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Abstract

Objective—The objective of the proposed research is to develop a methodology for modeling 

and evaluation of human motions, which will potentially benefit patients undertaking a physical 

rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate 

aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for 

capturing the motions, where an algorithm will retrieve the trajectories of a patient’s exercises, 

will perform data analysis by comparing the performed motions to a reference model of prescribed 

motions, and will send the analysis results to the patient’s physician with recommendations for 

improvement.

Methods—The modeling approach employs an artificial neural network, consisting of layers of 

recurrent neuron units and layers of neuron units for estimating a mixture density function over the 

spatio-temporal dependencies within the human motion sequences. Input data are sequences of 

motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a 

motion capture system. An autoencoder subnet is employed for reducing the dimensionality of 

captured sequences of human motions, complemented with a mixture density subnet for 

probabilistic modeling of the motion data using a mixture of Gaussian distributions.

Results—The proposed neural network architecture produced a model for sets of human motions 

represented with a mixture of Gaussian density functions. The mean log-likelihood of observed 

sequences was employed as a performance metric in evaluating the consistency of a subject’s 

performance relative to the reference dataset of motions. A publically available dataset of human 

motions captured with Microsoft Kinect was used for validation of the proposed method.

Conclusion—The article presents a novel approach for modeling and evaluation of human 

motions with a potential application in home-based physical therapy and rehabilitation. The 

described approach employs the recent progress in the field of machine learning and neural 

networks in developing a parametric model of human motions, by exploiting the representational 

power of these algorithms to encode nonlinear input-output dependencies over long temporal 

horizons.
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Introduction

Mathematical modeling of human motions is a research topic in several scientific fields, and 

subsequently it has been employed across a wide range of applications. Nevertheless, from a 

general point of view modeling of human motions remains a challenging problem, due to 

several aspects related to their intrinsic properties. First, human movements are inherently 

random, as a consequence of the stochastic nature of processing of the motory commands by 

the brain [1] (e.g. we cannot re-create identical movements or draw perfectly straight lines). 

Second, human motions have a highly nonlinear character, as all other processes in the 

nature. And third, the complex levels of hierarchy in the human reasoning are also reflected 

in the way the brain controls the limbs in executing desired motions.

The proposed research aims to exploit the recent progress in the field of deep artificial neural 

networks (NN) for modeling of human motions. The motivation stems from the 

demonstrated potential of deep NN architectures to encapsulate highly nonlinear relations 

among sets of observed and latent variables, as well as the capacity to encode data features 

at multiple hierarchical levels of abstraction. These properties have been conducive to the 

development of efficient deep NN algorithms that in recent times outperformed other 

machine learning methods in a number of international competitions and applications [2,3]. 

However, this success has been largely based on the use of convolutional NN that have 

proven suitable for dealing with spatial data, such as pixels in static images. On the other 

hand, human motion data possess quite a different structure due to the strong temporal 

correlation among the data points, and require different type of NN architectures. One such 

architecture designed for dealing with sequential data is the recurrent NN (RNN) [4]. More 

specifically, RNNs introduce recurrent connections between the neuronal activations of the 

neighboring units in sequences. The recurrence property establishes a basis for extracting the 

underlying temporal dependencies in sequential data. Unlike the current approaches for 

human motion modeling, such as Gaussian process model [5], hidden Markov models [6], 

dynamic movement primitives [7] or Kalman filters [8], which are based on short-term 

primarily linear approximation of the motion dynamics, recurrent NNs offer representational 

power for encoding non-linear motion dynamics over longer temporal horizons.

The proposed work employs RNNs for developing a mathematical model of human motions, 

by extracting latent states of the motion sequences, related to sub-goals in executing the 

motion. To tackle the stochastic character of human movements, we propose a statistical 

modeling approach, based on the provision of multiple examples of a motion performed 

under similar conditions. The model aims to probabilistically encode the performed motion 

with a mixture of Gaussian probability density functions, by exploiting the variability across 

the motion examples. The network architecture consists of an autoencoder subnet [9] of 

LSTM neurons for dimensionality reduction of the observed motion data, and a mixture 
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density network (MDN) [10] for modeling the conditional density function of the spatial 

coordinates, conditioned on the temporal coordinates of the motion. The obtained 

probabilistic model of the human motions is afterwards used for evaluation of newly 

observed motion sequences.

Related Work

Physical rehabilitation

Physical rehabilitation therapy is crucial for patients recovering from stroke, surgery, or 

musculoskeletal trauma. A study published by Machlin et al. [11] analyzed the Medical 

Expenditure Panel Survey generated by the US federal government, and indicated that in 

2007 the cost of physical rehabilitation therapy in US was approximately $13.5 billion. 

These expenditures were incurred during approximately 88 million physical therapy 

episodes by nearly 9 million adults.

The physiotherapist supervised treatments represent only a fraction of the total rehabilitation 

treatment; over 90% of the exercises are performed by patients in a home-based setting, also 

known as home exercise programs [12]. In this case, a physiotherapist instructs a patient on 

the type of physical exercises to be performed, and the patient is expected to perform the 

exercises, and continuously record their progress in a logbook. The patient will periodically 

attend follow-up visits with the physiotherapist, who evaluates their progress, and may 

prescribe a new set of exercises. However, there is a multitude of reports in the literature of 

low adherence rates to prescribed exercises in home-based rehabilitation, ranging between 

11% and 40% [13,14]. The poor compliance delays functional recovery, prolongs the 

rehabilitation period, and increases healthcare cost.

Among the key factors contributing to low adherence to physiotherapy in outpatient 

environment is the lack of supervision, evaluation, and motivation for continued treatment 

[15]. Accordingly, the need for tools that support home-based rehabilitation has been widely 

recognized. The recent emergence of low cost non-intrusive motion capture sensors, such as 

Microsoft’s Kinect, stimulated a wave of research and proliferation of applications in this 

domain [16,17]. KiReS (Kinect Rehabilitation System) [18] and VERA (Virtual Exercise 

Rehabilitation Assistant) [12] are examples of systems that employ a Kinect sensor for 

tracking a patient’s movements, and provide a graphical interface with avatars showing the 

desired exercise as prescribed by the physiotherapist and the current motions of the patient. 

Such visualization tools are conducive toward improved adherence to the prescribed physical 

therapy by allowing review of the exercises by the patients and correcting the performance, 

as well as by providing a means for remote review of the patient’s progress by the 

physiotherapist.

A key prerequisite for monitoring and evaluation of patients’ progress in home exercise 

programs is the provision of efficient and comprehensive performance evaluation metrics. 

The existing clinical evaluation metrics, such as Fugl-Meyer assessment (FMA), Wolf motor 

function test (WMFT), and the ratio of optimal versus sub-optimal motion execution 

[12,18], were primarily designed for assessment performed by a physiotherapist. The 
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development of performance evaluation metrics based on sensor captured motions in 

outpatient setting remains an open research topic.

We hold that formalization of efficient evaluation metrics is predicated on congruent 

mathematical models for representation of human motions. In this work, we propose an 

approach for probabilistic modeling and evaluation of human motions based on the latest 

advances in artificial neural networks.

NN for motion modeling

The approaches for human motion modeling and representation are broadly classified into 

two categories: a group that uses latent states for describing the temporal dynamics of the 

movements, and another category that employs local features for representing the motion. 

Among the methods based on introduced latent states, the most prominent are Kalman 

filters, hidden Markov models [19], and Gaussian mixture models [20]. Main shortcomings 

of these methods originate from employing linear models for the transitions among the latent 

states (as in Kalman filters), or from adopted simple internal structure of the latent states 

(typical for hidden Markov models). On the other hand, the approaches based on extracting 

local features within the motion data, e.g. key points [21], and temporal pyramids [22], are 

typically based on predefined criteria for feature representation which are often task-specific 

and defined at a single level of task abstraction. These attributes limit the ability of the 

feature class of motion representation methods to handle arbitrary spatio-temporal variations 

across the motion sequences in an efficient manner.

The recent development in the field of artificial NNs stirred a significant interest in their 

application for modeling of human motions as well. The capacity for motion classification 

without the need for segmentation has been employed in several works. For example, 

Baccouche et al. [23] employed a convolutional NN for feature extraction fused with a layer 

of recurrent units for action recognition, and Lefebre et al. [24] implemented bidirectional 

RNN for gesture classification.

Further, the replacement of simple RNN units with LSTM units mitigated the problem of 

vanishing/exploding gradients and provided a base for training deep RNNs. Subsequently, a 

body of work emerged that implemented deep NN for modeling of human motions.

For examples, the approach by Du et al. [25] employs a deep RNN for hierarchical modeling 

of human motions, where input sequences consisting of skeletal joint positions of the human 

body are divided into five groups, related to the joints of the trunk and of the four body 

limbs. By fusing the input data of the five body groups progressively through the layers of 

neurons, the approach demonstrated high-performance in classification of human motions.

Another recent work [26] implements an encoder-decoder network with recurrent LSTM 

units for extracting salient features in human motion sequences. The resulting encoded 

representation is afterwards successfully utilized for both motion generation and for body 

parts labeling in videos.

In the work by Zhu et al. [27] the authors investigated the regularization in deep RNNs for 

human action recognition, and proposed 2 techniques for this purpose. One is based on 
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learning co-occurrence features in the motion data across the layers of neurons, and another 

is a dropout technique applied on the gates within the LSTM units. The proposed 

regularization produces improved performance over the state-of-the-art methods.

Jain et al. [28] developed a novel NN architecture that introduces spatio-temporal graphs in 

its structure. More specifically, the factor components in the st-graphs are grouped and 

modeled with RNNs. The framework is evaluated for prediction and generation of human 

actions, and for understanding human-object interactions.

The above listed methods are employed for classification of human actions, or for predicting 

future motion patterns in a generative fashion, based on encoded joint distribution of the 

input data and the hidden states. The presented approach in this article employs RNNs for 

probabilistic modeling of human motions using density function estimation. To the best of 

our knowledge, such an implementation is novel and differs from the previous works on 

human motion modeling within the published literature. Several recent studies have 

successfully applied mixture density networks within an RNN framework to model complex 

datasets. For example, the work in [29] employed MDN and RNNs for classification and 

prediction of biological cell movement in different environments based on recorded motion 

sequences. Similar works reported application of MDN in modeling visual attention [30], 

wind speed forecasting [31], and acoustic speech modeling [32].

Problem Formulation

The problem is related to a rehabilitation exercise prescribed by a physiotherapist to a 

patient by demonstrating the required motion in front of the patient. The demonstration can 

be either performed by the physiotherapist, or by moving patient’s limbs. It is assumed that 

the physiotherapist will demonstrate the motion multiple times (typically between 5 and 10 

times), for the patient to understand the underlying range of movement of the different body 

parts. The patient is then asked to repeat the motion in a home-based rehabilitation 

environment a specified number of times in a daily session, or during multiple daily 

sessions. The goal of our research is to develop an algorithm for modeling the demonstrated 

motion and for evaluation of the performance of the patient during home rehabilitation in 

order to conclude whether the performed motions by the patient correspond to the prescribed 

motions by the physiotherapist.

In practice, the physiotherapist may demonstrate the motion only once or twice; since our 

brains are excellent at pattern recognition, and we can easily generalize from only a single 

example of a task. On the other hand, machine learning algorithms are data driven and 

require multiple examples of a task to accurately extract underlying patterns in the data. 

Furthermore, the physiotherapist in reality will support the demonstrations by verbal 

explanations of the movements, and he/she can also demonstrate several incorrect examples 

of performing the motion. In the considered study, verbal explanations and non-optimal 

demonstrations are ignored, and the focus is on motion learning from perceived sensory 

data. The above scenarios can be considered as avenues for future work.
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It is assumed that a sensory system is available for capturing the demonstrated motion as 

prescribed by the physiotherapist. The number of demonstrated examples of the motion is 

denoted M, and the measurement by the sensory system for each of the demonstrated 

examples of the motion is denoted Om, where m is used for indexing the individual 

demonstrated examples. The set of observed demonstrations comprises . Also 

each perceived motion example Om is a temporal sequence of high-dimensional sensory 

data, and it is denoted , where  represents the sensory 

measurement at time, t1 i.e., the superscripts are employed for indexing the temporal 

position of the measurements within each motion sequence, and Tm denotes the number of 

measurements in each observed sequence. In general, the demonstrated examples will have 

different lengths, i.e., different number of measurements Tm. Each individual measurement 

is a D-dimensional vector, hence the notation adopted is 

, where k is the current time step. The above notation 

employs bold font type for representing vectors and matrices.

For example, let’s consider a motion that is demonstrated 7 times by the physiotherapist. In 

that case, the set of demonstrated examples of the motion is 

. Each motion is a time series representing a 

sequence of measurements by the sensory system. For instance, if an optical tracker 

collected the measurements at a rate of 100 measurements per second, and if the duration of 

the third motions was 4.2 seconds, then the sequence O3 will consist of 420 measurements, 

and it will be represented as , with t1=0.01s, t2=0.02s and 

t420=4.2s. Furthermore, if the sensory system used 10 optical sensors for capturing the 

motions, and the outputs are 3-dimensional spatial coordinates of the optical sensors, each 

individual measurement will represent 30-dimensional data signal. In that case, the 

measurement  of the third motion example at time step 2 will be the 30-dimensional 

vector .

Next, it is assumed that the same sensory system for motion perception is used to capture the 

motions of the patient during the rehabilitation exercises. Let’s denote the observation of the 

patient’s performed motion with R. Similar to the above notation, the motion sequence R 

will consist of TR D-dimensional measurements r(k), i.e., .

The patient will attempt to reproduce the motion as demonstrated by the physiotherapist. 

Due to pain or other conditions, the patient may not be able to achieve the range of the 

motion as requested, or he/she may perform the motion in a wrong way due to a variety of 

reasons. The objective of the presented research is to evaluate the performance of the patient 

with regards to the physiotherapist demonstrated examples of the motion. Or, in other words, 

the objective is to evaluate how consistent patient’s motion R is with the reference motion 

set .
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The problem was approached on the grounds of the fact that human motions are intrinsically 

stochastic. We cannot reproduce a motion in identical manner, due to the stochastic character 

of the motor actions as directed by the neural networks in the human brain. The variance 

within the human movements can be exploited to probabilistically model the motions. Using 

the observed set of examples of the motion provided by the physiotherapist O, a probabilistic 

model of the motion will be derived described with a set of parameters λ. The parameters 

will be estimated by maximizing the probability of the observed data, argOmax P (λ|O). The 

probabilistic model will then be used for estimating the probability that the patient’s motion 

belongs to the distribution parametrically defined with λ, i.e., P (R|O).

The considered problem is an unsupervised learning problem, where the goal is to develop a 

probabilistic model of the observed data by determining the density estimation within a 

projected space with reduced dimensionality. The obtained model will be used to 

probabilistically evaluate new observations.

Network Architecture

The proposed network architecture is shown in Figure 1. Input to the network is a sequence 

of vectors related to the sensory perception of the motion O. A recurrent layer of LSTM 

units encodes input sequences Om into low-dimensional sequences Zm. The sequences Zm 

are decoded by another recurrent layer of LSTM units to the input context Om. The obtained 

low-dimensional sequences Zm are processed through another recurrent layer of neuron 

units, and the resulting sequences Ym are probabilistically encapsulated by a mixture of 

Gaussian probability distributions, parameterized with a set of means μ, standard deviations 

σ, and mixing coefficients π. The theoretical background behind the network architecture is 

presented next.

Recurrent neural networks

RNNs [4] are a subclass of neural networks that introduce recurrent connections between the 

neuron units. This type of NN has been designed for processing sequential data, such as time 

series, textual data, or DNA protein sequences. The recurrent connections between the 

neuron units enable capturing sequential (or temporal) dependencies across the input data 

(Figure 1).

For an input sequence  with length Tm consisting of an array of 

vectors , where k denotes the position of the vector within the sequence Om, RNNs 

introduce a sequence of hidden states  that establish a mapping 

between the input and output data of the network. In temporally ordered sequences k would 

correspond to the time index tk of the input values. An RNN is graphically represented in 

Figure 2. The network structure is shown at the sequence level in Figure 2(a), as well as 

unfolded along the time steps 1,2,….,k−1, k, k+1,.. in Figure 2(b). The connections between 

the consecutive neuron units h(k), represented with the colored nodes in the Figure 2, enable 

information about the input data to be shared with the neighboring neuron units. The 

recurrence furnishes the network with a memory capability, i.e., past observations can be 
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employed for understanding the current observation, or for predicting future observations in 

a sequence.

The outputs of the hidden unit vectors h(k) in the RNN network presented in Figure 2 are 

calculated as,

(1)

where Woh denotes the matrix of connection weights from the input vectors  to the 

hidden layer units h(k), Whh denotes the matrix of recurrent connection weights between the 

hidden layer units, bh denotes the vector of bias values, and f is an activation function. The 

hidden layer H will further be connected to an output sequence, or to another hidden layer in 

the network structure. The weight and bias parameters in RNNs are learned with the back-

propagation through time (BPTT) algorithm [33], by minimizing a loss function over the set 

of training sequences .

Two significant shortcomings of conventional RNNs presented in equation (1), are the 

inability to capture long-term dependencies in the data, and the problem of vanishing/

exploding gradients in learning the network parameters [34]. These are overcome by 

introducing special forms of recurrent neuron units, among which the most common are the 

LSTM units, which stands for long short-term memory [35]. A graphical representation of 

an LSTM unit is given in Figure 3. The information processing in LSTM is characterized 

with the use of several gates which control the amount of information that is passing through 

the hidden units. Hence, each LSTM unit has an input gate, forget gate, and output gate. The 

gates are used for controlling the internal state of the LSTM unit stored in a memory cell. 

The memory cell accumulates information and carries it from the past to the future temporal 

states in the layer, thus enabling establishment of long term dependencies across the data 

sequence.

Computations within the kth LSTM unit are as follows:

(2)

(3)

(4)
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(5)

(6)

where W’s denote the matrices of weight values, b’s denote the vectors of bias values, and σ 
and tanh denote a sigmoid and hyperbolic tangent functions, respectively. Similar to Figure 

2, the notation  and h(k) is related to the observed input vector and the output vector from 

the layer of hidden units at time tk, whereas i(k), f(k), q(k), and c(k) denote the corresponding 

activations of the input gate, forget gate, output gate, and the memory cell, respectively.

At each time step k, the forget gate regulates the amount of the information in the memory 

cell that is discarded, the input gate determines how much new information to store in the 

memory cell and pass it to the next units, and the output gate controls the fraction of the 

information in the memory cell to be output by the hidden unit. Furnished with the ability to 

retain and selectively pass information through the gates of an LSTM unit, the network can 

learn long-term temporal correlations within the data sequences (Figure 3).

Autoencoder neural networks

Autoencoders refer to an NN architecture designed to learn a different representation of a set 

of input data, through a process of data reconstruction [9,36]. The intent is to extract useful 

attributes within the data, achieved by setting the network output to be equal to the original 

input. The step of transforming the input data to a different representation is called encoding, 

and analogously, the operation of reconstructing the data from its approximation is called 

decoding.

A graphical representation of an autoencoder network is depicted in Figure 4. As shown in 

the figure, the network consists of an encoder portion which maps the input data 

 into a code representation , and a decoder portion which 

reprojects the code Ζ into the input O. If the mapping function of the encoder is denoted φ: 
O→ Ζ, and the moping function of the approximation by the decoder is denoted ψ: Ζ→ Ô, 

the connection weights in the autoencoder network are learned by minimizing the 

reconstruction error formalized as :

The majority of autoencoders employ a code representation with lower dimensionality in 

comparison to the input data. This forces the network to learn a sparse representation of the 

input data, and with that to extract the most salient attributes within the data to produce 

minimal reconstruction error. Due to these properties, typical application tasks of 

autoencoder NNs are dimensionality reduction, feature extraction, and data denoising.

In this study on modeling of human motions, an autoencoder is employed to reduce the 

dimensionality of the observed sequences, since the dimensionality of the data in motion 
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capture systems is typically in the range of 40 to 60 measurements per time step. On the 

other hand, not all of the body parts are usually involved in performing a motion, and in 

addition, the movements of the individual body parts are highly correlated. Hence, 

projection of the measurement data to a lower dimensional space is helpful in extracting 

high-level features within the human motions, and facilitates the tasks of modeling and 

analysis of the motions.

Regarding the dimensionality reduction using autoencoders, if the connection weights 

between the input and the hidden layers are linear, and mean squared error is used as a loss 

function, the network learns the principal components of the input data, and in this sense it 

operates as a PCA (principal component analysis) processor. The provision of nonlinear 

functions for neuron activations in autoencoders allows extracting richer data representations 

for dimensionality reduction. Furthermore, by stacking several consecutive encoding and 

decoding layers of hidden neurons, deep autoencoder networks are created, which can 

additionally increase the representational power capacity (Figure 4).

Mixture density networks

MDNs are a network architecture that employs a mixture of probability density functions in 

modeling dependencies in the input data [10]. Let’s assume input sequences 

 and  with length Tm consisting of 

d-dimensional vectors  and , respectively, which in general do not have to be ordered 

sequences. MDNs estimate the conditional probability density function  for 

k=1,2,…,Tm, as a mixture of probability distributions.

If Gaussian probability distributions are adopted as the mixture components, then the 

conditional probability density function is expressed as

(7)

In the equation, L is the number of Gaussian mixture components, πl denote the vector of 

mixing coefficient of the Gaussian component l, and N(y|μ,σ2) denotes a multivariate 

Gaussian probability distribution with a mean μ and variance σ2. Note in equation (7) that 

the mixture parameters are dependent on the input vectors .

The parameters in MDNs are estimated by minimizing a loss function defined by the 

negative log-likelihood of the input and output data.

(8)
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With regards to the requirement for the mixing coefficients πl ≥ 0 and , the 

connections in MDN leading to the mixing coefficients are defined as soft max functions of 

the corresponding network output activations al,m, i.e.,

(9)

For the standard deviations, the requirement  is satisfied by employing exponential 

functions of the network activations as follow

(10)

Lastly, the means are connected directly to the network activation by a linear projection 

layer

(11)

The output parameters of the network can be used for estimating the conditional average of a 

data sequence Yn given a sequence Xn as

(12)

as well as the expected variance of the conditional density function as

(13)

Experiments

Motion perception

The work assumes that a Microsoft Kinect sensor will be used for capturing the motions for 

rehabilitation exercises. With a price tag of around $150, its use for home-based 

rehabilitation is much more feasible, when compared to the optical trackers or other similar 

motion capture systems that cost tens of thousands of dollars. The Kinect sensor includes a 

color camera and an infrared camera for acquiring image (RBG) and range data 
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simultaneously. The software development kit (SDK) for Kinect by Microsoft provides 

libraries for access to the raw RGB and depth streams, skeletal tracking, noise suppression, 

etc. The capability for skeletal tracking has been widely used for capturing human motions. 

The skeleton consists of 20 points corresponding to the joints in the human body. During the 

skeleton tracking, the 3-dimensional position for each of the 20 joints is output at a rate of 

30 frames per second.

Dataset

For proof of concept we used the publicly available dataset of human motions UTD-MHAD 

(University of Texas at Dallas-Multimodal Human Action Dataset) [37].

The UTD-MHAD dataset consists of 27 actions performed 4 times by 8 subjects. The data 

are collected with a Kinect sensor and a wearable inertial sensor, and is available in 4 

different formats: RBG video, depth sequences, skeleton joint positions, and inertial sensor 

signals. Sample image for three of the actions: wave, bowling and draw circle, are shown in 

Figure 5.

Human motion modeling

The motion related to the swipe left action from the UTD-MHAD dataset is initially 

considered. The training set consists of 21 recorded sequences, performed 3 times by 7 of 

the subjects, i.e. O={O1,O2,…, O21} and the testing set consists of 7 sequences performed 

once by 7 of the subjects Q={Q1, Q1,…., Q7}, where the sets and are disjoint, i.e., O∩Q=∅. 

The length of the training sequences varied between 48 and 72 time frames. Each 

measurement includes the x, y, and z spatial positions of the 20 skeletal joints, i.e., the 

dimensionality of the vectors  is D=60. In a preprocessing step the spatial joint positions 

were normalized to zero mean sequences, and to facilitate density estimation with a mixture 

of Gaussians, the sequences were temporally scaled and aligned to a constant length of 48 

frames by using the dynamic temporal warping (DTW) algorithm [38].

The network architecture shown in Figure 1 is employed for processing the input data O. 

The code was implemented using the open-source Python libraries Theano [39] and Keras 

[40]. An autoencoder with recurrent layers of LSTM units is used for sequence-to-sequence 

processing. The code sequences are denoted Ζ={Ζ1,Ζ2,…,Ζ21}, as also shown in Figure 4. 

The encoder reduces the dimension of the input sequences Om equal to D=60 to dimension 

of the context Ζm equal to d=3. The autoencoder is trained in a mini-batch input mode to 

minimize the reconstruction error  by using the AdaDelta gradient 

descent method [41] for updating the network parameters, whereas the gradients of the cost 

function are calculated with the BPTT algorithm [42].

The trained network is afterwards used for reconstructing the testing set of data. Examples 

of two testing sequences Qm, the corresponding encoded sequences , and the decoded 

sequences , for m∈{2,4}, are shown in Figure 6. One can note that the sequences for the 

swipe left action include only movement of the right hand of the subject, and most of the 

other body parts are almost stationary during the motion. Therefore, many of the 60-
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dimensional joint positions have values close to zero, and only several of the skeleton joints 

have varying position values during the motion. The encoded representation for the training 

sequences Ζ={Ζ1,Ζ2,…,Ζ21} is shown superimposed on Figure 7.

The sequences are afterwards processed with an MDN network, depicted in Figure 1. As 

described in Section 5.3 the network is designed to learn mixture parameters encoding a 

conditional density function of the target data for given input data. The number or neurons in 

the layer connecting the output of the autoencoder network and the MDN output is set of 

100. The layer has fully connected nodes to the set of sequences. Further, the number of 

Gaussian mixture components in the network is set to L=4. The independent component of 

the input Xm is related to the temporal ordering of the sequences, and the dependent 

component, or the target, Ym, is related to the spatial position of the Ζm sequences. More 

specifically, the inputs to the MDN comprise arrays of time steps Xm=(1,2,….,48) for all X 

sequences, and the targets are  for all Y sequences, i.e., for m=1,2,

….,21. The network estimates the parameters of Gaussian mixture components by 

maximizing the likelihood of the input data, which is commonly performed by minimizing 

the cumulative negative log-likelihood P(Ym|Xm) for m=1,2,….,21. Contours of the negative 

log-likelihood for the three dimensional position sequences are shown in Figure 8. The 

obtained mixture parameters are dependent on the input, that is, for each input value k a 

conditional probability distribution of the target  is obtained given the value of the input 

k.

The expected average and one standard deviation of the conditional density function for one 

of the target spatial dimensions is shown in Figure 9 for the case of 4 and 8 mixture 

components.

The Gaussian mixture parameters provide a probabilistic description of the average values 

and the underlying variability of the motion, as a function of its temporal evolution. The 

resulting parameterized density function is employed as a spatio-temporal model for 

evaluation of other motions.

Evaluation

Based on the learned model of a motion presented in the previous section, the next step is to 

evaluate a new motion sequence, presumably performed by a patient during a home-based 

rehabilitation therapy Figure 9. The sequence is denoted .

One possible metric for evaluation of the sequence R with regards to the probabilistic model 

described with the MDN parameters  is the mean log-likelihood of the 

sequence given the model parameters LR=(R|λ), calculated as

(14)

where t(k) is the sequence of time step indices of the spatial positions of the sequence R.
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The mean log-likelihood for the 21 training sequences is shown with the blue line in Figure 

10. The mean log-likelihood was also calculated for observed sequences corresponding to 

other motions in the dataset, such as swipe right, waving, and clapping, and is shown with 

red lines in Figure 10. As expected, the sequences that are not produced by the swipe left 

motion are less probable to fit within the density probability function described with the 

parameters.

Since the UTD-MHAD dataset does not provide examples of sub-optimal motions, such 

examples are synthetically generated here by adding random noise to the training data, for a 

proof of concept. Thus, several levels of uniformly distributed noise are added to the training 

sequences, and afterwards, the mean log-likelihood is evaluated. The result is presented in 

Figure 11. The levels of noise added are: 0.01, 0.1, 0.2, 0.4 and 1. The original sequences 

without added noise are shown with the blue line in the figure. As more noise is added to the 

motion sequences, the log-likelihood decreases. For the noise of 0.01 shown with the red 

line in the figure, the difference with the original sequence is very small, since that level of 

noise is similar to the measurement noise within the sensory data. As expected, the 

sequences with added noise deviate from the original sequences that were used to develop 

the motion model, and their likelihood to belong to the probability density function is 

smaller.

In a similar manner, motion sequences performed by a patient can be compared to a model 

of the motion as demonstrated by the physiotherapist. The mean log-likelihood can be used 

to assess the performance of the patient. As the patient continues with the rehabilitation 

therapy, the metric can be used to indicate whether there is a progress toward the prescribed 

motion. Figure 11. Mean log-likelihood for the swipe left action. The original sequences are 

shown with the blue line, and the sequences with added noise are shown with different line 

colors.

Summary

The article presents an approach for modeling and evaluating human motions using artificial 

neural networks. The network architecture consists of two subnets: an autoencoder and a 

mixture density subnet. The autoencoder employs layers of recurrent neuron units for 

dimensionality reduction and extraction of low-level features within the motion sequences, 

thus transforming noisy, high-dimensional datasets with strong correlations into a lower-

dimensional dataset with low noise. The MDN portion of the network is used for density 

function representation of the motions with a mixture of Gaussian probability distributions. 

The output of the network is a probabilistic model of the human motions represented with a 

set of mixture parameters and a set of network connection weights.

The model is intended to be employed for evaluation of a patient performance in a home-

based physical rehabilitation therapy. The probabilistic character of the proposed model 

allows employing statistical metrics for evaluation of patient’s performance. In this study, 

the probability, calculated as the mean log-likelihood of the motions performed by the 

patient, that the motions are drawn from the density function of the reference model, is 

adopted as a performance evaluation metric. For proof of concept, motion sequences from 
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the available dataset have been distorted by adding random noise, and afterwards the mean 

log-likelihood is evaluated using the model parameters, and compared to the training set of 

motions.
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Figure 1. 
The proposed network architecture, where the arrows denote the flow of data in the network.
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Figure 2. 
Graphical representation of an RNN. (a) A sequence of input data Om is connected to a 

sequence of hidden units H with recurrent connections between the hidden units. (b) The 

unfolded sequence Om consists of observation vectors  represented with white nodes, 

and the sequence H consists of hidden state vectors h(k) represented with colored nodes.
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Figure 3. 
Graphical representation of the data flow within an LSTM unit.
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Figure 4. 
Graphical representation of an autoencoder NN.
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Figure 5. 
Sample images and skeletal representations for (a) Wave; (b) Bowling; and (c) Draw circle 

actions in the UTD-MHAD dataset.
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Figure 6. 

From top to bottom: (a) Testing sequence Q2, encoded representation , and reconstructed 

sequence ; (b) Testing sequence Q4, encoded representation , and reconstructed 

sequence 
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Figure 7. 
Encoded representation for all 21 training sequences.
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Figure 8. 
Contours of the conditional density functions for the three spatial coordinates of the target 

sequences, shown with green scattered markers.
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Figure 9. 
Expected average and one standard deviation of the density function for 4 mixture 

components (upper figure) and 8 mixture components (lower figure).
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Figure 10. 
Mean log-likelihood for sequences from 4 different actions. The results related to the action 

swipe left used for training are shown with the blue line, and the results related to other 

actions are shown with the red lines.
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Figure 11. 
Mean log-likelihood for the swipe left action. The original sequences are shown with the 

blue line, and the sequences with added noise are shown with different line colors.
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