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Abstract

This paper investigates one of the most fundamental computer vision problems: image 

segmentation. We propose a supervised hierarchical approach to object-independent image 

segmentation. Starting with over-segmenting superpixels, we use a tree structure to represent the 

hierarchy of region merging, by which we reduce the problem of segmenting image regions to 

finding a set of label assignment to tree nodes. We formulate the tree structure as a constrained 

conditional model to associate region merging with likelihoods predicted using an ensemble 

boundary classifier. Final segmentations can then be inferred by finding globally optimal solutions 

to the model efficiently. We also present an iterative training and testing algorithm that generates 

various tree structures and combines them to emphasize accurate boundaries by segmentation 

accumulation. Experiment results and comparisons with other recent methods on six public data 

sets demonstrate that our approach achieves state-of-the-art region accuracy and is competitive in 

image segmentation without semantic priors.

Index Terms

Image segmentation; hierarchical merge tree; constrained conditional model; supervised 
classification; object-independent; ensemble model

I. Introduction

Image segmentation is an important mid-level computer vision problem that has been 

studied for a long time yet remains challenging. General image segmentation is used as a 

pre-processing step for solving high-level vision problems, such as object recognition and 

image classification. In many inter-disciplinary areas, e.g., biological and medical imaging, 

image segmentation also plays a significant role in helping scientists quantify and analyze 

image data. While a lot of research has been done to achieve high segmentation accuracy for 
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specific types of images, the quality of image segmentation for general scenes is still less 

than satisfactory.

In this paper, we introduce a supervised learning based image segmentation framework, 

namely, the hierarchical merge tree model. Starting with over-segmenting superpixels, we 

propose to represent the region merging hierarchy with a tree-like constrained conditional 

model. An ensemble boundary classifier is trained to score each factor in the graphical 

model. A globally optimal label assignment to the model is computed by minimizing the 

total energy under the region consistency constraint, and a final segmentation is recovered 

from the labeling. We also propose an iterative approach that generates various region 

merging hierarchies and combines them to improve the overall performance via 

segmentation accumulation. We conduct extensive experiments for empirical validation. 

Comparisons with other very recent methods on six public data sets show that our proposed 

method produces state-of-the-art region segmentation results.

We begin with a review of previous related work on general image segmentation methods in 

Section II. In Section III, we illustrate our hierarchical merge tree as a constrained 

conditional model and introduce the ensemble boundary classifier. In Section IV, we 

describe a modification to the hierarchical merge tree model with iterative segmentation 

accumulation. Experimental results are shown in Section V, in which we compare the 

segmentation performance of our method with different settings, as well as with other recent 

state-of-the-art methods. In Section VI, we summarize our current work and discuss the 

possible improvement for the future.

II. Previous work

There are two different perspectives of image segmentation [1]. One is edge detection, 

which aims at finding edges between different perceptual pixel groups. The other one is 

region segmentation, which partitions an image into disjoint regions. Usually, edge detection 

focuses on assigning a binary label to each pixel with certain confidence indicating if it 

belongs to an edge or not and does not guarantee closed object contours. Though closed 

contours and thus regions they encircle can be recovered from edges, such transformation 

with high accuracy is usually non-trivial. On the other hand, region segmentation seeks to 

find the cluster membership of each pixel, and closed contours of an object can be trivially 

generated as the outmost points of a region. Many region segmentation methods also take 

advantage of the edge detection outputs as boundary cues to help with the search for correct 

partitioning. Our method belongs to the region segmentation category, and in this section we 

emphasize reviewing previous related works in this category.

First, we briefly summarize related edge detection works. Early edge detections are mostly 

based on image derivatives [2], [3] or filter banks responses [4], [5]. More recent works 

utilize richer information such as colors and textures. One of the most notable works, gPb 

[1], combines multi-scale local cues and globalized cues via spectral clustering and sets up a 

benchmark for edge detection and region segmentation research. Taking advantage of 

supervised learning techniques has also become the recent trend in edge detection. Ren and 

Bo [6] train a classifier with sparse codes on local neighborhood information and improve 
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the edge detection performance. Dollar and Zitnick [7] propose a structured learning 

framework using modified random decision forest for efficient edge detection. 

Seyedhosseini and Tasdizen [8] propose a hierarchical model to capture multi-scale 

contextual information and achieve state-of-the-art edge detection performance.

Early works on region segmentation seek to directly group image pixels in an unsupervised 

manner. Belongie et al. [9] fit Gaussian mixture models to cluster pixels based on six-

dimensional color and texture features. Mean shift [10] and its variant [11] consider region 

segmentation as a density mode searching problem. A number of works belong to graph 

partitioning category, which regards an image as a graph with pixels being nodes and edge 

weights indicating dissimilarity between neighbor pixels. Normalized cuts [12] takes the 

image affinity matrix and partitions an image by solving eigenvalue problems. Felzenszwalb 

and Huttenlocher [13] propose to greedily merge two connected components if there exists 

an inter-component edge weight that is less than the largest edge weights in the minimum 

spanning trees of both components. Arbelaez et al. [1] propose a variant of watershed 

transform to generate a hierarchy of closed contours. We refer readers to [14] for a 

comprehensive review of existing methods.

As in edge detection, supervised learning based methods for region segmentation have 

gained increased popularity in recent years. This trend leads to and is further promoted by a 

number of publicly available computer vision data sets with human-labeled ground truth 

[15], [1], [16], [17], [18], [19]. Though unsupervised methods, such as [20], [21], are shown 

to generate perceptually coherent segmentations, learning segmentation models from 

supervised data enables much more capability and flexibility of incorporating preference 

from human observers and leads to many more interesting works.

Following the classic foreground/background segmentation, object-independent 

segmentation methods seek to partition an image based only on its appearance and do not 

utilize underlying semantics about the scene or specific information about target objects. 

Kim et al. propose a hypergraph-based correlation clustering framework [22] that uses 

structured SVM for learning the structural information from training data. Arbelaez et al. 
develop the multi-scale combinatorial grouping (MCG) framework [23] that exploits multi-

scale information and uses a fast normalized cuts algorithm for region segmentation. Yu et 
al. [24] present a piecewise flat embedding learning algorithm and report the best published 

results so far on Berkeley Segmentation Data Set using the MCG framework. Two other 

recent superpixel-merging approaches are ISCRA [25] and GALA [26]. Starting with a fine 

superpixel over-segmentation, ISCRA adaptively divides the whole region merging process 

into different cascaded stages and trains a respective logistic regression model at each stage 

to determine the greedy merging. Meanwhile, GALA improves the boundary classifier 

training by augmenting the training set via repeatedly iterating through the merging process. 

Moreover, impressive results in the extensive evaluations on six public segmentation data 

sets are reported in [25].

Object-dependent or semantic segmentation is another branch of region segmentation. 

Object-dependent prior knowledge is exploited to guide or improve the segmentation 

process. Borenstein and Ullman [27] formulate object segmentation as a joint model that 
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uses both low-level visual cues and high-level object class information. Some other object 

segmentation methods first generate object segmentation hypotheses using low-/mid-level 

features and then rank segments with high-level prior knowledge [28], [29]. A recent work, 

SCALPEL [30], incorporates high-level information in the segmentation process and can 

generate object proposals more efficiently and accurately. There are also a group of methods, 

called co-segmentation, that utilizes the homogeneity between different target objects and 

jointly segments multiple images simultaneously [31], [32], [33].

Our method falls into the object-independent hierarchical segmentation category. A 

preliminary version of our method with the merge tree model and a greedy inference 

algorithm appeared in [34], [35] and was only applied to segmenting electron microscopy 

images, apart from which the contributions of this paper include:

• Reformulation of the hierarchical merge tree as a constrained conditional model 

with globally optimal solutions defined and an efficient inference algorithm 

developed, instead of the greedy tree model in [34], [35].

• An iterative approach to diversify merge tree generation and improve results via 

segmentation accumulation.

• Experiments that extensively compare different variants and settings of the 

hierarchical merge tree model and show the robustness of the proposed approach 

against image noise at testing time.

• Experiments with state-of-the-art results on six public data sets for general image 

segmentation.

Compared with recent competitive hierarchical segmentation methods, ISCRA [25] and 

GALA [26], which use a threshold-based greedy region merging strategy, our hierarchical 

merge tree model has two major advantages. First, the tree structure enables the 

incorporation of higher order image information into segmentation. The merge/split 

decisions are made together in a globally optimal manner instead of by looking only at local 

region pairs. Second, our method does not require the threshold parameter to determine 

when to stop merging as in ISCRA and GALA, which may be so important to the results 

that needs carefully tuning. Furthermore, our method is almost parameter-free given the 

initial superpixel over-segmentation. The only parameter is the number of iterations, which 

can be fixed as shown in the experiments on all the data sets.

III. Hierarchical merge tree model

Given an image I consisting of pixels , a segmentation is a partition of , denoted as S = 

{si ∈ 2  | ∪i si = ; ∀i ≠ j, si ∩ sj = ∅}, where 2  is the power set of . A segmentation 

assigns every pixel an integer label that is unique for each image object. Each si, which is a 

connected subset of pixels in , is called a segment or region. All possible partitions form a 

segmentation space . A ground truth segmentation Sg ∈  is usually generated by 

humans and considered as the gold standard. The accuracy of a segmentation S is measured 

based on its agreement with Sg. In a probabilistic setting, solving a segmentation problem is 
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formulated as finding a segmentation that maximizes its posterior probability given the 

image as

S* = arg max
S ∈ 𝒮𝒫

P(S | I) . (1)

The current trend to alleviate the difficulty in pixelwise search for S* is to start with a set of 

over-segmenting superpixels. A superpixel is an image segment consisting of pixels that 

have similar visual characteristics. A number of algorithms [12], [13], [36], [37], [38] can be 

used to generate superpixels. In this paper, we use the watershed algorithm [39] over the 

output of the boundary detector gPb [1].

Let So be the initial over-segmentation given by the superpixels, the final segmentation 

consisting only of merged superpixels in So can be represented as S = {si ∈ 2  | ∪isi = ; ∀i 
≠ j, si ∩ sj = ∅; ∀i, ∃S′ ∈ 2So, s.t. si = ∪s j′ ∈ S′ s j′}. Therefore, the search space for S is 

largely reduced to  ⊆ . Even so, however, exhaustive search is still intractable, and 

some kind of heuristic has to be injected. We propose to further limit  to a set of 

segmentations induced by tree structures and make the optimum search feasible.

A. Hierarchical merge tree

Consider a graph, in which each node corresponds to a superpixel, and an edge is defined 

between two nodes that share boundary pixels with each other. Starting with the initial over-

segmentation So, finding a final segmentation, which is essentially the merging of initial 

superpixels, can be considered as combining nodes and removing edges between them. This 

superpixel merging can be done in an iterative fashion: each time a pair of neighboring 

nodes are combined in the graph, and corresponding edges are updated. To represent the 

order of such merging, we use a full binary tree structure, which we call the hierarchical 

merge tree (or merge tree for short) throughout this paper. In a merge tree Tr = ( , ℰ), a 

node υi
d ∈ 𝒱 represents an image segment si ∈ 2 , where d denotes the depth in Tr at which 

this node occurs. Leaf nodes correspond to initial superpixels in So. A non-leaf node 

corresponds to an image region formed by merging superpixels, and the root node 

corresponds to the whole image as one single region. An edge eij ∈ ℰ between node υi
d and 

its child υi
d + 1 exists when sj ⊂ si, and a local structure ({υi

d, υ j
d + 1, υk

d + 1}, {eij, eik}) 

represents si = sj ∪ sk. In this way, finding a final segmentation becomes finding a subset of 

nodes in Tr. Fig. 1c shows a merge tree example with initial superpixels shown in Fig. 1a 

corresponding to the leaf nodes. The non-leaf nodes represent image regions as 

combinations of initial superpixels. Fig. 1b shows a final segmentation formed by a subset of 

tree nodes. It is noteworthy that a merge tree defined here can be seen as a dendrogram in 

hierarchical clustering [40] with each cluster being an image region.

In order to determine the merging priority, we define a merging saliency function fms : S2 → 
ℝ that assigns a real number to each pair of regions in S as a measurement of their merging 

likelihood. For any pair of regions si and sj that are not neighbors, we define fms (si, sj) = 
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−∞. Then starting from a set of initial superpixels S = So as leaf nodes, a merge tree is 

constructed by iteratively merging (si*, s j*) = arg maxsi, s j ∈ S, i ≠ j f ms(si, s j) to a parent node, 

until only one region remains in S corresponding to the root node. Statistics over the 

strengths of boundary pixels between two merging regions from boundary detection 

probability maps may be used as fms. Following [35], we use negated median

f ms(si, s j) = 1 − median({Pb(k) |k ∈ ℬ(si, s j)}), (2)

where Pb(k) is the value of the k-th pixel on some boundary detection probability map Pb, 

and ℬ(si, sj) is the set of boundary pixels between si and sj. ℬ can be different on 

implementation. In our work, we define

ℬ(si, s j) = (si ∩ 𝒩(s j)) ∪ (s j ∩ 𝒩(si)), (3)

where (s․) is the set of neighbor pixels of s․. We also propose to learn the merging saliency 

function from data in Section IV.

B. Constrained conditional model

In order to select a subset of nodes that forms an optimal segmentation, we formulate the 

merge tree as a constrained conditional model. It is essentially a factor graph for the merge 

tree, in which the node set aligns identically with , and each merge in the merge tree that 

involves three nodes ({υi
d, υ j

d + 1, υk
d + 1}, {eij, eik})is considered as a clique pi in the factor 

graph. A label yi = +1 or yi = −1 is assigned to each node indicating whether its children 

merge or not. All leaf nodes must be labeled +1. A complete label assignment Y = {yi}i of 

all nodes must also be subject to the region consistency constraint that if a node is labeled 

+1, all of its descendants must be labeled +1 as well. Then the nodes whose labels are +1 

and parents are labeled −1 are selected as segments in the final segmentation. Fig. 1d is the 

factor graph for the constrained conditional model derived from the merge tree in Fig. 1c. 

The red box shows a clique, and a set of consistent labeling is shown.

We train a classifier (Section III-C) to predict the probability P(yi) for each merge 

({υi
d, υ j

d + 1, υk
d + 1}, {eij, eik}). Then we score each clique pi by associating it with energy 

with respect to its label

Ei(yi) = − log P(yi), yi = ± 1 . (4)

Under the Markov assumption, we formulate our labeling problem as a constrained 

optimization problem

min
Y

∑
yi ∈ Y

Ei(yi), yi = ± 1,
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s . t . yi = + 1, ∀i, υi
d is a leaf, (5)

yi ≤ y j, ∀i, j, υi
d is parent to υ j

d + 1,

for which an inference algorithm will be introduced in Section III-D.

C. Boundary classifier

To score each clique, we train a boundary classifier to predict the probability of each merge. 

To generate training labels that indicate whether the boundary between two regions exists or 

not, we compare both the merge and the split case against the ground truth under certain 

error metric, such as the Rand error [41] and the variation of information (VI) [42], [43] (See 

Section V-B for details). The case with smaller error deviates less from the ground truth and 

is adopted. In practice, we choose VI for its robustness to size rescaling [26].

Boundary features and region features are extracted for classification. For a pair of merging 

regions, boundary features provide direct cues about how it is likely the boundary truly 

exists, and regional features measure geometric and textural similarities between the two 

regions, which can both be informative to boundary classification. We choose features 

following [25] for comparison purposes. A summary of features is provided in Appendix A. 

The boundary classifier is not limited to any specific supervised classification model. We use 

random forest [44] in our experiments. The parameter setting for our random forest is 

summarized in Appendix B.

The boundary classification problem is highly non-linear, and learning one universally good 

boundary classifier for all merging cases is essentially difficult. The size of merging regions 

affects the feature representativeness in classification. For instance, textural features in the 

form of averaged histograms among patches may not be informative when the merging 

regions are too small, because textural features can be extracted from only a very limited 

number of image patches and is thus noisy. On the other hand, when two regions are so big 

that they contain under-segmentation from different perceptual groups, the features again 

may not be meaningful, but for a different reason, that is, the histogram averaging is not able 

to represent the variation of textures. It is worth noting that for the same reason, different 

classifiers have to be learned at different merging stages in [25].

We categorize the classification problem into sub-problems, train a separate sub-classifier 

for each sub-problem, and form the boundary classifier as an ensemble of sub-classifiers. We 

compute the median size |s|med of all regions observed in the training set and assign a 

category label to a training sample that involves regions si and sj based on their sizes as in 

(6). Three sub-classifiers are then trained respectively using only samples with identical 

category labels.
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c(si, s j) =
1, if max( |si | , |s j | ) < |s|med,
2, if min( |si | , |s j | ) < |s|med ≤ max( |si | , |s j | ),
3, otherwise.

(6)

At testing time, a sample is categorized based on its region sizes and assigned to the 

corresponding sub-classifier for prediction. Since all the sub-classifiers are always used 

adjointly, we refer to the set of all sub-classifiers as the boundary classifier in the rest of this 

paper.

D. Inference

Exhaustive search to solve (5) has exponential complexity. Given the tree structure, however, 

we can use a bottom-up/top-down algorithm to efficiently find the exact optimal solution 

under the region consistency constraint. The fundamental idea of the bottom-up/top-down 

algorithm is dynamic programming: in the bottom-up step, the minimum energies for both 

decisions (merge/split) under the constraint are kept and propagated from leaves to the root, 

based on which the set of best consistent decisions is made from the root to leaves in the top-

down step. It is noteworthy that our bottom-up/top-down algorithm is only for inference and 

conceptually different from the top-down/bottom-up framework in [27], which seeks to 

combine high-level semantic information and low-level image features. On the other hand, 

the two-way message passing algorithm used in [27] and our algorithm both belong to the 

Pearl’s belief propagation [45], [46] category, except that our inference algorithm explicitly 

incorporates the consistency constraint into the optimization procedure.

In the bottom-up step, a pair of energy sums are kept track of for each node υi
d with children 

υ j
d + 1 and υk

d + 1: the merging energy Ei
m of node υi

d and its descendants all being labeled +1 

(merge), the splitting energy Ei
s of it that υi

d is labeled −1 (split), and its descendants are 

labeled optimally subject to the constraint. Then the energies can be computed bottom-up 

recursively as

Ei
m = E j

m + Ek
m + Ei(yi = + 1), (7)

Ei
s = min(E j

m, E j
s) + min(Ek

m, Ek
s) + Ei(yi = − 1) . (8)

For leaf nodes, we assign Ei
m = 0 and Ei

s = ∞ to enforce their being labeled +1. Fig. 2 

illustrates the bottom-up algorithm in pseudocode.

In the top-down step, we start from the root and do a depth-first search: if the merging 

energy of a node is lower than its splitting energy, label this node and all its descendants +1; 
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otherwise, label this node −1 and search its children. Fig. 3 illustrates the top-down 

algorithm in pseudocode.

Eventually, we select the set of the nodes, such that its label is +1 and its parent is labeled 

−1, to form an optimal final segmentation. In both algorithms, each node is visited exactly 

once with constant operations, and we need only linear space proportional to the number 

nodes for E and Y, so the time and space complexity are both O(| |).

IV. Iterative hierarchical merge tree model

The performance upper bound of the hierarchical merge tree model is determined by the 

quality of the tree structure. If all true segments exist as nodes in the tree, they may be 

picked out by the inference algorithm using predictions from well-trained boundary 

classifiers. However, if a desirable segment is not represented by any node in the tree, the 

model is not able to recover the segment. Hence, the merging saliency function, which is 

used to determine merging priorities, is critical to the entire performance. With a good 

merging saliency function, we can push the upper bound of performance and thus improve 

segmentation accuracy.

Statistics over the boundary strengths can be used to indicate merging saliency. We use the 

negated median of boundary pixel strengths as the initial representation of saliency, as 

mentioned in Section III-A. Since a boundary classifier is essentially designed to measure 

region merging likelihood, and it has advantages over simple boundary statistics because it 

takes various features from both boundary and regions, we propose to use the merging 

probabilities predicted by boundary classifiers as the merging saliency to construct a merge 

tree.

As described in Section III-C, the training of a boundary classifier requires samples 

generated from a merge tree, but we would like to use a boundary classifier to construct a 

merge tree. Therefore, we propose an iterative approach that alternately collects training 

samples from a merge tree for the training of boundary classifiers and constructs a merge 

tree with the trained classifier. As illustrated in Fig. 4a, we initially use the negated median 

of boundary strengths to construct a merge tree, collect region merging samples, and train a 

boundary classifier f b
0. Then, the boundary classifier f b

0 is used to generate a new merge tree 

from the same initial superpixels So, from which new training samples are generated. We 

next combine the samples from the current iteration and from the previous iterations, remove 

duplicates, and train the next classifier f b
1. This process is repeated for T iterations or until 

the segmentation accuracy on a validation set no longer improves. In practice, we fix the 

iteration number to T = 10 for all data sets. Eventually, we have a series of boundary 

classifiers { f b
t }

t = 0
T

 from each training iteration. The training algorithm is illustrated in Fig. 

5.

At testing time, we take the series of trained classifiers and iterate in a way similar to the 

training process, as shown in Fig. 4b: at each iteration t, we take the previous boundary 
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classifier f b
t − 1 to construct a merge tree over the same initial superpixels So and use the 

current classifier f b
t  to predict each merge score in the merge tree, based on which a final 

segmentation St is inferred. Finally, we transform each segmentation into a binary closed 

contour map by assigning boundary pixels 1 and others 0 and average them for each image 

over all iterations to generate a segmentation hierarchy in the form a real-valued contour 

map. The testing algorithm is illustrated in Fig. 6.

The explanation for the iterative approach is two-fold. First, by collecting samples that were 

not seen in previous iterations, we can explore the merge sample space and in turn explore 

the space of merge trees generated by the classifiers trained using the augmented sample set 

towards the “correct” merge tree. Second, like a bagging algorithm, segmentation averaging 

through iterations tends to emphasize accurate boundaries by phasing out non-systematic 

errors due to incorrect tree structures or classifier mispredictions. The segmentation 

accumulation alleviates the difficulty of training one accurate classifier to generate 

segmentations by improving via averaging.

V. EXPERIMENTS

We conduct experiments with two validation goals. First, we evaluate the performance of our 

hierarchical merge tree model with different combinations of settings. Second, we compare 

our method with other state-of-the-art methods.

A. Setting

We experiment with six publicly available data sets for image segmentation:

1. Berkeley Segmentation Data Set 300 (BSDS300) [15]: 200 training and 100 

testing natural images of size 481 × 321 pixels. Multiple ground truth 

segmentations are provided with different labeling of details.

2. Berkeley Segmentation Data Set 500 (BSDS500) [1]: an extension of BSDS300 

with 200 new testing images of the same size, with multiple ground truth 

segmentations for each image.

3. MSRC Object Recognition Data Set (MSRC) [16]: 591 320 × 213 natural images 

with one ground truth per image. A cleaned-up version [47] is used, in which 

“void” regions are removed, and disconnected regions that belong to the same 

object class are assigned different labels in a single image.

4. PASCAL Visual Object Classes Data Set (VOC12) [18]: 1449 validation images 

with one ground truth per image for PASCAL VOC 2012 Challenge. The average 

image size is 496 × 360. We use the ground truth for object segmentation and 

treat the object boundary pixels as background.

5. Stanford Background Data Set (SBD) [17]: 715 approximately 320 × 240 images 

of outdoor scenes with one ground truth per image.

6. NYU Depth Data Set v2 (NYU) [19]: 1449 indoor scene images with one ground 

truth per image. Down-sampled versions (320 × 240) [6] are used with frame 
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pixels cropped. Only RGB channels are used in our experiment; the depth maps 

are not used.

In order to compare with the other state-of-the-art methods, we follow [25] and train our 

boundary classifiers with the 200 training images in BSDS300. Five ground truth 

segmentations are selected for each image in the order of increasing details as indicated by 

the number of true segments. The training and the testing are done for each detail level, and 

the results are combined into a segmentation hierarchy. In our performance evaluation of 

different configurations of the merge tree model, we test on the testing images in BSDS500. 

For comparisons with other methods, we test on all six data sets.

Appendix A summarizes the features used for boundary classification, most of which 

follows [25]. Appendix B provides the parameters that we use in our hierarchical merge tree 

model experiments.

B. Evaluation metrics

Following [1], we use the segmentation covering [18], the probabilistic Rand index [48], and 

the variation of information [42], [43] for segmentation accuracy evaluation. Here, we 

summarize the three evaluation metrics. For more details, please refer to [1].

The segmentation covering measures averaged matching between proposed segments with a 

ground truth labeling, defined as

SC(S, Sg) = ∑
si ∈ S

|si|
|𝒫| max

s j ∈ Sg

|si ∩ s j|
|si ∪ s j|

, (9)

where  is the set of all pixels in an image. It matches each proposed segment to a true 

segment, with which the proposed segment has the largest overlapping ratio, and computes 

the sum of such optimal overlapping ratios weighted by relative segment sizes.

The Rand index, originally proposed in [41], measures pairwise similarity between two 

multi-label clusterings. It is defined as the ratio of the number of pixel pairs that have 

identical labels in S and Sg or have different labels in S and Sg, over the number of all pixel 

pairs.

RI(S, Sg) = 1
|𝒫|
2

∑
i < j

𝕀(S(i) = S( j) ∧ Sg(i) = Sg( j)), (10)

where S(i) is the label of the ith pixel in S, and (·) is an indicator function that returns 1 if 

the input condition is met or 0 otherwise. The Rand error is sometimes used to refer 1 − RI. 
The probabilistic Rand index is the Rand index averaged over multiple ground truth 

labelings if available.
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The variation of information measures the relative entropy between a proposed segmentation 

and a ground truth labeling, defined as

VI(S, Sg) = H(S |Sg) + H(Sg |S), (11)

where H(S | Sg) and H(Sg | S) are conditional image entropies. Denote the set of all labels in 

S as ℒS and the set of all labels in Sg as ℒSg, we have

H(S |Sg) = ∑
l ∈ ℒS, lg ∈ ℒSg

P(l, lg) log
P(lg)

P(l, lg) , (12)

where P(lg) is the probability that a pixel in Sg receives label lg, and P(l, lg) is the joint 

probability that a pixel receives label l in S and label lg in Sg. H(Sg | S) can be defined 

similarly by switching S and Sg in (12).

For each data set, segmentation results are evaluated at a universal fixed scale (ODS) for the 

entire data set and at a fixed scale per testing image (OIS), following [1]. The evaluated 

numbers are averaged over all available ground truth labelings. As pointed out in [25], since 

we focus on region segmentation, the pixelwise boundary-based evaluations for contour 

detection results [1] are not relevant, and we use only the region-based metrics.

C. Ensemble vs. single boundary classifier and constrained conditional model vs. greedy 
tree model

We evaluate the performance of using single (“SC”) or ensemble boundary classifiers 

(“EC”) (Section III-C) with our hierarchical merge tree model. We also compare the 

proposed constrained conditional model (“CCM”) formulation and greedy tree model 

(“Greedy”) previously proposed in [34], [35]. The greedy tree model shares the same 

hierarchical merge tree structure and scores each tree node only based on local merges the 

node is involved with, based on which a subset of highest-scored nodes that conform with 

the region consistency constraint are greedily selected. The training is done using the 200 

training images in BSDS300 as described in Section V-A, and we show the testing results on 

the 200 testing images in BSDS500 in Table I.

A comparison between the first two rows in Table I shows that using ensemble boundary 

classifiers outperforms using only a single boundary classifier among all metrics, which 

supports our claim that the classifier ensemble is better able to capture underlying merging 

characteristics of regions at different size scales.

Comparing the first and the third row, we can see that CCM significantly outperforms the 

greedy model in terms of VI, which is preferred over the other metrics for segmentation 

quality evaluation [26]. It appears that CCM is outperformed by the greedy tree model in 

terms of PRI, but this is because both models are trained using the labels determined based 

on VI (Section III-C). We perform another experiment where both are trained using the 
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labels determined based on the Rand index, and CCM outperforms the greedy model 0.829 

vs. 0.826 in terms of ODS PRI and 0.855 vs. 0.848 in terms of OIS PRI.

The fourth row shows the results using our previous work [35]. It is clear that the proposed 

constrained conditional model and ensemble boundary classifier are an improvement over 

our previous approach without including the iterative segmentation accumulation.

D. Non-iterative vs. iterative segmentation accumulation

We evaluate the performance of our hierarchical merge tree model with or without iterative 

segmentation accumulation (Section IV). The experimental setting follows the previous 

experiments in Section V-C. The constrained conditional model formulation and ensemble 

boundary classifiers are adopted. Results at each iteration are shown in Table II.

We can see that despite occasional oscillations, the results are improved through iterations. 

The rate of improvement slows down as more iterations are included in the averaging 

process. More sophisticated ways of choosing segmentations to average over can be used, 

such as to average segmentations only from the iterations that achieve the top accuracy on 

some validation set. In our experiment, since we would like to compare our method with 

other methods, we keep the same setting for training and testing data sets and do not use a 

separate validation set. We fix the iteration number to T = 10 and only report the results 

from averaging all the segmentations.

We also test how the iteration influences the robustness of our method to image noise. 

Gaussian white noise is added to the BSDS500 testing images. We experiment with different 

large noise variances σn
2 = 0.001 and σn

2 = 0.01, so that the noise is clearly observable, and the 

input images are considerably corrupted. The previous model learned with noise-free 

BSDS300 training images is then used for testing. We observe significant decrease in the 

strength of gPb boundary detection, so we lower the initial water level to 0.005 from 0.01 

(Appendix B) for superpixel generation. We keep all other settings identical to the previous 

experiment and run the iterative testing (Fig. 6) for T = 10 iterations. The results for the first 

iteration and the last iteration are shown in Table III. Comparing Table III and the 

corresponding entries in Table II, we can see that when the input images are noisy, the 

performance from HMT that uses gPb boundary saliency to generate the merge trees are 

severely degraded. However, with the iterative approach, the HMT performance is 

significantly improved. This is because the iterative approach enables the use of boundary 

classifiers that utilize different cues for better merge tree generation than using only 

boundary detection saliency under the noisy setting. In addition, the iterative segmentation 

accumulation stabilizes the HMT performance for noisy inputs by smoothing out non-

systematic errors.

E. Comparisons with other methods

In this section, we compare our proposed iterative hierarchical merge tree method (CCM + 

ensemble boundary classifier + iteration, under name “HMT”) with various other state-of-

the-art region segmentation methods and benchmarks [1], [25], [26], [23], [49], [22], [24] in 

very recent years on the public data sets. The results are shown in Table IV. Note that [22] 
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generates a single segmentation instead of contour hierarchies for each image. The OIS 

evaluations are therefore essentially the same as the ODS results, so we exclude the OIS 

entries for the sake of clarity. Fig. 7 shows sample testing segmentation results for each data 

set.

From Table IV we can see that our method is highly competitive and outperforms very 

recent state-of-the-art methods on some data sets, including BSDS500, which is the most 

used data set for image segmentation evaluation. It is noteworthy that the generalization of 

our method is almost as good as ISCRA [25] by being trained only on BSDS (general 

natural photos) and achieving competitive results on the NYU data set (indoor scene 

photos). It is also worth pointing out that our hierarchical segmentation framework can be 

used in combination with other features that can better guide the boundary classification. For 

example, using the most recent piecewise flat embedding (PFE) [24], we expect the results 

to be further improved in a manner similar to the results from “MCG” to “PFE-MCG” on 

BSDS500 in Table IV.

VI. Conclusion

Exhaustive search for optimal superpixel merging in image region segmentation is 

intractable. We propose a hierarchical image segmentation framework, namely the 

hierarchical merge tree model, that limits the search space to one that is induced by tree 

structures and thus linear with respect to the number of initial superpixels. The framework 

allows the use of various merging saliency heuristics and features, and its supervised nature 

grants its capability of learning complex conditions for merging decisions from training data 

without the need for parameter tuning or the dependency on any classification model. 

Globally optimal solutions can be efficiently found under constraints to generate final 

segmentations thanks to the tree structure.

We also introduce a modification to the hierarchical merge tree model that iteratively trains a 

new boundary classifier with accumulated samples for merge tree construction and merging 

probability prediction and accumulates segmentation to generate contour maps.

For further improvement, the combination of merge trees from each iteration as one single 

model and its global resolution can be investigated. Furthermore, it would be interesting to 

study the application of our method to semantic segmentation with the introduction of 

object-dependent prior knowledge.
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Appendix A

Summary of boundary classifier features

We use 55 features from region pairs to train the boundary classifiers, including:
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1. Geometry (5-dimensional): Areas of two regions normalized by image area and 

perimeters and boundary length of two regions normalized by length of the 

image diagonal.

2. Boundary (4-dimensional): Means and medians of boundary pixel intensities 

from gPb and UCM [1]. Boundary detector gPb generates probability maps that 

describe how likely each pixel belong to an image boundary. UCM is the result 

from post-processing gPb probability maps that depicts how boundary pixels 

contribute to contour hierarchies in images. The boundary pixels follow the 

definition in (3).

3. Color (24-dimensional): Absolute mean differences, L1 and χ2 distances and 

absolute entropy differences between histograms (10-bin) of LAB and HSV 

components of original images.

4. Texture (8-dimensional): L1 and χ2 distances between histograms of texton [50] 

(64-bin) and SIFT [51] dictionary of 256 words. The SIFT descriptors are 

computed densely, and 8 × 8 patches are used on gray, A, and B channel of 

original images.

5. Geometric context (14-dimensional): L1 and χ2 distances between histograms 

(32-bin) of the probability maps of each of the seven geometric context labels. 

The geometric context labels indicate orientations of the surfaces in the images, 

which are predicted by a fixed pre-trained model provided by [52].

Appendix B

Summary of parameters

We use the watershed algorithm for superpixel generation, for which the water level needs to 

be specified. In general, lowering the water level reduces under-segmentation by producing 

more superpixels, which gives us sets of high-precision superpixels to start with, but also 

increases the computation cost. We fixed the water level at 0.01 for all five datasets 

(BSDS300/500, MSRC, SBD, and VOC12), except the NYU data set. For the NYU data set 

of indoor scene images, we observe the decrease in gPb boundary detection strength, so we 

lower the water level to 0.001. We also pre-merge regions smaller than 20 pixels to their 

neighboring regions with the lowest boundary barrier, i.e. the median of boundary detection 

probabilities on the boundary pixels between the two regions.

We train 255 fully grown decision trees for the random forest boundary classifier. To train 

each decision tree, 70% of training samples are randomly drawn and used. The number of 

features examined at each node is the square root of the total number of features (⌊ 55⌋ = 7). 
In the experiments, the training data are usually imbalanced. The ratios between the number 

of positive and negative samples are sometimes considerably greater than 1. Therefore, we 

assign to each class a weight reciprocal to the number of samples in the class to balance the 

training.
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We fix the number of iterations to T = 10 for all data sets for our iterative hierarchical merge 

tree model.
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Fig. 1. 
Example of (a) an initial segmentation, (b) a consistent final segmentation, (c) a merge tree, 

and (d) the corresponding conditional model factor graph (Section III-B) with correct 

labeling. In (c), the leaf nodes have labels identical to those of the initial regions. The red 

nodes correspond to regions in the final segmentation. The red box in (d) indicates a clique 

in the model.
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Fig. 2. 
Pseudocode of the bottom-up energy computation algorithm.
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Fig. 3. 
Pseudocode of the top-down label assignment algorithm.
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Fig. 4. 
Illustrations of (a) the training and (b) the testing procedure of the iterative hierarchical 

merge tree model. Starting with the fixed initial superpixels (“Init Seg”), the first iteration 

uses boundary probability (“Pb”) statistics for merge tree generation, and the training 

procedure iteratively augments the training set by incorporating new samples from merge 

trees and trains a new boundary classifier (“BC”), which is used for merge tree generation 

from the same initial superpixels in the next iteration. At testing time, boundary probability 

statistics and boundary classifiers learned at each iteration are used to generate merge trees 

from the same initial superpixels, and each boundary classifier is used to score merge cliques 

in the previous iteration; segmentations are generated from each merge tree and accumulated 

to generate the final contour hierarchy. The black lines show the use of initial superpixels, 

the red lines show the use of boundary classifiers, and the blue lines show the flow of sample 

data collected from tree structures.
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Fig. 5. 
Pseudocode of the iterative training algorithm.
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Fig. 6. 
Pseudocode of the iterative testing algorithm.
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Fig. 7. 
Testing segmentation results on BSDS300 (top-left), BSDS500 (top-right), MSRC (middle-

left), SBD (middle-right), VOC12 (bottom-left), and NYU (bottom-right) data set. For each 

image, from top to bottom: the original image, the hierarchical contour map, the ODS 

covering segmentation, and the OIS covering segmentation. The training uses BSDS300 

training images.
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