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Abstract

Screening for drug compounds that exhibit therapeutic properties in the treatment of various 

disease remain a challenge even after considerable advancements in biomedical research. Here we 

introduce an integrated platform that exploits gene expression compendia generated from drug-

treated cell lines and primary tumor tissue to identify therapeutic candidates that can be used in the 

treatment of acute myeloid leukemia (AML). Our framework combines these data with patient 

survival information to identify potential candidates that presumably have significant impact on 

AML patient survival. We use a Drug Regulatory Score (DRS) to measure the similarity between 

drug-induced cell line and patient tumor gene expression profiles, and show that these computed 

scores are highly correlated with in vitro metrics of pharmacological activity. Furthermore, we 

conducted several in vivo validation experiments of our potential candidate drugs in AML mouse 

models to demonstrate the accuracy of our in silico predictions.

Introduction

Today’s drug discovery pipelines suffer from high rates of drug candidate failure that impose 

an economic burden on healthcare. Due to the complexity of drug action, identifying drugs 

that exhibit therapeutic effect for a specific disease is a highly involved process. It has been 

estimated that US$1.78 billion and 13.5 years are required to take a single therapeutic from 
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its initial identification as a candidate to its availability in the clinic 1. Therefore, there is 

enormous opportunity to develop more efficient drug identification platforms that integrate 

in silico approaches with available genomic data. In the case of cancer, there have been 

several efforts to characterize drug action at the genomic level to understand its functional 

effect. Large consortia such as the Connectivity Map (CMap) and Genomics of Drug 

Sensitivity (GDSC) have generated cell-line derived gene expression and drug response data 

to identify genomic predictors of drug effectiveness 2–4. Here, we chose to utilize data from 

blood-derived cell lines to develop a novel integrated pre-clinical drug-screening framework 

to identify drug leads for the treatment of acute myeloid leukemia (AML).

AML is a relatively rare, liquid cancer that is induced upon development of genetic lesions 

in immature hematocytes that comprise the myeloid lineage. The current model of AML 

holds that hematopoietic cells contain sequential mutations that propagate through the 

myeloid lineage during differentiation and self-renewal 5. As the age of an individual 

increases, mutations accumulate until a key driver mutation occurs that drives uncontrolled 

cell proliferation 5. Unfortunately, the few therapeutics have been introduced into the market 

over the past decades 6. To address this issue, we have developed an integrated in silico and 

in vivo drug-screening framework that utilizes readily available high-throughput genomic 

data to expedite pre-clinical drug discovery efforts in AML.

Gene expression profiles (GEPs) have been used to computationally search for drug 

candidates that exhibit potential anticancer activity 7–12. Hassane et al. utilized the gene 

expression signature of parthenolide, a known AML therapeutic, to search for drugs that 

could induce a similar signature using a correlation-based procedure 8. Furthermore, Sirota 

et al. performed a systematic repositioning analysis to identify potential drug candidates for 

several diseases using a compendia of publicly available gene expression data 9. Similarly, 

Dudley et al. identified topiramate as a potential candidate to treat inflammatory bowel 

disease 10. However, these studies did not incorporate patient clinical information into their 

prediction analyses, which is a key indictor of drug effectiveness.

In this study, we utilize an integrated approach whereby we implement IDEA in AML to 

derive a set of drug candidate predictions 13. IDEA was previously developed to predict drug 

candidates by identifying drugs that could induce a GEP associated with breast cancer 

patient survival 13. This approach differs from previous methods by taking into account 

time-to-event patient clinical information and by using a more sensitive GEP-matching 

algorithm. We show that by applying IDEA, drugs associated with AML patient survival 

correlate with in vitro pharmacological metrics of drug potency and drug-associated 

molecular features. Finally, we carried out validation experiments in an AML mouse model 

to show that our predicted survival-associated drugs indeed exhibit pharmacological activity 

in vivo by substantially slowing tumor growth. Overall, we present a novel integrated pre-

clinical drug discovery platform that combines both data-driven and experimental 

methodologies.
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Materials and Methods

Processing of drug treatment profiles

1229 drug treatment profiles (DTPs) corresponding to 1078 different drugs were 

downloaded from the CMap (Connectivity Map) database 2. Data used in this study were 

derived from HL-60 (human promyelocytic leukemia cells) cells treated with 1078 different 

drugs and gene expression was measured by using Affymetrix arrays. The raw .CEL files 

were processed using the Robust Microarray Analysis method implemented in the R 

package “affy” 14; all probe sets were represented as absolute expression values. For each 

drug, relative log2 expression profiles were generated by comparing profiles from treated 

samples to a common reference profile containing the basal expression values of untreated 

HL60 cell lines. Probe set expression values were collapsed into gene level expression by 

taking the average of the probe set log2 ratios, resulting in final DTPs. For some drugs, 

multiple treatment profiles were available which corresponded to different biological 

replicates and treatment with different dose concentrations. Each drug’s treatment profile is 

represented as a vector of log2 ratios, indicating the expression changes of all genes in 

response to the drug treatment. Each DTP was then split into upregulated gene and 

downregulated gene groups and z-transformed to derive a p-value. The p-values were then 

−log10 transformed and used as input into IDEA. Detailed explanation of this process can be 

found in Ung et al. 13.

AML gene expression data

Normalized AML microarray data containing 562 patient GEPs from Herold et al. were 

downloaded from GEO under accession number GSE37642 15, 16. 170 AML GEPs 

published by Wilson et al. was downloaded from the NCI caArray database under the 

accession number willm-0019 17. The Wouters (n=526) and Valk (n=293) AML datasets 

were downloaded from the GEO database under the accession numbers GSE14468 and 

GSE1159, respectively 17–19.

In silico identification of survival-associated drugs

The IDEA computational framework was used to screen for drugs associated with patient 

survival in AML. Briefly, the drug treatment profiles characterize the effect of drugs on the 

expression of genes. Genes with larger positive/negative log ratios are those that are 

regulated more intensively by a drug. We examined the baseline expression levels of the 

genes in AML patient samples and calculated DRSs for each DTP-tumor sample pair. DRS 

is a quantitative measure of similarity between a drug treatment profile and an AML 

sample’s GEP. If genes that are upregulated/downregulated in an AML patient sample also 

tend to be upregulated/downregulated in HL60 cell lines in response to drug exposure, then 

the sample will be assigned a large positive DRS corresponding to the drug. Conversely, if 

an inverse relationship is observed, the corresponding AML sample will be assigned a large 

negative DRS. When drug regulated genes are randomly distributed in a sorted AML 

expression profile, the sample will yield a DRS close to 0. The DRS is calculated using a 

random-walk based algorithm implemented by IDEA. Detailed description of the IDEA 

framework can be found in Ung et al. 13.
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Machine learning analysis

Unsupervised clustering of patients from the Wouters dataset was performed using DRS 

profiles that were most deviant between good and poor/intermediate cytogenetic risk patients 

as determined by Wilcoxon rank-sum test 19. This resulted in 94 significant DRS profiles 

(P<1E-4) that were used as features in the clustering analysis using complete linkage and 

Euclidean distance. A random forest machine learning model was trained using all DRS 

profiles as features to classify patients into two (good and poor/intermediate) or three (good, 

poor, and intermediate) cytogenetic risk groups. 10-fold cross-validation and calculation of 

the AUC from the ROC curve was performed to evaluate model performance for the two-

group classification task. Accuracy (number correct/total) was calculated to evaluate 

performance in the three-group classification task. Linear discriminant analysis (LDA) was 

used to validate results from the random forest model. For the two-group classification task, 

the 94 features identified in the clustering analysis were used. Features for the LDA analysis 

in the three-group classification task were selected by performing an ANOVA to compare 

DRS profiles between the three sample groups and an adjusted P<0.01 (Benjamini-

Hochberg) was used as the cutoff. This yielded a total of 144 DRS profiles that were used to 

train the LDA model. R packages “gplots”, “randomForest”, and “MASS” were used to 

implement clustering, random forest, and LDA analyses, respectively.

Correlation of Trichostatin A DRS with IC50 and mRNA expression

GEPs for 102 blood-derived cell lines along with IC50 values across these cell lines for 125 

drugs were downloaded from the GDSC (Genomics of Drug Sensitivity) database 4. 

Trichostatin A (TSA) DRS was correlated with the IC50 of each drug in the GDSC database 

across the 102 blood-derived cell lines using Spearman correlation. Correlation of TSA DRS 

with HDAC2, MEK, and Bcl2 mRNA expression across the same cell lines was performed 

using the same method.

In vivo validation of survival-associated drugs

The following animal study was approved by the IACUC of National Chung Hsing 

University. Athymic BALB/c nu/nu nude mice (4–6 weeks of age) were purchased from the 

National Laboratory Animal Center (Taipei, Taiwan) and mice were maintained in pathogen-

free conditions with irradiated chow. HL-60 (ATCC, CCL-240) cells were re-suspended in 

serum free RPMI-1640 medium mixed with Matrigel (BD Biosciences, San Jose, CA) at a 

1:1 ratio. Mice were injected s.c with 5x106 cells in 0.5 ml matrigel into the ventral flank 

and tumors were allowed to grow for 10 days or until palpable tumors formed 

(approximately 50 mm3). Tumor-bearing mice were randomly assigned to the following 

treatment groups: Control (10% DMSO + 90% glyceryl trioctanoate), sulfasalazine (250 mg/

kg), Fluoxetine (30 mg/kg), Betulinic acid (20 mg/kg), Clozapine (1 mg/kg). All four drugs 

were purchased from Sigma-Aldrich (St Louis, MO) and the drug dosages were used by 

referring to previous reports describing anti-tumor activity of these compounds 20–23. Mice 

were treated every other day by intraperitoneal injection using 100 μL total volumes. Mean 

tumors volumes were measured according to the formula: length × width × thickness × 0.5, 

and expressed as mm3 values before each treatment. Mice were euthanized when tumors 
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reached a size of 200 cm3 or became ulcerated. If individual mice within a group were 

euthanized, the final measurement was carried over to subsequent time points.

Identification of candidate drugs for AML treatment

We calculated the DRS for 1078 drugs in all samples of an AML expression dataset. To 

identify the candidate drugs that might be effective for treating AML, we examined the 

correlation between DRS of these drugs and patient survival. Our rationale is that if the 

expression of drug-regulated genes is correlated with patient survival, then the drug might be 

used to modulate these genes in AML to induce a pharmacological effect. For each drug, we 

fitted a univariate Cox proportional hazards model using the DRS as the independent 

variable and patient survival as the dependent variable 24. We also fitted multivariate Cox 

regression models to adjust for potential confounding clinical factors such as age, tumor 

stage, tumor grade, ER status, etc. Analysis of Schoenfeld residuals was used to evaluate the 

proportional hazards assumption for all models. The Wald test was used to assess the 

significance of the model parameters and p-values were adjusted for multiple hypotheses 

testing using the Benjamini-Hochberg procedure 25. The “survival” R package was used to 

implement the survival analysis.

GO enrichment analysis

Genes that were up- or downregulated two-fold upon treatment with TSA were used to 

calculate GO enrichment of BP terms via the DAVID bioinformatics tool (http://

david.abcc.ncifcrf.gov/) 26, 27.

Results

Overview of integrated framework

Our integrated pre-clinical drug-screening procedure begins by implementing IDEA 

(Integrated Drug Expression Analysis), a computational drug prediction framework, to 

identify drug candidates for AML treatment. IDEA integrates drug treatment profiles from 

CMap, AML patient tumor GEPs, and AML patient survival information to output drugs that 

may induce a pharmacological effect that impacts patient survival (Fig 1). Briefly, IDEA 

calculates a Drug Regulatory Score (DRS) between a drug treatment profile (DTP) and an 

AML tumor gene expression profile (GEP) which quantitatively measures the level of 

similarity or dissimilarity between the two profiles (See Methods) 13. DRS are calculated for 

all DTP and tumor GEP pairs and the DRS profile of each drug (DRS across patient 

samples) were fitted with a Cox proportional hazards model to identify top candidates that 

presumably have an effect on patient survival (Fig 1). Several predicted candidates are then 

selected for experimental validation in an AML mouse model (Fig 1).

Systematic screening of drugs associated with AML patient survival

At an adjusted p-value cutoff of 0.01, we identified 66 drugs using the Herold dataset that 

are significantly associated with AML patient survival to validate in vivo (Suppl. Table 

S1) 28. We re-implemented this analysis in the Verhaak, Valk, and Wilson AML datasets and 

achieved similar results 17–19. Figure 2 shows an example where TSA DRS profiles 

effectively stratify AML patients into favorable and poor prognosis groups in four 
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independent datasets 17–19. This indicates that IDEA’s output is reproducible and that TSA 

exhibits pharmacological activity in several cancer types, as shown by previous 

studies 21, 24, 29–31. This in silico screening approach filters out biologically inactive drugs 

and efficiently identifies the most probable candidates based on gene expression and patient 

survival.

Drug DRS profiles are predictive of cytogenetic risk in AML

Since drug DRS are prognostic, we hypothesized that DRS can predict cellular phenotypes 

that have been traditionally known to correlate with patient survival. As such, we attempted 

to predict cytogenetic risk of patients based on drug DRS profiles 32, 33. Using the Wouters 

dataset, we selected DRS profiles that differed significantly between patients classified as 

having “good” cytogenetic risk or “poor/intermediate” cytogenetic risk using an adjusted p-

value cutoff of 1E-4 (Wilcoxon rank-sum test) 19. This yielded 94 DRS profiles that were 

used to cluster patients into subgroups. We found that these DRS profiles were informative 

such that they were able to cluster patients into cytogenetic risk groups (Fig 3A). In 

particular, we identified three apparent clusters corresponding to patient cytogenetic risk. 

The first cluster (top) had 50 samples with good cytogenetic risk (49.4%), the second cluster 

had 40 samples with good cytogenetic risk (25.3%), and the third cluster had 7 samples with 

good cytogenetic risk (3.8%) (Fig 3A). This indicates that DRS profiles effectively identified 

differences in cytogenetic risk between acute myeloid leukemia samples, showing that they 

reflect prognostic molecular features of tumors.

To further evaluate our unsupervised results, we trained a random forest model using DRS 

profiles from all drugs to verify their ability predict patient cytogenetic risk. We evaluated 

the model’s performance by implementing a 10-fold cross validation procedure, from which 

the model achieved an AUC of 0.97 calculated from the ROC (Receive Operating 

Characteristic) curve (Fig 3B). Furthermore, we extended the random forest analysis to 

categorize patient samples into good, intermediate, or poor cytogenetic risk groups and was 

able to correctly classify 71% of the samples. As validation, we also implemented a linear 

discriminant analysis (LDA) model that achieved an AUC of 0.97 for the two-group 

classification task. Additionally, the LDA model was able to correctly classify 76% of the 

samples for the three-group task (See methods). Similarly, Zhou et al. reported comparable 

accuracy when predicting cytogenetic risk using GEPs 34. Ultimately, these results indicate 

that DRS profiles contain information that reflects phenotypic differences between patient 

groups.

Correlation of DRS with in vitro pharmacological metrics

To explore potential mechanisms of action underlying our predicted drugs, we adopted a 

novel integrated validation procedure whereby we implemented IDEA in 102 GDSC 

(Genomics of Drug Sensitivity) blood-derived cell lines and correlated the outputted DRS 

with treatment response metrics. Since the drugs included in the GDSC dataset have known 

targets, this correlation analysis allowed us to gain insight into the biological mechanisms 

underlying drug treatment with CMap drugs. We calculated DRS between CMap DTPs and 

GDSC blood-derived cell line GEPs and correlated the DRS of each CMap drug with the 

IC50 of each GDSC drug across blood-derived GDSC cell lines (Fig 4A). We repeated this 
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analysis using other pharmacological metrics (Area under the curve and EC50) derived from 

dose-response curves and achieved consistent results. To note, CMap provides before and 

after drug treatment GEPs for three cell lines (drug-centric), whereas GDSC provides 

profiles that measure basal gene expression of several cell lines (cell line-centric).

Interestingly, we found that TSA DRS was most correlated with the IC50 of ABT-263 

(navitoclax), a Bcl2 inhibitor, with a Pearson correlation coefficient (PCC) of 0.57 and 

P=1E-5 (Fig 4A, 4C). Furthermore, we identified MEK inhibitors that were also highly 

correlated including AZD6244 (PCC=0.53), RDEA119 (PCC=0.47), PD0325901 

(PCC=0.4), and CI-1040 (PCC=0.4) (Fig 4A). These results suggest that Bcl2 and MEK 

pathways are involved in response to TSA treatment. To further evaluate their involvement, 

we correlated the TSA DRS with HDAC2, Bcl2, and MEK mRNA expression across the 102 

GDSC blood-derived cell lines. As expected, the TSA DRS was anti-correlated with HDAC2 

expression. (PCC=−0.44, P=4.5E-6) (Fig 4B). However, we found that there was a 

significant, albeit weak, anti-correlation between TSA DRS and Bcl2 expression (PCC=-0.2, 

P=0.04) even though there was a strong correlation between TSA DRS and ABT-263 IC50 

(Fig S1, Fig 4C). In spite of this, the directionality of the correlation is in accordance with 

previous studies reporting that increased Bcl2 expression confers sensitivity to Bcl2 

inhibitors 35, 36. However, the small effect size suggests a more complicated relationship 

between HDAC inhibition and BCL-2 expression. In the case of MEK, we observed that 

TSA DRS was correlated with both MEK expression (PCC=0.47, P=6.2E-7) and AZD6244 

IC50 (PCC=0.53, P=4.1E-5) (Fig 4D, 4E). This suggests that high TSA DRS, which 

indicates decreased HDAC expression, results in an upregulation of MEK that explains why 

increased dosage concentration of AZD6244, RDEA119, PD0325901, and CI-1040 is 

required to achieve 50% cellular inhibition in vitro. Indeed, several studies have shown that 

HDAC inhibitors and MEK inhibitors exhibit synergistic effects in leukemia indicating that 

our analysis was able to identify molecular mechanisms underlying drug effect 37–40.

To compare, we carried out Gene Ontology enrichment analysis of the top up- and 

downregulated genes in the TSA drug treatment profile (Suppl. Table S2) 41. Surprisingly, 

we found no significant cancer-related biological processes enriched in the differentially 

expressed genes. We speculate that since TSA is a histone deacetylase inhibitor, it will have 

widespread, yet small downstream effects on genes that may or may not have a functional 

effect. As a result, standard enrichment analysis may not be sensitive enough to detect key 

genes involved in apoptosis or cell proliferation. These results suggest that correlating TSA 

DRS with phenotypic response to targeted inhibitors may be a better strategy for identifying 

functional pathways that result from TSA treatment. However, we caution that this 

interpretation is only valid for TSA, and may not be generalizable to other drugs.

In vivo validation of novel predicted drugs for AML treatment: Sulfasalazine, Fluoxetine, 
Betulinic Acid, Clozapine

To translate our in silico drug-screening procedure into the pre-clinical testing phase, we 

identified five novel survival-associated drugs that were predicted by IDEA and 

experimentally evaluated their effectiveness in an AML mouse model. In particular, we 

tested sulfasalazine, fluoxetine, clozapine, betulinic acid, and ceforanide, which were 
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originally intended to treat arthritis, depression, schizophrenia, viral infections, and bacterial 

infections, respectively 42–46. All five of these drugs were predicted to impact patient 

survival via pharmacological activity as shown by Figs. 5A–5D in the Herold dataset 15. To 

generate our AML mouse models we engrafted athymic BALB/c nu/nu mice with HL-60 

(Human promyelocytic leukemia cells) via subcutaneous xenografts. Each drug was then 

tested for therapeutic activity by treating mice with either vehicle (10% DMSO + 90% 

glyceryl trioctanoate) alone or standard doses of the drug candidate. We found that 4 out of 5 

(ceforanide showed no substantial effect) of our predicted drugs exhibited significant 

therapeutic activity. First, we found that treatment with 250 mg/kg of sulfasalazine 

substantially decelerated tumor growth compared to vehicle over a 21-day period (Figs. 6A, 

6B). Second, in the case of fluoxetine, daily treatment with 30 mg/kg also decreased the rate 

of tumor growth compared to vehicle (Figs. 6C, 6D). Third, we observed that daily treatment 

with 20 mg/kg of betulinic acid also decelerated tumor growth (Fig. 6E). Lastly, we 

observed similar antineoplastic activity of clozapine at a dose of 1 mg/kg (Fig. 6F). These 

results suggest that our initial in silico screen was able to output several survival-associated 

drugs, the majority of which could be verified in vivo.

Discussion

Drug discovery has long been a focus of intense research due to the constant need for 

therapeutics that can treat disease and ameliorate symptoms. In the case of cancer, rapid 

development of acquired resistance to commonly prescribed chemotherapeutics and targeted 

therapies necessitates the formulation of faster and more efficient drug-screening pipelines. 

Here, we implemented a computational drug prediction framework in acute myeloid 

leukemia and were able to experimentally validate several of our drug predictions to identify 

candidates. We explored the association between IDEA and pharmacological metrics to gain 

mechanistic insight into drug action and our experimental results show a substantial 

reduction in tumor growth when mice were treated with 4 different survival-associated drugs 

over a 21-day period.

We note that there are limitations to our approach. First, the reliability of drug treatment 

profiles, which were derived by averaging gene expression over several replicate 

experiments, may exhibit variability. Second, these drug treatment profiles were generated 

over different concentrations and may not reflect optimal drug activity. Third, we note that 

the limited time interval over which mice were treated provides a short-term evaluation of 

drug effectiveness and that anti-tumor activity may not be sustained and/or side effects may 

present itself after prolonged exposure. Finally, it is difficult to interpret the hazard ratios of 

the top drugs outputted by IDEA. Since patient tumors from our datasets were collected 

prior to treatment, the survival results may have been influenced by subsequent therapy. This 

may be why some known anti-cancer drugs were associated with a hazard ratio >1. Thus, we 

claim that any significant association that exists between the drug and patient survival 

indicates pharmacological activity, which merits further experimental investigation.

Despite these obstacles, we maintain that our integrated pipeline is robust and sensitive 

enough to detect potential drug candidates. In particular, we have shown that we could 

computationally identify known therapeutics (e.g. TSA) and novel candidates. We further 

Ung et al. Page 8

Pharmacogenomics J. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



support our predictions by conducting in vivo experiments that show our drug leads exhibit 

therapeutic activity in an AML mouse model. Our results strongly support the effectiveness 

of using an integrated in silico/in vivo approach to drug screening in the context of patient 

survival.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Flowchart of integrated screening pipeline
Drug treatment profiles from HL60 cell lines were integrated with AML patient gene 

expression profiles to derive DRS profiles for each drug. Survival analysis of DRS profiles 

was implemented to identify drugs associated with patient survival. Selected candidates 

were then validated in an AML mouse model.
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Fig. 2. TSA was identified as a drug candidate in four datasets
TSA DRS profile is prognostic in the (A) Herold dataset, (B) Verhaak dataset, (C) Valk 

dataset, (D) and William dataset with p<0.01. Patients were stratified at DRS = 0
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Fig. 3. DRS profiles are predictive of cytogenetic risk in AML
(A) Unsupervised clustering of DRS profiles. Magenta sample labels denote good 

cytogenetic risk and aqua sample labels indicate poor/intermediate cytogenetic risk (B) 

Receiver operating characteristic curve for random forest classification of patients into good 

or poor/intermediate cytogenetic risk categories.
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Fig. 4. Correlation of TSA with drug IC50 and mRNA expression across 102 blood-derived 
GDSC cell lines
(A) Correlation of TSA DRS with IC50 of 125 drugs from the GDSC database (B) TSA 

DRS is anticorrelated with HDAC2 mRNA expression, (C) TSA DRS is correlated with 

ABT-263 (Bcl2 inhibitor) IC50 (D) TSA DRS is correlated with AZD6244 (MEK inhibitor) 

IC50 (E) TSA DRS is correlated with MEK mRNA expression.

Ung et al. Page 16

Pharmacogenomics J. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Survival analysis of Sulfasalazine, Fluoxetine, Clozapine, and Betulinic Acid DRS profiles
(A) Sulfasalazine, (B) Fluoxetine, (C) Clozapine, (D) and Betulinic Acid were identified as 

drugs associated with AML patient survival and chosen for further experimental validation. 

DRS profiles of all drugs were associated with AML patient survival with P<0.05 (Logrank 

test).

Ung et al. Page 17

Pharmacogenomics J. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. In vivo validation of Sulfasalazine, Fluoxetine, Clozapine, and Betulinic Acid in AML 
mouse models
(A) 250 mg/kg Sulfasalazine decreased the rate of tumor growth compared to vehicle-treated 

control over a course of 21 days. (B) Image of tumor from mouse treated with 250 mg/kg 

Sulfasalazine compared to control (C) 30 mg/kg Fluoxetine decreased the rate of tumor 

growth compared to vehicle-treated control over a course of 21 days. (D) Image of tumor 

from mouse treated with 250 mg/kg Fluoxetine compared to control. (E) 20 mg/kg Betulinic 

acid decreased the rate of tumor growth compared to vehicle-treated control over a course of 

21 days. (F) 1 mg/kg Clozapine decreased the rate of tumor growth compared to vehicle-

treated control over a course of 21 days.
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