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Abstract

Given superior analytical features, mass spectrometry proteomics is well suited for the basic 

investigation and clinical diagnosis of human disease. Modern mass spectrometry enables detailed 

functional characterization of the pathogenic biochemical processes, as achieved by accurate and 

comprehensive quantification of proteins and their regulatory chemical modifications. Here, we 

describe how high-accuracy mass spectrometry in combination with high-resolution 

chromatographic separations can be leveraged to meet these analytical requirements in a 

mechanism-focused manner. We review the quantification methods capable of producing accurate 

measurements of protein abundance and post-translational modification stoichiometries. We then 

discuss how experimental design and chromatographic resolution can be leveraged to achieve 

comprehensive functional characterization of biochemical processes in complex biological 

proteomes. Finally, we describe current approaches for quantitative analysis of a common 

functional protein modification: reversible phosphorylation. In all, current instrumentation and 

methods of high-resolution chromatography and mass spectrometry proteomics are poised for 

immediate translation into improved diagnostic strategies for pediatric and adult diseases.
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Introduction

Ever since the first discovery of specific proteins associated with human disease [1], the field 

of protein chemistry and later proteomics sought to identify new and improved markers of 

disease and targets of therapies. While the instrumentation for analytical chemistry and mass 

spectrometry has steadily improved, incorporation of this approach into preclinical 

investigation and clinical care has lagged [2]. With notable exceptions, such as mass 

spectrometry-based detection of bacterial pathogens [3], and drug and metabolites [4,5], 
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recent advances in mass spectrometry remain largely confined to analytical chemistry 

laboratories [6]. Recently, we and others have sought to apply high-accuracy mass 

spectrometry [7] approaches for the discovery of improved diagnostic markers and 

therapeutic targets [8–16]. As a result of these and other studies, several methodological 

requirements for translational and clinical proteomics have emerged, including the need to 

balance analytical sensitivity and accuracy with the breadth of analyte detection, as driven 

by sample throughput. Here, we review the recently developed mass spectrometric methods 

in their current ability to enable comprehensive and quantitative proteomics, as they relate to 

the translational and clinical applications.

Biological Mass Spectrometry Proteomics

Protein activities in cells are controlled by multiple factors, including but not limited to 

protein synthesis and degradation [17], alternative splicing [18], post-translational chemical 

modification [19], intra-cellular localization [20], and interaction with co-factors and 

regulators [21]. Understanding differential regulation of all these mechanisms requires 

accurate quantification of proteins and their proteo- and chemoforms, which is increasingly 

being achieved by combining mass spectrometry-based proteomics with biochemical 

techniques and computational analyses [22–25]. These approaches generate data of 

increasing breadth and depth, as evidenced by the recently established workflows for mass 

spectrometric detection of post-translationally modified peptides [26, 27]. The general 

analytical requirement to obtain such biologically meaningful data is the need to accurately 

and sensitively measure the abundance of all relevant protein chemoforms in a sample. Here, 

we focus on bottom-up proteomics approaches, which analyze peptides generated by 

enzymatic or chemical proteolysis instead of the corresponding intact proteins, as this 

approach remains the most prevalent today [7, 28], though recent improvements in intact 

protein analysis should lend themselves to large-scale intact proteomics in the foreseeable 

future [29].

Quantitative Proteomics

High-throughput quantification of proteins and peptides historically relied on dye 

fluorescence intensity of gel resolved proteins, i.e., DIGE [30], or on correlative measures 

such as for example the number of fragmentation spectra recorded for a given protein [31]. 

Nowadays, these methods are used less frequently, because improvements in 

chromatography, ionization, mass spectrometry instrumentation, and data analysis enable 

more accurate quantification by direct measure of currents generated by specific peptide 

ions. The signal produced depends not only on the specific analyte concentration, but also on 

the efficiency of formation of the relative ions (ionization and fragmentation properties, as 

applicable). As a result, ion current-based quantification is always a relative and sample-

specific measure.

With the exception of methods dependent on reporter ions, discussed later, quantification of 

peptides by mass spectrometry requires multiple measurements of the mass analyzer current 

generated by specific ions. These measurements are integrated in the time domain of the 

corresponding chromatographic peak to calculate the area under the curve (AUC), which is 
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the complete quantitation metric [32, 33]. This method is more robust than instantaneous ion 

current measurements, reducing the variability produced by differential chromatographic 

properties of peptides and variable ionization efficiencies.

Using modern software, specific ion currents can be extracted from any series of mass 

spectra. For example, signal intensity of un-fragmented peptide ions can be retrieved from 

full-range high-resolution data-dependent precursor scans [32, 33], a strategy that in 

principle enables proteome-wide quantification. However, far higher sensitivity, precision, 

and linear dynamic range are achieved by targeted quantification, which consists of 

detecting a ions within defined m/z windows selected by mass filters of increasing resolving 

power (Table 1). The most widespread implementation, still considered the gold-standard for 

peptide quantitation, is selected reaction monitoring (SRM, also referred to as MRM for 

multiple reaction monitoring), which uses triple-stage quadrupole instruments to first filter 

specific m/z range for fragmentation and subsequently filter specific fragment ions produced 

by collision-induced dissociation before dynode detection [34, 35]. This method benefits 

from the high sensitivity of dynode detectors, and the robustness conferred by the 

uninterrupted ion beam, but is limited by the relatively low resolution of current mass filters 

that hinders the specificity of the assays, which thus require careful validation [36, 37].

Parallel reaction monitoring (PRM) is conceptually similar to SRM in the use of mass 

filtering of narrow precursor isolation windows (Table 1), but uses high-resolution mass 

analyzers, such as the Orbitrap, to enable acquisition of complete high-resolution fragment 

ion spectra [38, 39]. While comparable in sensitivity to SRM, PRM enables potentially 

complete sequencing of the target peptide, with the consequent improvements in specificity 

and accuracy of quantitation. However, its higher duty cycle may reduce assay multiplexing, 

a drawback recently alleviated by the introduction of the internal standard triggered PRM 

approaches [40]. Both methods enable absolute sensitivity in the attomolar range, and up to 

five order of magnitude of linear dynamic range, which is still less than the biologic 

concentration range of proteins in human tissues [41, 42].

On the other hand, data independent acquisition (DIA) in principle can overcome the limited 

throughput of targeted methods by iteratively selecting portions of the m/z range for 

fragmentation, prior to high-resolution detection of fragments from all the filtered precursor 

ions (Table 1). Subsequent deconvolution of these fragmentation spectra permits peptide 

identification and extraction of chromatographic elution peaks for quantification [43–47]. 

While recent improvements in the resolution of time-of-flight spectrometers, such as the 

parallel accumulation-serial fragmentation (PASEF) method [48], promise to increase the 

instrumental duty cycle to permit data independent analysis of increasing sensitivity and 

accuracy, recent benchmarking of DIA using existing instruments demonstrated lower 

accuracy as compared to PRM and SRM [49].

An alternative strategy for peptide quantitation leverages the detection of reporter ions 

generated by the fragmentation of chemically reactive isobaric tags, such as for example 

iTRAQ and TMT [50, 51]. Both reagents consist of an isotopically encoded reporter ion, an 

amine reactive N-hydroxysuccinimidyl moiety, and a normalizing group to ensure that 

precursors labeled with different isotopologues remain isobaric and are thus co-selected for 
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fragmentation. These reagents are particularly useful in clinical applications as they enable 

isotopic labeling of samples derived from human tissues, but require controls for variable 

labeling efficiency and limited dynamic range [52].

Towards Comprehensive Quantification

While current approaches for quantitative mass spectrometry are sufficiently accurate to 

permit robust peptide quantification, they have yet to be applied for comprehensive analyses. 

For example, a typical SRM assay with chromatographic scheduling can monitor on the 

order of 100 peptides (Table 1). Conversely, DDA experiments, implementing either 

precursor ion current or reporter ion quantification, permit measuring the abundance of 

several thousand peptides across multiple samples, although with reduced precision, 

reproducibility and sensitivity. These observations provided the rationale to consider 

targeted approaches as a mere validation method for comprehensive DDA surveys. However, 

it is important to note that the complexity of mammalian tryptic proteomes far exceeds the 

sequencing duty cycle of current instruments [53], and that DDA is biased towards abundant 

and readily ionizable peptides that often do not include analytes of interest [54]. As a 

consequence, these approaches may not be suitable for the analysis of relevant molecular 

markers.

However, for many human diseases, including childhood diseases, comprehensive proteomic 

profiling may not be necessary, as relevant molecular markers have been identified using 

hypothesis-based or other high-throughput approaches such as genomics. For example, 

numerous childhood and adult cancers exhibit oncogenic activation of kinase signaling [55, 

56], and chromatin and gene expression regulatory pathways [57, 58]. Thus, measurements 

of biologically or pathologically meaningful analytes may not require ‘whole-proteome’ 

approaches, and instead may rely on quantification of marker panels defined to probe 

specific pathways, as for example the PI3K-mTOR/MAPK signaling cascade [59] or the 

DNA damage response network [60]. This can also involve knowledge-based “sentinel” 

proteins [61], or other markers of pathway activity, such as those generated by reduced 

representation approaches [62]. Collections of SRM assays for this purpose have already 

begun development for cancer and infectious diseases [63–66].

The major determinant of throughput for both analytes and specimens is the duty cycle of 

targeted mass spectrometric detection in relation to the time scale of analytical 

chromatographic separation. One obvious solution for this problem involves enhancing 

chromatographic resolution prior to MS analysis to obtain adequate separation over extended 

chromatographic gradients [67]. This rationale was indeed successfully applied to increase 

the number of targeted mass spectrometry assays scheduled in a single experiment [68]. 

Improved chromatographic resolution can also be achieved by multi-dimensional and 

orthogonal separation techniques [69, 70], which also provide a means to improve mass 

spectral sampling, and detection and quantification of low abundance ions, thereby 

increasing the exposure of specific proteome subsets such as post-translationally modified 

peptides [7, 71–73]. However, most offline sample fractionation workflows are potentially 

hindered by sample losses that limit their overall robustness and reproducibility [74]. Online 

chromatographic fractionation has been successfully applied to DDA experiments, 
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demonstrating high efficiency and sensitivity due to automation and reduced sample 

requirements [75–78]. In unpublished results from our laboratory, we observed that 

automated online fractionation using multi-dimensional chromatography efficiently and 

reproducibly separated peptides from low-abundance transcription factors from other 

abundant isobaric ions co-eluting in final chromatographic dimension coupled to 

nanoelectrospray ionization. This enabled accurate quantification by targeted precursor and 

fragment ion detection of analytes that were otherwise not detected at all using conventional 

offline multi-dimensional or online single dimensional chromatographic separations.

Due to the variability of peptide ionization and fragmentation, all quantitative methods based 

on ion current extraction are inherently relative in nature [32, 33, 79]. Extracted ion 

chromatograms can be matched to compare the signal produced by the same peptide in 

different experiments. Such label-free methods have been used for comprehensive analysis 

of phosphorylation stoichiometry in model cell systems [32], [33, 80]. This strategy was also 

used in translational and preclinical studies to identify human disease biomarkers [12, 14, 

16]. However, far more accurate measurements can be achieved using synthetic external 

reference peptides by comparing the signals produced by isotopologue peptides undergoing 

simultaneous chromatographic separation and ionization, thus minimizing technical 

variability and noise. Such approaches require isotopically encoded reference peptides for all 

the targeted analytes. Metabolic labeling of cell lines or primary cells in vitro has been used 

to generate reference standards for relative quantification of tumor samples [81–83]. 

However, it is still unclear whether such standards sufficiently capture the complexity of 

biologically variable analytes, such as specific post-translational modifications. Moreover, 

differential protein turn-over rates may lead to uneven proteome labeling [17]. Tissue 

samples can also be directly labeled using isotopically encoded chemical reagents including 

cysteine reactive moieties [84], 18O water [85], iTRAQ and TMT reagents [50, 51] as well 

as other amine reactive groups producing dimethyl [86, 87] or nicotinic acid derivative [88, 

89] adducts. While permitting universal labeling for quantitative mass spectrometry, such 

approaches require controls for variable or non-specific labeling. Alternatively, quantitation 

can be achieved using isotopologue synthetic peptides, as they can be introduced at known 

concentrations directly, thus enabling absolute quantification [35, 90].

Towards Comprehensive Functional Proteomics

Along with protein abundance, measured by quantification of the corresponding peptides, 

post-translational protein modifications are biologically important regulatory mechanisms 

that currently can be analyzed best using quantitative mass spectrometry [91]. In particular, 

the well-established regulatory functions of protein kinase signaling led to the refinement of 

methods for enrichment and analysis of phosphorylated peptides. Mass spectrometry is 

particularly well suited for characterization of protein chemoforms, as specific chemical 

modifications produce specific diagnostic alterations of peptide molecular mass. However, 

the sub-stoichiometric nature of protein phosphorylation and the relatively low abundance of 

many kinases and kinase substrates pose serious challenges for robust measurements of site 

occupancies and stoichiometries. Instrumental advances that enable robust phospho-

proteomics include the development of specific affinity chromatography reagents and 

chromatographic strategies for the enrichment of phosphorylated peptides [71–72, 92–96]. 
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Such approaches, for example, have recently been used to measure biological kinetic 

processes [97], and have been successfully coupled to targeted detection for enhanced 

sensitivity [98].

Enrichment of phosphorylated peptides is most commonly achieved using offline 

separations, that despite efforts towards miniaturization and automation [62, 99], are still 

prone to variable adsorptive losses that can potentially confound quantification 

measurements. To overcome this limitation, online chromatographic enrichment of 

phosphorylated peptides has been developed [100, 101]. Importantly, the detection of 

phosphorylated peptides does not appear to be significantly affected by their intrinsic 

chromatographic and ionization properties [28], suggesting that improved exposure afforded 

by online multi-dimensional chromatography might enable robust and sensitive quantitative 

analysis. Consistent with this notion, enhanced detection of phosphorylated peptides was 

observed using online fractionation by combining alkaline reverse phase and strong-anion 

exchange chromatography [76, 77]. Importantly, these automated multi-dimensional 

chromatographic methods might improve the detection and quantitation of other chemically 

modified, e.g., acetylated, methylated etc, peptides without the need for dedicated affinity 

enrichment procedures, thus providing a generalized method for quantitative functional 

proteomics [71].

Future Directions

There is a clear and unmet need for improved strategies for diagnosis, prognostication, and 

treatment of human disease. Current and emerging methods for high-resolution 

chromatography and mass spectrometry now enable routine accurate and sensitive 

quantitation of many biologically and pathologically relevant biomarkers. In particular, 

modern mass spectrometry satisfies the analytical requirements for comprehensive 

functional proteomics. Targeted bottom-up proteomics enable accurate quantification over a 

wide range of analyte concentrations present in clinical tissue specimens. In addition to data-

independent approaches, recent advances in mechanism-based analysis of specific cellular 

processes may permit clinically relevant quantification of biologically or pathologically 

functional proteome subsets. Specifically, this is empowered by robust and reproducible 

sample processing and fractionation, which is now achievable using automated online 

multidimensional chromatography systems. This should enable not only precision functional 

proteomics by improving targeted detection of chemically modified peptides and proteins, 

but also provide specific mechanistic insights into biological and disease processes 

themselves.
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DDA Data Dependent Acquisition
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DIA Data Independent Acquisition

PRM Parallel Reaction Monitoring

PTM post-translational modification

SAX strong anion exchange (chromatography)

SCX Strong cation exchange (chromatography)
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Table 1

Analytical features of quantitative mass spectrometry methods.

DDA SRM PRM DIA

Sensitivity Medium High High High

Specificity Medium High High Medium

Throughput 5,000 150 150 (600*) 2,000

DDA: data-dependent acquisition; SRM: selected reaction monitoring; PRM: parallel reaction monitoring; DIA: data-independent acquisition. 
Throughput describes the maximum number of analytes currently accessible per experiment using a single liquid chromatography separation with 
typical conditions, and assay scheduling for targeted methods.

*
Internal standard triggered-parallel reaction monitoring (IS-PRM).
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