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Abstract Polyhydroxyalkanoate (PHAs) are natural,

biodegradable biopolymers, which can be produced from

renewable materials. PHAs have potential to replace pet-

roleum derived plastics. Quite a few bacteria can produce

PHA under nutritional stress. They generally produce

homopolymers of butyrate i.e., polyhydroxybutyrate

(PHB), as a storage material. The biochemical character-

istics of PHB such as brittleness, low strength, low elas-

ticity, etc. make these unsuitable for commercial

applications. Co-polymers of PHA, have high commercial

value as they overcome the limitations of PHBs. Co-

polymers can be produced by supplementing the feed with

volatile fatty acids or through hydrolysates of different

biowastes. In this review, we have listed the potential

bacterial candidates and the substrates, which can be co-

metabolized to produce PHA co-polymers.

Keywords Bacillus � Biowastes � Co-metabolism � Co-
polymers � Polyhydroxyalkanoate � Gram-positive � Gram-

negative

Introduction

Biopolymers like polyhydroxyalkanoates (PHAs) have

gained importance as these can be produced from natural

and renewable substrates. Another important characteristic

is their biodegradable nature. Their physical and chemical

characteristics are very similar to synthetic plastics derived

from petroleum products [1, 2]. The basic advantage of this

biodegradable plastic is their non-polluting nature and

potential to save fossil fuels. Diverse bacteria produce

PHAs under nutritionally imbalanced conditions. The PHA

biosynthetic pathway operates at high Carbon (C) concen-

trations and limitations of other nutrients (N, P, K, O, Mg,

etc.) in the environment [3]. Here, instead of operating the

tri-carboxylic acid cycle for generating energy, the meta-

bolic pathway shifts towards PHA biosynthesis to produce

granules, which act as C storage material [4]. Under normal

physiological conditions, especially when the C:N ratio is

low, i.e. N is present in sufficient quantities, NAD(P)H/

NAD(P) ratio decreases and acetyl-CoA goes into the TCA

cycle, releasing CoA for the next round of utilization.

Accumulation of CoA inhibits the activity of b-ketothio-
lase, which blocks the PHA synthesis route. b-ketothiolase
is the first enzyme of the PHA biosynthetic pathway. On

the other hand, PHA production progresses when cell

growth is reduced under N-limiting conditions. Here,

NAD(P)H/NAD(P) ratio increases, which inhibits citrate

synthase and isocitrate dehydrogenase activity resulting in

the blockage of the TCA cycle. It leads to high acetyl-CoA

concentration and lowers CoA, resulting in the activation

of the enzyme—b-ketothiolase. The Phase I of PHA

biosynthetic pathway become operative leading to the

generation of acetoacetyl-CoA. It then gets transformed to

3-OH-butyryl-CoA, with the aid of NADPH–dependent

acetoacetyl reductase in the Phase II. The whole process
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terminates with the production of polyhydroxybutyrate

(PHB), by polymerization of 3OH-butyrate monomers with

the help of PHB synthase, i.e. Phase III [5, 6] (Fig. 1). The

three enzymes of the PHB biosynthetic pathway are coded

by genes: phaA (1179 nucleotides, nts), phaB (738 nts), and

phaC (1767 nts), which are organized as CAB operon in

Ralstonia eutropha (Fig. 2). The diversity of PHA syn-

thases can be seen in organisms like: (1) R. eutropha,

which has class I type, single subunit of PhaC

(60–73 kDa), (2) Pseudomonas oleovorans having class II

type—single PhaC subunit (60–65 kDa), (3) Allochro-

maticum vinosum and Thiocapsa pfennigii having class III,

composed of two subunits PhaC (40 kDa) and PhaE

(40 kDa), and (4) Bacillus megaterium representing class

IV composed of subunits PhaC (40 kDa) and PhaR

(22 kDa) (Fig. 3). Class I, II and IV type PHA synthases

result in C3-C5 PHAs, whereas class III can result in more

variable chain length PHAs (Fig. 3).

Polyhydroxyalkanoate (PHAs)

Bacteria have the potential to gather C in the form of PHAs

to the extent of 90 % of the total dry cell mass (DCM). The

composition of the PHAs depends upon the C chain length,

which varies from: (1) C3–C5 i.e., short chain length PHA

e.g., in R. eutropha, and (2) C6–C14 i.e., medium chain

length PHA e.g., in Pseudomonas oleovorans [3]. The

nature of the biopolymers depends upon the growth med-

ium, type and quantity of C source, bacterium, supple-

ments, etc. Most bacteria produce homopolymers as PHB,

however, a few have the potential to produce co-polymers,

but need specific co-substrate to be present in the medium

[1]. R. eutropha and Chromobacterium violaceum grown in

the presence of valeric acid (VA) as supplemented material

results in PHA co-polymers. The commercial value of

PHBs is lower as compared to co-polymers because of the

following reasons: (1) brittle nature, (2) low strength, (3)

high cost of production, (4) low elasticity, (5) low

mechanical resistance, etc. [1]. PHA copolymers have

characteristics, which can be compared to petroleum

plastics. Here, the improvement in PHA strength is because

of high molecular weight and variation in monomeric

compositions. These changes can be achieved through

variation in: (1) co-substrate, (2) feeding, (3) physiological

conditions, (4) genetic modifications, (5) heterologous gene

expressions (6) metabolic pathway modification [1, 7, 8].

3HV monomers when incorporate into a PHA polymer

chain, increase material characteristics of PHA co-poly-

mer, such as: (1) melting point, (2) crystallinity, (3) stiff-

ness, and (4) toughness. Co-polymers are thermoplastics,

which have a melting temperature of 140 �C, which is

close to that of polylactic acids [9].

PHA Co-polymers by Co-metabolism of Diverse

Substrates

Gram-Negative Bacteria

Most PHA producers generally belong to gram-negative

group of bacteria (Table 1) [10–35]. Ralstonia species are

among the most widely studied PHA producers. They have

an ability to produce homopolymers and co-polymers. R.

eutropha could utilize mixtures of: (1) gluconoate ? oc-

tanoate, and (2) glycerol ? casein hydrolysate (CH) to

produce PHB homopolymers, where PHA yield varied

from 40 to 50 % of DCM [13, 18]. Different strains of
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Fig. 1 Polyhydroxyalkanoate biosynthetic pathway. PHA is a syn-

thesized by the action of enzymes: PhbA (b-keto thiolase), PhbB

(acetoacetyl-CoA reductase) and PhbC (PHA plymerase). TCA

tricarboxylic acid cycle

phaC (1767 nts)
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Fig. 2 phaCAB operon organization in Ralstonia eutropha
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Fig. 3 Diversity of Polyhydroxyalkanoate (PHA) synthases

40 Indian J Microbiol (Jan–Mar 2017) 57(1):39–47

123



Table 1 Polyhydroxyalkanoate co-polymer production by co-metabolism of diverse substrates by gram-negative microorganism

Organism Substrate Homo-polymers Co-polymer References

PHB Type Ratio

mol (%)

Yield (%

DCM)
mol

(%)

Yield (%

DCM)

Alcaligenes eutrophus Glucose ? (NH4)2SO4 100 78 – – – [16]

Ralstonia eutropha PHB-4 Gluconate ? octanoate 100 40.89 – – – [18]

R. eutropha Glycerol ? caesin hydrolysate

(CH)

100 50 – – – [13]

Cupriavidus necator H16 Palm kernel oil ? propionic

acid (PA)

– – P(3HB-3HV-

3HHx)

93:0:7 55.5 [25]

Palm kernel oil ? valeric acid

(VA)

– – P(3HB-3HV-

3HHx)

89:6:5 52.3

C. necator DSM545 Glucose ? VA 100 64.5 – – – [33]

FAME ? VA – – P(3HB-3HV) 4.3 63.4

C. necator DSM7237 Glycerol ? sunflower

meal ? levulinic acid

27 g/

L

72.9 P(3HB-3HV) 22.5 66.4 [35]

C. necator Crude glycerol ? rapeseed

meal

– – P(3HB-3HV) 2.8-8:55.6 NA [32]

Cupriavidus sp. USMAA1020 c-butyrolactone – – P(3HB-4HB) NA 52.4 [23]

Pseudomonas pseudoflava Glucose ? xylose 100 22 – – – [10]

P. putida KTOY06 Dodecanoate ? gluconate – – P(3HD-3HDD-

3HO- 3HHx)

NA 84.3 [19]

P. putida KT2440 Glucose ? nonanoic acid 100 75 – NA NA [21]

Burkholderia ? Acidobacteria Acetic acid (AA) ? PA 100 NA P(3HB-3HV) 0–74 NA [34]

Aeromonas hydrophila CQ4 Dodecanoate ? gluconoate – – P(3HB-3HHx) 44.67 [20]

A. hydrophila 4AK4 Dodecanoate ? PA – – P(3HB-3HV-

3HHx)

NA 37.2 [22]

Lauric acid ? 1,4-butanediol – – P(3HB-4HB—

3HHx)

NA 23.6 [28]

Azotobacter sp. Glucose (5 % w/v) ? FP (Fish

peptone)

100 85 – – – [11]

Glucose (3 % w/v) ?

FP ? NH4Cl

100 74 – – –

Glucose (3 % w/v) ? FP 100 79 – – –

A. vinelandii UWD – – P(3HB-3HV) 4.3 58.3 [12]

Comamonas acidovorans Glucose ? 1,4-butanediol 100 53 P(4HB) 0–96 40 [15]

Haloferax mediterranei Rice bran ? corn starch (1:8) 100 55.6 – – – [17]

Wheat bran ? Corn Starch

(1:2)

100 40.2 – – –

Methylobacterium

rhodesianum

Glycerol ? CH ? Casamino

acids

100 65 – – – [13]

E. coli JM109 Glucose – – P(3HHx-3HO) NA 54.0 [27]

Azohydromonas australica Sucrose ? Nitrogen 100 77.0 – – – [31]

Mixed culture AA ? PA ? Lactic acid – – P(3HB-3HV) 31 NA [14]

Mixed culture Fermented molasses (VFAs) 100 65 P(3HB-3HV) 13 30 [30]

Mixed culture AA ? PA 100 78 P(3HB-3HV) 15–20 NA [26]

Mixed culture (Waste

activated sludge)

AA ? Glucose 100 30 P(3HB-3HV) 3.1 NA [27]

AA ? Bovine serum albumin

(BSA)

100 29.1 P(3HB-3HV) 2.7 NA

AA ? Glucose ? BSA 100 30.8 P(3HB-3HV) 3.7 NA

Indian J Microbiol (Jan–Mar 2017) 57(1):39–47 41

123



Cupriavidus necator could produce P(3HB-3HV-3HHx)

from vegetable oils, and glycerol supplemented with VA or

levulinic acid, where 3HV and 3HHx components varied

from 6 to 7 mol%. C. necator DSM545 produced

homopolymers of PHB from glucose and VA, but co-

polymers from FAME ? VA [25, 33]. Similarly, Pseu-

domonas spp. could metabolize mixtures of sugars to PHB

homopolymers. However, switching over to substrates such

as dodecanoate and gluconaote mixtures resulted in PHA

co-polymers—P(HD-HDD-HO-HHx) with P. putida and

P(3HB-3HHx) with Aeromonas hyrophila CQ4. A varia-

tion in feed to dodecanoate ? PA allowed A. hydrophila

GAK4 to produce P(3HB-3HV-3HHx) [10, 19–22]. Mixed

cultures of Burkholderia and Acidobacteria and other

bacteria proved instrumental in transforming acetate and

PA combination to P(3HB-3HV) [34]. A few other

organisms, which produce PHA copolymers through co-

metabolism of substrates are Comamonas and Escherichia

coli, whereas others like Azotobacter, Haloferax, Methy-

lobacterium and Azohydromonas did not produce co-

polymers inspite of being provided with mixed substrates

as feed [11, 13, 15, 17, 27].

Gram-Positive Bacteria

Among gram-positive bacteria, Streptomyces, Corynebac-

teria, Clostridium, Nocardia, Rhodococcus, Staphylococ-

cus are capable of producing PHA co-polymers [4].

Bacillus spp. are among those few gram-positive bacteria,

which have been gaining importance as PHA producers

because of their unique metabolic characterstics. These are

perhaps the only bacteria in this category, which can

produce homopolymers and co-polymers of PHA from

sugars and complex biowastes (Table 2) [1, 2, 7, 36–49].

Bacillus species are generally regarded as safe (GRAS)

organisms [3, 7]. Bacillus megaterium OU303A and

Bacillus sp. 88D utilized glucose, glycerol and acetate to

produce PHB homopolymers, whereas addition of PA

(\2.5 ml/L) allowed them to convert these mixtures into

P(3HB-3HV). Here, 3HV content varied from 2.5 to

6.3 mol% [42, 43]. Bacillus sp. INT005 utilized butyrate to

produce PHB, however, glucose in combination with dif-

ferent fatty acids (1 % v/v) resulted in PHA co-polymers

with HV content varying from 1.5 to 29 mol% and total

PHA yield ranging from 13 to 64.5 % DCM [38].

Bacillus licheniformis, B. cereus, B. subtilis and other

Bacillus spp. could not produce PHA co-polymers from

glucose or glycerol. However, use of defined mixed cul-

tures of B. cereus and B. thuringiensis produced interesting

results: (1) on pea-shell slurry (PSS) ? glucose—only

PHB 18.8 % of DCM was recorded, whereas (2)

PSS ? glucose ? PA resulted in P(3HB-3HV::87:13),

with a yield of 16.9 % of DCM. Addition of VA to

PSS ? glucose was also quite effective in producing co-

polymer having 7–10 mol% of 3HV. In contrast, B. cereus

EGU44 was also reported to show results which are quite

similar to those recorded with defined mixed cultures of

Bacillus [47]. Bacillus thuringiensis EGU45 was able to

metabolize effluent from hydrogen production stage and

yielded co-polymers of PHA with a 3HV content of

5–39 mol% [48].

Bacillus thuringiensis EGU45 could metabolize CG to

PHA co-polymers. The composition of these co-polymers

varied with the amount of PA or VA used as a

Table 1 continued

Organism Substrate Homo-polymers Co-polymer References

PHB Type Ratio

mol (%)

Yield (%

DCM)
mol

(%)

Yield (%

DCM)

Mixed culture (Activated

sludge)

VFAs (AA ?

PA ? VA ? butyrate)

100 31–47 P(3HB-3HV) 53–69 48 [24]

a Not applicable NA Not available

PHA Polyhydroxyalkanoae

PHB Polyhydroxybutyrate

3HB 3-Hydroxybutyric acid

3HV 3-Hydroxyvaleric acid

4HB 4-Hydroxybutyric acid

3HO 3-Hydroxyoctanoate

3HHx 3-Hydroxyhexenoate

6HHx 6Hydroxyhexanoate

3HD 3-Hydroxydecanoate

3HDD 3Hydroxydodecanoate
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Table 2 Polyhydroxyalkanoate Co-polymer production by co-metabolism of diverse substrates by Bacillus sp

Organism Substrate Homo-polymers Co-polymer References

PHB Type Ratio

mol (%)

Yield (%

DCM)
mol

(%)

Yield (%

DCM)

Bacillus megaterium OU303A Glucose (2 % w/v) 100 62 – – – [42]

Glucose (2 % w/v) ? PA

(\2.5 mL/L)

– – P(3HB-

3HV)

97.5:2.5 58.6

Glycerol (2 % w/v) – – P(3HB-

3HV)

95:5 52

Glycerol (2 % w/v) ? PA

(\2.5 mL/L)

– – P(3HB-

3HV)

86:14 57

Acetate (2 % w/v) 100 49 – – –

Acetate (2 % w/v) ? PA

(\2.5 mL/L)

– – P(3HB-

3HV)

96.5:3.5 59

B. megaterium DSM90 Glycerol 100 62.4 – – – [46]

B. cereus ATCC14579 Caprolactone ? octanoate – – 3HHx

P(3HHx-

3HO)

NA 2–4 [36]

B. cereus UW85 c- caprolactone – – P(3HB-

3HV-

6HHx)

NA NA [37]

Bacillus sp.

INT005

Butyrate 100 NA – – – [38]

Glucose (0.1 %

w/v) ? Butyrate (1 % v/v)

– – P(3HB-

3HHx)

P(3HB-

4HB-

3HHx)

98.5:1.5 32.9

Glucose (0.1 %

w/v) ? valerate (1 % v/v)

– – P(3HB-

3HV)

51.5:48.5 18.8

Glucose (0.1 %

w/v) ? hexanoate (1 % v/v)

– – P(3HB-

3HHx)

97.7:2.3 13.0

Glucose (0.1 %

w/v) ? octanoate (1 % v/v)

– – P(3HB-

3HHx)

97.1:2.9 64.5

Glucose (0.1 %

w/v) ? decanoate (1 % v/v)

– – P(3HB-

3HHx)

97.1:2.9 23.5

Glucose (0.1 % w/v) ? c-
caprolactone (1 % v/v)

– – P(3HB-

6HHx-

3HHx)

97.3:2.7 23.2

Bacillus sp. 88D Glucose (2 % w/v) – – P(3HB-

3HV)

96:4 64.6 [43]

Glucose (2 % w/v) ? PA

(\2.5 mL/L)

– – P(3HB-

3HV)

87:13 59.8

Glycerol (2 % w/v) – – P(3HB-

3HV)

85:15 60.5

Glycerol (2 % w/v) ? PA

(\2.5 mL/L)

– – P(3HB-

3HV)

96:4 60

Acetate (2 %w/v) 100:0 48 – – –

Acetate (2 %w/v) ? PA

(\2.5 mL/L)

– – P(3HB-

3HV)

93.7:6.3 42

Bacillus (Defined mixed strains:

B. cereus strains EGU3,

EGU43 ? EGU44 ? EGU520 ?

B. thuringiensis EGU45

Pea-shell slurry (PSS) ?

glucose

100 18.8 P(3HB-

3HV)

87:13 16.9 [47]

PSS ? glucose ? PA – – P(3HB-

3HV)

89:11 21.6

Indian J Microbiol (Jan–Mar 2017) 57(1):39–47 43

123



Table 2 continued

Organism Substrate Homo-polymers Co-polymer References

PHB Type Ratio

mol (%)

Yield (%

DCM)
mol

(%)

Yield (%

DCM)

PSS ? glucose ? VA – – P(3HB-

3HV)

90:10, 93:7 16–23

B. cereus EGU44 PSS ? glucose 100 30.0 [47]

PSS ? glucose ? PA (0.5–2 % v/v) – – P(3HB-

3HV)

89:11, 84:16,

85:15

16 -22

PSS ? glucose ? VA (0.5–2 % v/v) – – P(3HB-

3HV)

83:17, 90:10 16 -24

B. thuringiensis

EGU45

Effluent from H2-stage ? glucose (1 % w/v)

?

[49]

1. M9 ? GM2 media: 1X ? 0.25X NA NA P(3HB-

3HV)

61:39 10

2. M9 ? GM2 media: 1X ? 0.5X NA NA P(3HB-

3HV)

62:38 7.6

3. M9 ? GM2 media: 1X ? 1X NA NA P(3HB-

3HV)

77:23 18

4. M9 ? GM2 media: 1X ? 2X NA NA P(3HB-

3HV)

95:5 21

B. thuringiensis

EGU45

Crude glycerol (CG) ? Peptone

(PE) ? Yeast extract (YE) ?

[48]

1. PA (0.5 % v/v) – – P(3HB-

3HV)

89:11 53.9

2. PA (1.0 % v/v) – – P(3HB-

3HV)

94.7:5.3 37.3

3. PA (2.0 % v/v) – – P(3HB-

3HV)

98.2:1.8 44.2

4. VA (0.5 % v/v) – – P(3HB-

3HV)

95.7:4.3 37.8

5. VA (1.0 % v/v) – – P(3HB-

3HV)

98.2:1.8 48.5

6. VA (2.0 % v/v) – – P(3HB-

3HV)

99:1.0 56.3

CG ? nutrient broth ?

1. PA (0.5 % v/v) – – P(3HB-

3HV)

86.6:13.4 55

2. PA (1.0 % v/v) – – P(3HB-

3HV)

95.7:4.3 29

3. PA (2.0 % v/v) – – P(3HB-

3HV)

98.3:1.7 36

4. VA (0.5 % v/v) – – P(3HB-

3HV)

96.3:3.7 29.7

5. VA (1.0 % v/v) – – P(3HB-

3HV)

98.7:1.3 53.1

6. VA (2.0 % v/v) – – P(3HB-

3HV)

98.9:1.1 52.2

PSS 100 5.8 – – – [2]

PSS ? glucose (1 % w/v) 100 7.7 – – –

Apple pomace (AP) – – P(3HB-

3HV)

64.3:35.7 3.8

AP ? glucose (1 % w/v) – – P(3HB-

3HV)

75.9:24.1 7.5
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supplement. With PA in Peptone ? Yeast extract

(PE ? YE) medium, PHA co-polymer had 3HV content

in the range of 1.8–11 mol%. However, with VA in

PE ? YE medium, 3HV content varied from 1 to

4.3 mol%. On the other hand, CG ? Nutrient broth (NB)

supplemented with (1) PA resulted in 1.7–13.4 mol% of

3HV, and (2) VA resulted in 1.1–3.7 mol% of 3HV [49].

A very interesting result was recorded in an effort to

provide supplemental fatty acids by hydrolysing different

biowastes as mixtures in a wide range of ratios. Hydro-

lysates of PS was found to produce only AA, whereas

apple poamace (AP) hydrolysates had only isovaleric

acid. Hydrolysates of potato peels (PP) and onion peels

(OP) produced mixtures of AA, butyric acid, and PA.

This initial information was found to prove helpful in

producing PHA co-polymers by co-metabolizing these

biowatses by B. thuringiensis EGU45. PS alone was able

to produce only homopolymers i.e., PHB, however,

mixtures: (1) PS ? AP, (2) PS ? OP, and (3) PS ? PP

resulted in P(3HB-3HV), where HV content varied i.e.,

21.2, 36.6, and 23.4 mol%, respectively. It implied that

by co-metabolism, it is possible to divert PHA biosyn-

thetic pathway from producing only homopolymers to

different co-polymers [2].

Table 2 continued

Organism Substrate Homo-polymers Co-polymer References

PHB Type Ratio

mol

(%)

Yield (%

DCM)
mol

(%)

Yield (%

DCM)

Onion peels (OP) – – P(3HB-

3HV)

80:20 8.4

OP ? glucose (1 % w/v) – – P(3HB-3HV) 97.5:2.5 11.7

Potato peels (PP) – – P(3HB-3HV) 33:67 2.6

PP ? glucose (1 % w/v) – – P(3HB-3HV) 90.9:9.1 38.2

PS:AP:2:1 ? glucose

(1 % w/v)

– – P(3HB-3HV) 78.8:21.2 16.4

PS:OP:1:2 ? glucose

(1 % w/v)

– – P(3HB-3HV) 63.4:36.6 20.5

PS:PP:2:1 ? glucose (1 %

w/v)

– – P(3HB-3HV) 77:23 27.1

Bacillus sp. Glycerol – – NA NA 25–52 [39]

Bacillus sp. Madhuca sp. Flowers

(Sugars ? malic acid)

– – P(3HB-

3HV)

90:10 51 [41]

B. licheniformis PHA007 Glycerol 100 68.8 – – – [45]

B. licheniformis DSM394 Glycerol 100 17 – – – [45]

B. subtilis DSM10 Glycerol 100 18.9 – – – [45]

B. cereus PHA037 Glucose 100 60.7 – – –

B. thuringiensis R1 Glycerol 100 64.1 – – – [40]

B. sphaericus NII0838 Glycerol 100 31.0 – – – [44]

a Not applicable

NA Not available

PHA Polyhydroxyalkanoate

PHB Polyhydroxybutyrate

3HB 3-Hydroxybutyric acid

3HV 3-Hydroxyvaleric acid

4HB 4-Hydroxybutyric acid

3HO 3-Hydroxyoctanoate

3HHx 3-Hydroxyhexenoate

6HHx 6-Hydroxyhexanoate

3HD 3-Hydroxydecanoate

3HDD 3Hydroxydodecanoate
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Opinion

In order to produce co-polymers of PHA, it seems that in

addition to bacterial genetic potential, we also need to

choose a right combination of substrates and supplements.

Thus co-metabolism is an important approach for produc-

ing PHA co-polymers of desired compositions. Among the

PHA producers, Bacillus spp. are perhaps the most per-

sistent. They have the ability to produce homopolymers

and co-polymers as well from the cometabolizing sub-

strates. It implies how Bacillus can engineer its metabolic

pathway to produce PHA co-polymer. This property

enables it to be a strong competitor as an industrial PHA

producer in future.
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