/m, the 

amplitude of vibration at ω2 (Aω2) is ~1 nm, which is 30–50 times smaller than the 

mechanical vibration amplitude (Aω1) at the fundamental frequency. This Aω2 is sufficiently 

large to produce high-quality DREEM images and yet small enough compared to Aω1 that 

no crosstalk from the DREEM to topographic signals is observed (see below). Aω2 depends 

not only on the force at ω2, but also on the force gradient, ∂F/∂z (i.e., F′), because F′ 
changes the effective spring constant of the cantilever and shifts its resonance frequency, 

which in turn changes Aω2 (Albrecht et al., 1991). Upon engaging in repulsive mode, the 

force gradient due to repulsive atomic interactions ( ) causes the resonance peak to shift to 

a higher frequency, significantly reducing Aω2. In our experiments, Aω2 decreased by 

approximately a factor of two upon repulsive engage. During scanning,  and Fa are kept 

constant via feedback on the topographic signal at ω1, and therefore, changes in Aω2 [ΔAω2 
(x, y)] depend primarily on the electrostatic force and force gradient. For small changes in 

electrostatic potential and/or capacitance, the frequency shift due to changes in force 

gradient will dominate ΔAω2 (x, y), with the electrostatic force making only a small 

contribution (Supplemental Information) (Martin et al., 1987). Notably, monitoring F′ 
instead of F significantly increases spatial resolution and sensitivity, because F′ has a 

shorter distance dependence compared to F (Colchero et al., 2001; Giessibl, 1995; Lei et al., 

2004; Martin et al., 1987).

RESULTS AND DISCUSSION

We verified the capabilities of DREEM for detecting surface electrical potential by imaging 

a BaTiO3 thin film, which can maintain a stable polarization state after being polarized by 
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external electrical field (Choi et al., 2004; Gruverman et al., 2009; Trithaveesak et al., 2005). 

We generated a pattern of very weak negatively and positively charged areas (~2 

electrons/nm2) on a BaTiO3 film (Figure S1A) (Bonnell and Kalinin, 2001) and then imaged 

the sample with AFM and DREEM with different DC and AC biases (e.g., Figure S1). The 

topographic image reveals only a rough surface with a large contaminant particle, with no 

evidence of the charge pattern. In contrast, both the DREEM-phase and amplitude signals 

clearly show the charge pattern, which corresponds accurately to the differently charged 

areas (Figure S1B), but show no evidence of the contaminant particle seen in the 

topographic image. These results demonstrate the capability of DREEM for detecting weak 

surface charges (<2 electrons/nm2), with no significant crosstalk between the topographic 

and DREEM signals. Furthermore, the observation that the contaminant particle does not 

produce any signal in either the DREEM-phase or amplitude images suggests that the 

dominant force acting at ω2 is the electrostatic force.

Visualizing the Path of DNA within Protein-DNA Complexes

To demonstrate the power of DREEM for imaging protein-DNA complexes, we imaged 

nucleosomes and DNA MMR proteins bound to DNA, as well as free proteins. In the crystal 

structure of a nucleosomal core particle, 147 base pairs of DNA wrap around the histone 

octamer 1.67 times (Luger et al., 1997, 2012), whereas in MMR complexes, the DNA passes 

through DNA mismatch recognition protein MutS (Lamers et al., 2000; Obmolova et al., 

2000; Warren et al., 2007), and multiple MutS and MutL proteins can assemble onto DNA 

containing a mismatch (Elez et al., 2012; Grilley et al., 1989; Hombauer et al., 2011; Kunkel 

and Erie, 2005; Schofield et al., 2001). The DREEM images of free histones, free MMR 

proteins, and DNA show a decrease in the phase and an increase in amplitude, relative to the 

mica surface, with proteins producing greater contrast than DNA (Figures 2, S2, and S3A), 

as seen in previous EFM studies (Leung et al., 2010; Mikamo-Satoh et al., 2009). The 

features seen in the DREEM images of free protein mimic those seen in the topographic 

images (Figures S2A and S3A).

Figure 2 shows AFM topographic and DREEM images of nucleosomes. In the topographic 

images, the nucleosomes appear as smooth peaks protruding above the DNA, consistent with 

previous work (Bustamante et al., 1997; Lohr et al., 2007; Lyubchenko, 2014; Swygert et al., 

2014; Wang et al., 2002; Yang et al., 1994; Zlatanova and Leuba, 2003; Zlatanova et al., 

1994). In contrast, in the DREEM images, the nucleosomes show regions of decreased 

intensity within the nucleosomal core particle, and these features are reproducible in 

multiple scans, scans at different angles, and in trace and retrace images (Figure S2B). 

Furthermore, multiple nucleosomes in individual DREEM images display DNA paths at 

different orientations (Figure S2). The decreased intensities indicate regions of weaker 

electrostatic interactions between the tip and sample, which likely results from neutralization 

of charge and possibly changes in capacitance associated with the interaction between the 

protein and DNA. Consistent with this suggestion, using these decreased intensities to trace 

the path of DNA on the histone yields a model in which the DNA wraps around the histone 

core (compare the models and images in Figure 2) (Luger et al., 1997; 2012). In the crystal 

structure, the DNA is wrapped around the histone 1.67 times (Luger et al., 1997; 2012), but 

nucleosomes exist in a dynamic equilibrium of states that have different extents of DNA 
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wrapping (Luger et al., 2012). Consequently, one or two strands of DNA may be revealed in 

the DREEM images, depending on both the orientation of the nucleosomes on the surface 

and the extent of DNA wrapping. In addition, the ability to resolve two DNA strands 

wrapping around the histone will depend on the sharpness of the AFM tip and the quality of 

the DREEM signal. In half of the nucleosome images (n = 21 out of 41 nucleosomes), we 

observe one DNA strand wrapping around histones (Figures 2A, 2B, and S2), and in the 

other half (n = 20 out of 41 nucleosomes) we can visualize two DNA strands wrapping 

around the histone core, where cross-section analysis reveals two distinct peaks 

corresponding to DNA (Figures 2C and S2). The distance between the two peaks 

corresponding to two DNA double strands is 4.2 ± 0.8 nm, which is slightly larger than that 

seen in the crystal structure (~3 nm) (Luger et al., 1997). This difference is likely due to both 

different conformations of the nucleosomes on the surface and the limit of our resolution. In 

the images in which two DNA strands are seen, the tip was particularly sharp, as revealed by 

the width of the DNA in the topographic and DREEM images (e.g., Figure 2C). This result 

suggests that the spatial resolution of the DREEM images, like that of the topographic 

images, is limited by the tip size. Notably, it is possible to overlay the crystal structure of the 

nucleosome onto the DREEM image of the nucleosome showing two strands (Figure 2C). 

Taken together, these results demonstrate that DREEM can be a powerful method for 

resolving the path of DNA wrapped around proteins.

To further test the capability of DREEM for visualizing DNA contained within protein 

complexes, we imaged protein-DNA complexes involved in DNA MMR (Supplemental 

Experimental Procedures). In MMR, MutS homologs recognize DNA mismatches and 

subsequently form multimeric complexes with MutL homologs in the presence of ATP (Elez 

et al., 2012; Grilley et al., 1989; Hombauer et al., 2011; Kunkel and Erie, 2005, 2015; 

Schofield et al., 2001). MutS homologs are dimers with DNA binding and ATPase domains, 

and the DNA binding domains encircle and bend the DNA (Figure 3A) (Lamers et al., 2000; 

Obmolova et al., 2000; Warren et al., 2007). In addition, two MutS dimers can associate to 

form DNA loops (Allen et al., 1997; Jiang and Marszalek, 2011; Wang et al., 2003). 

Furthermore, in the presence of ATP, MutS homologs form a mobile clamp after mismatch 

recognition that can move away from the mismatch, which allows multiple proteins to load 

onto DNA containing a single mismatch (Cho et al., 2012; Gradia et al., 1999; Kunkel and 

Erie, 2015; Qiu et al., 2012). Topographic AFM images of T. aquaticus (Taq) MutS bound to 

a GT mismatch (Figure 3B) and two MutS dimers forming a DNA loop between the 

mismatch and a DNA end (Figure 3C) show the typical smooth peaks on the DNA 

corresponding to Taq MutS (Tessmer et al., 2008; Wang et al., 2003). In contrast, in the 

DREEM images (Figure 3) the “peaks” corresponding to the position of MutS show regions 

of decreased intensity, similar to our observations with nucleosomes (Figures 2 and S2). The 

regions of decreased intensity reveal the path of the DNA through MutS, which is hidden in 

the topographic AFM images. For example, in Figure 3B, MutS appears to be lying on its 

side (relative to model in Figure 3A) such that the bend in the DNA is clearly revealed. In 

this orientation, only a small amount of protein is on top of the DNA, allowing the complete 

path of the DNA to be visualized. In Figure 3C, the path of the DNA is partially obscured by 

MutS, which appears to be sitting upright on top of the DNA at the mismatch. As illustrated 

in the model, the DNA appears to come from underneath the protein (going from top to 
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bottom of the image) and exit on the top (where the DNA can be clearly visualized exiting 

the protein), with the DNA bend potentially occurring perpendicular to the surface and 

hidden by the protein. After exiting the protein at the mismatch, the DNA loops back to 

interact with the second MutS bound at the end of the DNA. Images of multiple hMutSα 
proteins loaded onto DNA in the presence of ATP also clearly show the DNA passing 

through the proteins (Figure S3). Inspection of these and other images (not shown) suggests 

that the contrast between the DNA and protein in the DREEM images depends on how close 

the protein-DNA interaction site is to the tip. If the DNA is underneath a large amount of 

protein, then the electrostatic properties of the protein will likely screen out the effect of the 

DNA. This observation is similar to that seen with carbon nanotubes embedded in a polymer 

matrix, in which the contrast of the nanotubes decreases with increasing depth of the 

nanotubes in the matrix (Thompson et al., 2013). In addition to visualizing the DNA inside 

the complex, the DREEM data taken together with structural data on MutS (Obmolova et al., 

2000) allow us to model the general orientation of the MutS dimers in the complexes 

(Figures 3B and 3C). The potential power of DREEM is revealed in the image of a large 

multiprotein complex of human MutSα and MutLα bound to DNA containing a GT 

mismatch (Figure 3D). In the topographic image, a large protein complex is seen at the end 

of the DNA. This complex is one of the larger MutSα-MutLα complexes that we observe, 

and it was chosen to demonstrate the capability of DREEM for resolving DNA in large 

multiprotein-DNA complexes. A detailed analysis of the properties of MutSα and MutLα 
complexes is the focus of another manuscript. The volume of this complex is consistent with 

it containing ~10 proteins (Ratcliff and Erie, 2001). The length of the DNA that is not inside 

the protein complex is ~120 nm shorter than the expected length for 2 kbp DNA. Inspection 

of the DREEM amplitude and phase images reveals the path of the DNA in this large 

complex (Figure 3D). Including the DNA inside the proteins yields a DNA length that is 

within 5% of the expected length. These results suggest that DREEM may be a powerful 

tool for examining the path of DNA in large multiprotein-DNA complexes that may not be 

amenable to characterization by other techniques. In fact, the DNA path is often easier to 

discern in larger protein-DNA or multiprotein-DNA complexes because the DREEM signal 

of protein surrounding the DNA provides better contrast relative to DNA on the mica 

surface.

Limitations

Other than the requirement that the samples must be deposited on a surface to be imaged, 

which is common to all scanning probe microscopies, the primary limitation of DREEM 

relates to the use of highly doped silicon cantilevers. Although doped diamond-coated 

cantilevers (tip radius ~100 nm) and metal-coated cantilevers (tip radius ~30 nm) are typical 

choices for EFM imaging (Fumagalli et al., 2014), they are not sufficiently sharp to produce 

high-resolution images. Highly doped silicon cantilevers are sharp (5–8 nm) and sufficiently 

conductive for high-resolution topographic and DREEM imaging; however, the quality of 

the DREEM image appears to depend on the oxidation layers on the surface. The oxidation 

layer on the silicon cantilevers requires that the DC and AC biases be optimized for each 

cantilever. These differences in oxidation layers prevent quantitative comparison of the 

magnitudes of the DREEM signals collected with different tips, or the same tip after 

collecting a series of images. In addition, ~30% of prepared conductive silicon cantilevers 
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do not generate sufficient contrast between the protein and DNA to allow us to discern paths 

of DNA in protein-DNA complexes in DREEM images. Argon plasma cleaning of the 

cantilevers prior to use appears to improve their quality for DREEM imaging. Finally, the 

quality of the DREEM images degrades during imaging faster than that of the topographic 

images. Typically, ~10–12 high-quality DREEM images can be obtained from a single AFM 

tip.

Similar to conventional AFM imaging techniques, DREEM imaging can also experience tip 

artifacts, due to the asymmetry in the electric field between the AFM tip and sample surface. 

For example, in some cases, half-moon-like asymmetries, with one side of the DREEM 

signal consistently stronger than the other side, are seen in the same orientation for all 

complexes in a single DREEM image. As with tip artifacts in topographic images, these 

artifacts can be identified by the repetitive features in different molecules from the same 

image and by scanning at various angles.

A final limitation of DREEM is that it is currently limited to imaging in air. At present, we 

have not been able to identify operating parameters that allow contrast in aqueous 

environment. A few studies demonstrate EFM imaging of solid materials at low ionic 

strength using lift mode (Gramse et al., 2012; Johnson et al., 2003); however, the resolution 

and detection limit in these images appears low. It is likely that the electrostatic double layer 

significantly damps the DREEM signals from proteins and DNA in electrolyte solutions.

Conclusions

In summary, while the paths of DNA are hidden in protein complexes in traditional 

microscopy imaging techniques, such as AFM and EM imaging, DREEM allows the 

visualization of the conformation of DNA within individual protein-DNA complexes. In 

addition to the studies presented here, DREEM also has been employed to visualize DNA 

conformations within telomere binding proteins (Benarroch-Popivker et al., 2016; P.K., 

D.W., L. Lin, P. Countryman, K.C.B., D.A.E., R. Riehn, P.L. Opresko, and H.W., 

unpublished data). Taken together, the capability of DREEM to detect very small changes in 

electrostatic force gradient with high resolution makes it a powerful tool for characterizing 

the structure of protein-DNA complexes at the single-molecule level. It will be especially 

useful for characterizing protein-DNA complexes with long length scales and those that 

result in heterogeneous populations of proteins on the DNA. Furthermore, a growing area in 

structural biology is the combination of atomic-resolution crystal structures with lower-

resolution data from small-angle X-ray scattering, EM, and AFM to generate atomic-level 

structures of complex assemblies and conformationally flexible proteins (Bustamante et al., 

1994; Erie et al., 1994; Griffith, 2013; Griffith and Christiansen, 1978; Hennig and Sattler, 

2014; Hura et al., 2013a, 2013b; Janićijević et al., 2003; Lohr et al., 2007; Lyubchenko et 

al., 2001; Moreno-Herrero et al., 2005; Sanchez et al., 2013; Trinh et al., 2012; Villarreal 

and Stewart, 2014; Wanner and Schroeder-Reiter, 2008; Williams et al., 2014; Yang et al., 

2003; Yeh et al., 2012). DREEM has the capability to significantly increase the constraints 

on the possible orientations of proteins in multiprotein assemblies on DNA, as demonstrated 

by our ability to dock the crystal structure of the nucleosome into a subset of the images. In 

addition, DREEM allows the path of DNA to be resolved in large heterogeneous multi-

Wu et al. Page 9

Mol Cell. Author manuscript; available in PMC 2017 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein-DNA complexes. It also will be applicable for characterizing the electrostatic 

properties of other biological specimens, such as viruses and membranes, as well as non-

biological samples. With sharper tips and further refinement of the technique, it is highly 

likely that the resolution can be further increased in the future. Finally, with the addition of 

only two components (a function generator and a lock-in amplifier, Figure 1), DREEM can 

be implemented on many of the commercially available AFMs, making it readily available 

to many labs.

EXPERIMENTAL PROCEDURES

Instrument Design

Our experimental setup for simultaneous AFM and DREEM is described in Figure 1. In our 

setup, we apply an AC bias at the first overtone (ω2) and monitor the vibration amplitude 

(Aω2) and phase (φω2) as a function of position, while simultaneously collecting the 

topographic image at the fundamental frequency (ω1).

The detailed methods for conductive cantilever preparation, substrate grounding, selection of 

imaging conditions, sample preparation, deposition, and analysis are described in the 

Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Dual-frequency atomic and electrostatic force 

microscopy of protein-DNA complexes

• Imaging the topographic and electrostatic features of 

protein-DNA complexes

• Visualizing DNA in nucleosomes and mismatch repair 

complexes via their electrostatics
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In Brief

Wu et al. developed a dual resonance frequency imaging method that simultaneously 

captures atomic force microscopy topographic and electrostatic force gradient images. 

This method reveals DNA wrapping around histones and the path of DNA as it passes 

through both single-protein and multiprotein mismatch repair complexes.
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Figure 1. Instrumental Design for Simultaneous AFM and DREEM Imaging
The AFM (MFP-3D, Asylum Research) is operated in repulsive oscillating (intermittent 

contact) mode with the cantilever mechanically vibrated near its resonance frequency (ω1 = 

2π f1) (f1 = ~80 kHz for the cantilever used in this study) to collect the topographic 

information. To simultaneously collect the DREEM image, AC and DC biases are applied to 

a highly doped silicon cantilever (Nanosensors, PPP-FMR, force constant ~2.8 N/m), with 

the frequency of the AC bias centered on cantilever's first overtone (ω2 = 2πf2) (f2 ~500 

kHz). An external lock-in amplifier is used to separate the ω2 component from the output 

signal and compare it with the reference input AC signal to generate the electrostatic 

amplitude and phase signals. The DC bias is maintained constant and is used to adjust the 

electrical vibration amplitude to produce optimal contrast in the DREEM images. In the 

current setup, the AC and DC biases can be adjusted from 0 V to 20 V and −2.5 V to 2.5 V, 

respectively. The inset shows the thermal motion of a typical cantilever used in our 

experiments as a function of the frequency. The frequencies and Q factors for the 

fundamental (f1, Q1) and first overtone (f2, Q2) frequencies are shown by each peak.
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Figure 2. Representative Topographic AFM and DREEM Images of Nucleosomes
(A and B) Topographic (A top, B left), DREEM-phase (A middle, B center), and DREEM 

amplitude (A bottom, B right) images of nucleosomes showing one DNA wrapping around 

histones one time.

(C) Topographic (left) and DREEM-phase (right) images of a nucleosome showing DNA 

wrapping around nucleosomes twice. Insets show graphs of the height cross-section for the 

line drawn across the nucleosome in topographic (left) and DREEM-phase (right) images. 

The two dots on the graph correspond to the positions of the two dots shown on the line 

across the image, which mark the position of the peaks corresponding to the DNA in the 

DREEM image. The distance between the two peaks corresponding to the two DNA double 

strands (dots on graph) is 3.4 nm, which is similar to that seen in the crystal structure (~3 

nm) (Luger et al., 1997). Cartoon models of the DNA wrapping around histones are shown 

on each DREEM-phase image (models are not to scale). The crystal structure of a 

nucleosome (Luger et al., 1997) overlaid on the DREEM-phase image is shown in the inset 

of the phase image in (C). The white scale bars are 50 nm. All topographic images are scaled 

to the same height, and the height scale bar is shown in (A). Both the topographic and 

DREEM-phase images in (C) are sharper than those in (A) and (B) as a result of a sharper 

AFM tip. All features in the images are seen in both the trace and retrace scans (Figure 

S2B). Nucleosomes were reconstituted on a 2,743 bp linear fragment containing 147 bp 601 

nucleosome positioning sequence. Unlike the images of nucleosomes, DREEM images of 

free histones show only smooth “hemispherical shape,” similar to the topographic images 

(Figure S2A). See also Figure S2.
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Figure 3. Topographic AFM and DREEM Images of Mismatch Repair Complexes on 2 kbp DNA 
Containing a GT Mismatch
(A) Space-filling model of the crystal structure of Taq MutS (generated from PDB: 1EWQ). 

Subunits A and B and the DNA are colored blue, gold, and cyan, respectively. MutS bends 

the DNA by ~60° as it passes through the DNA binding channel.

(B) AFM topographic (left) and DREEM-phase (center) and amplitude (right) images of a 

Taq MutS-DNA mismatch complex. Model of the complex is shown overlaid onto the AFM 

images and next to the phase images.

(C) AFM topographic (left) and DREEM-phase (right) images of two MutS dimers forming 

a loop in the DNA between the location of the mismatch (375 bp from one end) and DNA 

end. Model of the complex is shown overlaid onto the AFM images and next to the phase 

images. The model is based on the volume of the complex in the topographic image 

(consistent with two dimers), the location of the DNA in the DREEM image, as well as the 

crystal structure and the location of the tetramerization (two MutS dimers) interface 

(Groothuizen et al., 2013; Mendillo et al., 2007). A topographic surface plot of this image is 

shown in Figure 1.

(D) AFM topographic (left: surface plot) and DREEM-phase (middle: surface plot; right: top 

view) images of a large MutSα-MutLα-DNA complex containing ~10 proteins. The path of 

the DNA is identified as the regions with highest reduction of the magnitude of DREEM 

signals compared to protein alone and traced in the inset in blue. Interestingly, the DNA 

appears to be sharply bent after entering the complex at the expected position of the 

mismatch (MM). Z-scale bars are in nanometers for AFM images and arbitrary units for the 

DREEM images. See also Figure S3.
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