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Abstract

Molecular recognition of carbohydrates plays vital roles in biology but has been difficult to 

achieve with synthetic receptors. Through covalent imprinting of carbohydrates in boroxole-

functionalized cross-linked micelles, we prepared nanoparticle receptors for a wide variety of 

mono- and oligosaccharides. The boroxole functional monomer bound the sugar templates through 

cis-1,2-diol, cis-3,4-diol, and trans-4,6-diol. The protein-sized nanoparticles showed excellent 

selectivity for D-aldohexoses in water with submillimolar binding affinities and completely 

distinguished the three biologically important hexoses (glucose, mannose, and galactose). 

Glycosides with nonpolar aglycon showed stronger binding due to enhanced hydrophobic 

interactions. Oligosaccharides were distinguished based on their monosaccharide building blocks, 

glycosidic linkages, chain length, as well as additional functional groups that could interact with 

the nanoparticles.

Graphical abstract

INTRODUCTION

Carbohydrates occupy a unique place in biology. Unlike peptides and nucleic acids, they 

comprise entirely of hydrophilic building blocks and are thus solvated strongly by water. 

This feature implies that carbohydrates tend to cover the surface of a cell and represent the 

first line of interaction when other entities approach the cell. For this reason, it is not 

surprising that carbohydrates are involved in many important biological processes including 

fertilization, cell–cell interactions, immune response, and viral and bacterial infection.1–3 In 
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addition, they are important sources of energy for most organisms and form parts of the 

backbone for DNAs and RNAs.

Lectins are protein receptors that perform molecular recognition of carbohydrates in nature. 

During the last several decades, chemists have devoted great efforts towards developing 

synthetic analogues of lectins that can bind sugars or their derivatives selectively.1–6 On the 

applied level, the research potentially can lead to tools useful in the study and intervention of 

carbohydrate-related biological processes. On the fundamental level, the research tackles 

one of the most difficult challenges in supramolecular chemistry.

Selective binding of carbohydrates in water is difficult for multiple reasons. Due to strong 

interactions between water and the hydroxyls of a carbohydrate, a supramolecular host in 

aqueous solution has to pay a tremendous amount of desolvation energy to bind its sugar 

guest. Unlike proteins and DNAs, carbohydrates do not adopt well-defined three-

dimensional conformations, making the design of their complementary hosts difficult. 

Monosaccharides, the building blocks of more complex carbohydrates, differ minutely in 

structure, often by the stereochemistry of a single hydroxyl. Even with the same building 

block, slightly different connections between the monomers lead to oligo- and 

polysaccharides with completely different physical, chemical, and biological properties.

Molecular recognition of carbohydrates has progressed steadily in the last decades. Over the 

years, synthetic receptors moved from organic to aqueous solution; carbohydrate guests 

being studied transitioned from simple monosaccharides to functionalized oligosaccharides. 

Chemists nowadays are able to distinguish glucosides from their isomeric sugars by their all 

equatorial substitutions.7,8 Binding affinities for monosaccharides by synthetic receptors in 

water could approach those by natural lectins (binding constant Ka = 103–104 M−1).1,2 

Despite these impressive accomplishments, however, a general method for molecular 

recognition of carbohydrates in water is still not available, due to the many challenges 

mentioned above.

Synthetic carbohydrate receptors can be classified in two groups, depending on whether 

noncovalent or covalent bonds are used for binding. The first group often utilizes 

strategically positioned hydrogen bonds in a relatively hydrophobic microenvironment to 

bind the guest.6–10 The second group largely relies on the fast and reversible boronate bonds 

formed between organic boronic acids and the diol functionalities on a sugar for the 

molecular recognition.5,11–15

We recently reported a method to construct molecularly imprinted nanoparticles (MINPs) 

with precisely positioned boronic acids to recognize monosaccharides in water.16 The MINP 

receptors could distinguish D-aldohexoses with remarkable selectivity. For example, 

MINP(glucose), i.e., MINP prepared with glucose as the template, bound glucose with Ka = 

1.18 × 103 M−1. Any change in the C2, C4, or C6 hydroxyl essentially turned off the binding 

and inversion of the C3 hydroxyl weakened the binding by over two-fold.

Unfortunately, although the boronic acid-functionalized MINPs showed impressive binding 

for monosaccharides, the synthetic method could not be easily applied to oligosaccharides. 

Herein, we report that, by modifying the key ingredients in the MINP preparation (i.e., the 
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cross-linkable surfactant, the cross-linker, and the sugar-binding functional monomer) and 

the imprinting procedure, we now can create nanoparticle receptors for oligosaccharides 

(and monosaccharides) directly in water. The generality and simplicity of the in situ 

imprinting are the highlights of this approach. The preparation and purification took about 2 

days and required no special techniques, and thus could be potentially adopted by 

researchers without substantial training in chemistry. These receptors are soluble in water, 

resemble proteins in size, and displayed selectivity for monosaccharides and 

oligosaccharides that has not been achieved by previous synthetic materials.

RESULTS AND DISCUSSION

Design and Synthesis

Molecular imprinting is a tremendously useful technique for creating guest-complementary 

binding sites in polymers or on surface.17–28 However, conventional imprinting often 

produces intractable highly cross-linked polymers, hindering their usage in biology. To make 

the imprinted materials soluble in water, we recently reported a process to imprint within 

cross-linked micelles. Because the polymerization and cross-linking took place within the 

micelle boundaries, the resulting nanoparticles become fully soluble in water due to their 

hydrophobic/hydrophilic core–shell structure.29,30

MINPs are generally prepared by first solubilizing a hydrophobic template molecule with 

the micelles of a cross-linkable surfactant such as 1 (see Scheme 1 for structure). The 

surfactant contains a propargylated headgroup and a methacrylate-containing hydrophobic 

tail that undergo orthogonal cross-linking chemistries. Cross-linking by a diazide cross-

linker such as 2 yields alkyne-functionalized surface-cross-linked micelles (SCMs), which 

can be functionalized by another round of click reaction with an azide-containing ligand 

such as 3 (see Scheme 1 for structure). Afterwards, free radical core-cross-linking leads to 

the formation of a polymer matrix around the template within the SCM, and thus creates the 

binding site in the micellar core complementary to the template in size, shape, and binding 

functionality.

The templates used in the D-aldohexose-binding MINPs were the boronate esters formed 

from the sugars and 4-vinylphenylboronic acid.16 They had to be synthesized in a separate 

step prior to the MINP preparation through azeotropic removal of water in dioxane at 

88 °C.31 Because oligosaccharides generally have extremely low solubility in dioxane and 

many organic solvents, this method is not suitable for imprinting oligosaccharides. If we 

want to imprint more sensitive sugar derivatives such as glycoproteins in a longer term, 

organic solvents and high temperatures clearly have to be avoided.
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In this work, we synthesized boroxole-containing functional monomer (FM) 432 and a new 

cross-linker 2′ to address the above challenges (Scheme 1). Benzoboroxole is known to 

bind 1,2- and 1,3-diols with higher affinities than phenylboronic acid33,34 and have been 

used to create sugar-binding polymers.35–43 We reasoned that the anionic boronate derivative 

formed (i.e., 5) might be especially stable in the cationic micelles of 1. (As will be shown 

later, the structure of 5 was inferred from our binding studies, as well as the binding property 

of boroxole.)33,34 If the complex can survive the surface- and core-cross-linking of the 

micelles, we would be able to imprint a sugar directly in the micellar solution. In situ 

imprinting is highly desirable because it eliminates the separate template preparation and 

may be more compatible with templates sensitive to organic solvents and/or high 

temperatures.

There are two considerations behind the design of cross-linker 2′. First, since a 

noncovalently formed FM•template complex (i.e., 5) is involved, we have to avoid other 

diol-containing molecules such as 2 in the MINP preparation, at least prior to the formation 

of the binding site. Second, 2′ is amphiphilic and expected to form mixed micelles with 1, 

enabling the alkyne and azide groups to be intimately mixed on the surface of the micelles 

and in close proximity to one another. As a result, the local concentrations of the reactive 

groups are exceedingly high on the micelle surface, making the surface cross-linking 

particularly facile.44,45

As usual, we solubilized DVB (a free radical cross-linker) and DMPA (a photoinitiator) in 

the (mixed) micelles prior to any cross-linking. The presence of DVB increases the cross-

linking density of the core and was confirmed previously to be important to the molecular 

recognition of the final MINP.29 The 3:2 ratio of 1 and 2′ left the SCM with alkynyl groups 

on the surface.44–46

Normally, we perform surface-functionalization before core-cross-linking because it uses the 

same Cu(I) catalysts as the surface-cross-linking step and thus can be conveniently done 

right afterwards. However, because the surface ligand (3) contains many hydroxyls and is 

expected to compete with glucose for the boroxole binding group, we reversed the order and 

performed the core-cross-linking in the second step, via UV-initiated radical polymerization 

of 1, 2′, 5, and DVB.

At this point, the binding site was already formed inside the surface- and core- doubly-cross-

linked micelles. Surface-functionalization with 4 using the click reaction afforded 

MINP(glucose) with the template still bound in the binding site. The sugar-derived ligand 4 
was installed so that the final nanoparticles could be easily recovered by precipitation into 

acetone.29 The template molecules were removed by repeated washing using acetone/water, 

methanol/acetic acid, and acetone. The power obtained was completely soluble in water.

The reaction progress was generally monitored by 1H NMR spectroscopy.29,30 Dynamic 

light scattering (DLS) afforded the size and molecular weight of the MINP. The 

nanoparticles were typically 4–5 nm in diameter. In our experience, the DLS-determined 

size showed good agreement with the size obtained from transmission electron microscopy 

(TEM) for similarly cross-linked micelles.44
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MINPs for Binding Monosaccharides

We examined the binding of the MINP by isothermal by isothermal titration calorimetry 

(ITC), a method of choice for studying intermolecular interactions.47 In addition to its 

accuracy, the method affords the number of binding sites per particle (N), as well as other 

thermodynamic binding parameters. We have demonstrated in several studies that (for 

fluorescently labeled guests) ITC gave very similar binding constants for MINPs as other 

spectroscopic methods.29,30,48

As shown in Table 1, MINP(glucose) prepared with template/FM = 1:2 bound glucose with 

Ka = 2.30 × 103 M−1 in 10 mM HEPES buffer at pH 7.4 (entry 1). Binding was somewhat 

weaker at pH 8.5 or 6.5 (entries 6 and 7). Reducing the template/FM ratio to 1:1 lowered the 

binding constant (entry 2). Having an excess of FM (thee equiv to the template) did not 

improve the binding (entry 3). Binding was negligible by the nonimprinted materials 

prepared without FM 3 and the glucose template (entry 4) or with FM 3 but without glucose 

(entry 5). These results demonstrated that molecular imprinting was clearly in operation and 

the optimal binding stoichiometry was 1:2 between the template and the boroxole.49

MINP(glucose) displayed excellent selectivity: among the seven isomeric sugars, only allose 

showed noticeable binding with Ka = 0.37 × 103 M−1, while the rest were not bound at all 

(Chart 1). Similar selectivity was found for MINP(mannose), which only bound altrose 

among the remaining seven D-aldohexoses.

The boroxole-functionalized MINP(glucose) and MINP(mannose) showed higher binding 

selectivity than the boronic acid-functionalized MINPs, but the trend remained the same.16 

The selectivity suggests that the C2 and C4 hydroxyls were critical to the molecular 

recognition and any inversion at these positions shuts off the binding. The C6 hydroxyl was 

also essential, as xylose, lacking this hydroxyl, showed no binding. The C3 hydroxyl played 

a secondary role in the binding, with its inversion lowering Ka by 74–86% from the template 

sugar.

MINP(galactose), on the other hand, behaved distinctively differently. Among the eight D-

aldohexoses, it bound only its template and achieved stronger binding (Ka = 3.37 × 103 M−1) 

than either MINP(glucose) or MINP(mannose) for its template (Table 1).

Hall and co-workers reported that benzoboroxole binds glucose in a 1:1 ratio in water, with 

Ka = 17 M−1.33,34 It is possible that the 2nd binding observed in our MINPs was weaker than 

the first one in bulk aqueous solution and simply not observed in Hall’s study. The 

hydrophobic and positive environment of the cationic micelle conceivably could stabilize the 

negatively charged boronate and enable the second, less stable adduct to form under our 

imprinting and binding conditions.

Benzoboroxole binds the methyl pyranosides of glucose, mannose, and galactose with Ka = 

10–30 M−1,33,34 thus lacking intrinsic selectivity for these sugars. The much higher 

selectivity and binding affinity displayed by our MINPs must come from the 

microenvironment of the cross-linked micelle and the two-point binding as revealed in the 

binding studies. It is known that that benzoboroxole has a strong preference for trans-4,6-
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diol over trans-3,4-diol in glucosides, suggesting the C3 hydroxyl would not be involved in 

binding in glucose and mannose.50 Hall’s work also demonstrated that, for 

galatopyranosides, cis-3,4-diol is preferred by boroxole over cis-4,6-diol. This preference 

was also maintained by MINP(galactose), because gulose, which differs from galactose only 

by the C3 hydroxyl and contains the cis-4,6-diol, was not bound.51

For MINP(6) prepared with 4-nitrophenyl α-D-mannopyranoside 6 as the template, the 

aromatic aglycon was expected to create a complementary hydrophobic binding pocket in 

the MINP, as we have demonstrated in several recent studies.29,30,48 Indeed, a much stronger 

binding of Ka = 65.3 × 103 M−1 was obtained. Gratifyingly, excellent binding selectivity was 

maintained for this MINP. The Ka values for the corresponding glucoside 7 and galactoside 

8 were ~1/6 and 1/14, respectively. Thus, inversion of one or two hydroxyl groups was easily 

distinguished in the glycosides as well.

By confining the polymerization/cross-linking largely within micelles, we not only made our 

materials water-soluble but also were able to control the number of binding sites on the 

nanosized MINP. This feature distinguishes our MINP from other molecularly imprinted 

nanoparticles in the literature.52–60 Our previous studies indicate that the SCM of 1 has 

roughly 50 cross-linked surfactants. With surfactant/template = 50/1 in the synthesis, the 

MINPs on average contained one binding site per nanoparticle (Table 1).61 As demonstrated 

recently, this number can be tuned easily through changing the surface/template ratio.29

MINPs for Binding Oligosaccharides

FM 4 not only afforded MINPs with higher binding affinity and selectivity than 4-

vinylphenylboronuc acid but also enabled us to imprint oligosaccharides.

Maltose was the first oligosaccharide template used in our study and expected to form 

FM•template complex 9 based on the binding motifs identified in the monosaccharide-

binding MINPs. Because numerous hydrogen-bonding groups exist in the complex, we 

hypothesized that the micelle/MINP should contain hydrogen-bonding groups that interact 

with 9 through hydrogen bonds, in addition to hydrophobic and electrostatic interactions 

present in the normal micelle/MINP. Amide-functionalized cross-linkable surfactant 10 was 

recently found to enhance the binding of guest through hydrogen bonds.62 To our delight, 

MINP(maltose) prepared with 10 as the cross-linkable surfactant bound maltose with Ka = 

20.5 × 103 M−1, substantially higher than the value obtained (Ka = 3.50 × 103 M−1) for 

MINP prepared with surfactant 1 (Table 2, entries 1 and 2). When the template/FM ratio was 

varied (1:1, 1:2, and 1:3), 1:2 gave the highest Ka, supporting the 1:2 binding model shown 

in 9.

Binding of the oligosaccharides (Chart 2) worked fully as expected (Table 2). The selectivity 

of a particular MINP is indicated by Krel, which is the binding constant of a sugar guest 

relative to that of the template. Cellobiose and gentiobiose had a Krel value of 0.39 and 0.21 
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toward MINP(maltose), indicating that changing the α 1,4-glycosidic linkage to the β 1,4 or 

α 1,6 weakened the binding significantly. Replacing one of the two glucoses in maltose with 

fructose and galactose was even less tolerated, yielding Krel of <0.002 and 0.04 for 

maltulose and lactose, respectively. To probe the sensitivity, we also measured the binding of 

maltose by MINP(maltose) in the presence of 5 equiv of competing sugars (cellobiose and 

lactose). As shown by entries 11 and 12, the binding constant obtained was about 74% and 

92%, respectively, of the original value (entry 1). These numbers were in line with the 

selectivity indicated by Krel.

Interestingly, shortening the chain length was better tolerated than lengthening the chain 

length, as glucose was bound with Krel = 0.09 but maltotriose with Krel <0.002. The result is 

reasonable because maltotriose should not fit into the binding pocket generated from the 

smaller maltose but glucose should be able to fit it, although only expected to bind one of 

the two boroxoles. Note that Ka (= 1.81 × 103 M−1) for glucose by MINP(maltose) was 

close to that (= 2.30 × 103 M−1) by MINP(glucose) in Table 1. It seems that the hydrogen-

bonding interactions between the bound glucose and the amide-functionalized MINP nearly 

compensated for the loss of one boronate binding interaction.

We then created MINPs for all the other oligosaccharides and studied their binding. Good 

selectivity was generally obtained and each MINP always bound its own template sugar 

better than other sugars (Table 2 and Table 3S). As far as the absolute binding strength is 

concerned, gentiobiose, lactose, and maltotriose gave somewhat higher Ka values than the 

other sugars. The stronger binding for maltotriose could result from the additional hydroxyls 

on the template that interacted with the amide-functionalized MINP by hydrogen bonds. For 

MINP(maltotriose), as the guest became smaller (i.e., from maltotriose to maltose to 

glucose), binding expectedly weakened monotonously (Table 2, entries 21–23).

To test whether these boroxole-functionalized receptors could distinguish more challenging 

targets, we prepared MINPs for the three sugars that determine the human blood type: type 

O has sugar H on the surface of its blood cells, type A has A, type B has B, and type AB has 

both A and B.

As shown in Table 3, MINP(H), generated from sugar H, bound its template with Ka = 35.6 

× 103 M−1 and showed no binding for the other two sugars. The difference between sugar A 

and B was extremely subtle: among the numerous functional groups, the only difference is a 

single acetoamido group in sugar A versus a hydroxyl in B (Chart 2). Impressively, 

MINP(A) was found to bind sugar A twice as strongly as sugar B, and MINP(B) displayed 

even higher selectivity. Meantime, sugar H showed weak binding to MINP(A) and 

MINP(B), with Krel = 0.13 in both cases.

CONCLUSIONS

In summary, we have reported a facile and general method to create protein-sized water-

soluble nanoparticle receptors for a wide range of mono- and oligosaccharides. The in situ 

imprinting was enabled by the strong interactions between FM 4 and the appropriate diol 

functionalities on the sugar in the micellar environment. The number of binding sites on 
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these “synthetic lectins” could be controlled easily. Importantly, the binding sites on the 

sugar can be identified prior to imprinting (namely, cis-1,2-diol, cis-3,4-diol, and trans-4,6-

diol), making the molecular recognition highly predictable. Among the eight D-aldohexoses, 

glucose, mannose, and galactose are the most biologically relevant and can be distinguished 

completely. With the ability to differentiate oligosaccharides by their building blocks, chain 

length, and glycosidic linkages, we expect these “synthetic lectins” could become highly 

useful in biology and chemistry in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Preparation of boroxole-functionalized MINP(glucose).
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Chart 1. 
Structures of selected D-aldohexoses and glycosides.
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Chart 2. 
Structures of oligosaccharides used in this study. The arrows indicate the hydroxyls 

potentially involved in the boronate formation with FM 4.
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