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Abstract: Our chemical syntheses and related scientific investigations of natural products
with complex architectures and powerful biological activities are described, focusing on the very
large 3 nm-long polycyclic ethers called the ciguatoxins, highly strained and labile chromoprotein
antitumor antibiotics featuring nine-membered enediyne cores, and extremely potent anthelmintic
macrolides called the avermectins.
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1. Introduction

Nature has the incredible power to create new
chemical molecules with remarkable structures and
profound biological functions. These molecules or
natural products often present a number of new
challenges to researchers.1) One of the most simple
and basic questions regarding natural products is if
and how we can synthesize them chemically in the
laboratory. The total synthesis of complex, large
bioactive natural product molecules is one of the
most difficult, exciting, and challenging endeavors in
the chemical sciences. Such endeavors stimulate the
development of powerful synthetic strategies, tactics,
and methodologies, and constitute the basis for
molecular science. Furthermore, we can help address
public health problems and advance the biological,
medicinal, and pharmaceutical studies of bioactive
compounds by taking on these huge synthetic
challenges.2),3)

This review focuses on describing our synthetic
studies and related studies of two families of bioactive

natural products: the ciguatoxins, which are large
3 nm-long molecules that exhibit extremely potent
neurotoxicity,4)–12) and the nine-membered enediyne
chromoprotein antitumor antibiotics, which have
delicate architectures that include the chromophores
of neocarzinostatin,13) N1999-A2,14) maduropeptin,15)

C-1027,16) and kedarcidin.17) In addition, the inno-
vative syntheses of other structurally complex bio-
active natural products such as avermectin18) and
milbemycin,19) which are potent anthelmintic macro-
lides, are outlined.

2. Determination of the absolute configuration of
ciguatoxins and the first total synthesis of
ciguatoxins and relevant associated studies

2.1. Initial stages of our synthetic study and
the absolute configuration. More than 50,000
people suffer annually from “ciguatera” fish poisoning
(CFP), which is particularly common in subtropical
and tropical regions. CFP is caused by the ingestion
of a variety of reef fish that have accumulated trace
amounts of the causative neurotoxins, designated as
ciguatoxins (CTXs, Fig. 1).20)–23) CTXs are synthe-
sized by dinoflagellates and enter the food chain.
These toxins cause gastrointestinal, cardiovascular,
and neurological disorders, which may last for
months or years. The lethal potency of CTX1B
(LD50 F 90.25 µg/kg) by intraperitoneal injection
into mice is much greater than that of the famous
puffer fish toxin, tetrodotoxin (910 µg/kg). Difficul-
ties in predicting sources of CTXs, and in detecting
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and treating ciguatera, have a significant economic
and human health impact. The isolation and
structural characterization of these toxins were long
hampered by the extremely low concentrations of the
toxins in fish and the complexity of their chemical
structures. In 1989, Yasumoto and co-workers
elucidated the structure of CTX1B (4), a huge
ladder-like polycyclic ether with a molecular length
of over 3 nm.24),25) To date, more than 20 congeners
of CTXs have been structurally determined.26) This
CTX family is far more toxic and dangerous than the
related red-tide brevetoxins, such as brevetoxin B (5)
(Fig. 1).20) Prof. Yasumoto asked me to collaborate
with him in defining the structure and absolute
stereochemistry of CTXs using synthetic strategies in
1988, just before their elucidation of the structure of

CTX1B. The total synthesis of CTXs is a formidable
challenge, yet is the sole realistic solution for
obtaining sufficient quantities of CTXs for biological,
medical, and pharmacological studies.

There was little prospect for our success in the
total synthesis of CTXs, which possess 13 rings and
over 30 stereogenic centers, when we launched our
synthetic endeavor in 1989. Early on, we developed
enantioselective routes to the medium (7-, 8-, and 9-
membered) ring ethers of ciguatoxins27)–31) and the
circular dichroism (CD) studies of synthetic AB ring
fragments implicated the absolute configuration of
CTXs.28),32),33) Then, we quickly realized that con-
vergent assembly of the structural fragments was the
key for successful construction of the huge ladder-like
polycyclic ether system.12),34)
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Fig. 1. Major Pacific ciguatoxins and brevetoxin B.
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In 1995, the formidable and pioneering total
synthesis of brevetoxin B (5) was reported by
Nicolaou and co-workers after a 12-year struggle.35)

We had noticed the power of ring-closing metathesis
(RCM) mediated by the Grubbs’ catalyst36) and thus
completely revised our strategy for the total synthesis
of ciguatoxins. Our 12-year effort culminated in
the first total synthesis of CTX3C (1)37) in 2001
(Fig. 2).4) Our synthesis was appreciated as “The Art
of Total Synthesis” by Science (2001, 294, 1842), “A
Synthetic Tour de Force” by Chemical & Engineering
News (USA) (2001, Dec. 3, p. 9), and “Organic
Chemistry Takes on Tropical Seafood Poisoning”
by The Lancet (2001, 358, 1278). Since then, our
highly convergent and unified strategic approach
featuring chemoselective RCM/radical cyclization
reactions as key tactics has been improved,5),6),8)

and enabled the total synthesis of three other
important Pacific congeners, 51-hydroxyCTX3C,7)

CTX1B,7),9) and 54-deoxyCTX1B,9) as well as F-ring

modified analogs.38),39) The synthesis of these com-
pounds has significantly impacted the biological and
pharmacological studies of CTXs.

2.2. Unified convergent [XD 2D Y] strat-
egy. The synthetic strategy used for the first
synthesis of ciguatoxin CTX3C (1), employing the
RCM reaction and radical cyclization as key tactics,
is illustrated in Fig. 2.4)–6),8)–12) The size and com-
plexity of this fused ether array led us to use a
unified convergent strategy called the [X D 2 D Y]
strategy.12),40) This strategy involved the coupling of
the synthetic fragments followed by the construction
of the two rings and introduction of the two
stereocenters. The challenge lay in developing a
reaction sequence to construct the new ethers of
the requisite ring sizes in a stereoselective manner
without affecting the preexisting functionalities.
Consequently, we improved the convergence of the
assembly in which four simple fragments (8, 9, 10,
and 11) were coupled and further modified to form
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the CD-, JK-, and FG-rings. The comparably
complex ABCDE- and HIJLKLM-ring systems (6
and 7, respectively) would be synthesized prior to
the final coupling at the central region of the
molecule. The four fragments (8–11) were prepared
from the starting materials D-glucose (12), D-2-
deoxyribose (16), and (S)-(O)-benzylglycidol (17)
(Scheme 1).10)–12) The medium-sized ether rings (the
A-, E-, and I-rings) were constructed using an RCM
reaction36) (for example, 13 ! 14), which greatly
simplified the synthesis of the fragments.

2.3. Synthesis of the left wing of CTX3C.
The left wing segment (6) of CTX3C (1) was
synthesized41) from the AB- and E-rings (8 and 9)
and subsequent construction of the CD-ring using
an alkylation/metathesis sequence (Scheme 2).42)

Tetraene 20 was smoothly cyclized using Grubbs’
catalyst 1536) to provide the seven-membered D-ring
21 without interfering with the olefins in the A and
E rings. Removal of the p-methoxyphenylmethyl
(MPM) group in 22 followed by methyl acetalization
afforded pentacycle 23. The reductive etherifica-
tion43) of 23 set the C12-stereocenter and provided
the ABCDE-ring segment 24. Subsequent functional
group manipulation of 24 yielded the 2-naphthyl-
methyl- (NAP-) protected left wing segments 6 and
25.

2.4. Synthesis of the right wing of CTX3C.
A different methodology was applied for the synthesis
of the right wing segment (7) of CTX3C (1)
(Scheme 3).44),45) Yamaguchi esterification46) be-
tween alcohol 10 and carboxylic acid 11 produced
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ester 26. Construction of the J-ring from 26 by
C-C bond formation was challenging due to steric
hindrance at C42.47) Intramolecular carbonyl olefi-
nation, however, using Cp2Ti[P(OEt)3]2 developed
by Takeda and co-worker48) successfully closed the
six-membered J-ring to afford pentacycle 27. The
stereoselective introduction of hydrogen at C42 and
the oxygen functionality at C41 was also problem-
atic. Dihydropyran 27 has a strong conformational
bias for accepting the reagent from the ,-face, since
the sterically demanding LM-ring portion projects
toward the O-face. For example, hydroboration of 27
led predominantly to the undesired stereoisomer with
an ,-hydrogen at C42.

To introduce the O-hydrogen at C42, it was
necessary to develop a method with stereoselectivity
complimentary to that of hydroboration. The new
method employed was a two-step protocol based on
the stereoselective reduction of an epoxyacetal.45)

The ,-epoxide 28 was synthesized from 27 as a sole
product using dimethyldioxirane (DMDO). SN2-type
hydride delivery to the C42-acetal epoxide of 28 was
realized using LiBHEt3 to yield the desired isomer
29 exclusively. Alcohol 29 was oxidized to 30, which
was then exposed to triflic acid and (MeO)3CH in
hexane to produce the seven-membered methyl acetal
31 directly with concomitant loss of the MOM group.

Reductive etherification of acetal 31 constructed the
final ether ring with complete stereocontrol at C41,
affording HIJKLM-ring system 32. The carbon chain
corresponding to the G-ring was then introduced by
chelation-controlled stereoselective allylation of alde-
hyde 34 and subsequent NAP protection of resultant
alcohol 35 yielded the right wing segment 7.

2.5. The first total synthesis of CTX3C.
Coupling of the left and right wing segments of
CTX3C (1) and construction of the central FG-
ring is far more challenging than the previous two
couplings because of the increased complexity of the
substrates. After a considerable number of unsuc-
cessful experiments with model systems, we found
that the Sasaki protocol49)–51) was adaptable for
constructing the EFGH-ring system from the E- and
H-ring fragments following several crucial modifica-
tions and refinements.52) The application of this
modified Sasaki protocol to the synthesis of 1 was
undertaken as shown in Scheme 4.4)–6),8),10)–12) Con-
densation of 1,4-diol 6 and aldehyde 36 using
catalytic Sc(OTf )3 successfully delivered seven-mem-
bered acetal 37.50) The combination of Me3SiOTf
and Me3SiSPh in the presence of 2,6-di-t-butyl-4-
methyl pyridine (DTBMP)53) cleaved the acetal of
37 to form O,S-acetal 38.52) The C49-spiroacetal
remained intact in this acetal cleavage reaction.
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Stereoselective construction of the G-ring was
then investigated. The primary alcohol of 38 was
protected as the ethoxyethyl (EE) ether to give 39.
Removal of the TIPS group from 39 followed by
treatment with methyl propiolate and N-methylmor-
pholine (NMM) afforded O-(E)-alkoxyacrylate 40.
Compound 40 was subjected to radical cyclization
using n-Bu3SnH and 2,2B-azobisisobutyronitrile
(AIBN), giving rise to the desired oxepane 41. The
generated C27-radical added to the ,,O-unsaturated
ester in a completely stereo- and chemo-selective
manner. Ester 41 was converted to pentaene 44 by
conventional means. Grubbs’ catalyst 15 effectively
induced RCM of the two terminal olefins of 44 to

produce NAP-protected CTX3C 45 without touch-
ing the other olefins.52) The final global NAP-
deprotection of 45 with DDQ successfully yielded
the target CTX3C (1). However, the final deprotec-
tion of functional groups of a large complex polyether
molecule is generally no easy task. In fact, the hy-
droxyl groups were originally protected as the benzyl
ether and the deprotection of the tris-benzyl ether 46
was the most problematic step in our total synthesis
performed in 2001.4)–6),8),10)–12) The synthetic CTX3C
was determined to be identical to the naturally
occurring form in every respect, including mouse
acute toxicity, which unambiguously confirmed
the absolute stereochemistry of ciguatoxins.28),32),33)
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Thus, the power of our unified convergent [X D

2 D Y] coupling strategy12),40) for constructing this
large and complex ladder-like polyether system was
clearly demonstrated. In addition, it should be noted
that the synthetic fragments and penultimate
intermediate, tris-benzyl ether 46, did not exhibit
detectable toxicity (see Fig. 7 in Section 2.11). This
suggests that the products of this synthetic route are
nontoxic until the final deprotection step.

2.6. The second-generation total synthesis
of CTX3C. The first-generation total synthesis
demonstrated the power of the O,S-acetal strategy
to build complex polyether structures. In order to
synthesize ciguatoxin congeners with acid-sensitive
functionalities, such as CTX1B (4),24),25) we devel-
oped an alternative, direct, and milder route to the
O,S-acetal without using highly acidic conditions
(Scheme 5). Our new synthetic strategy relied on
the direct construction of O,S-acetal 49 by coupling
secondary alcohol 25, which possesses a terminal
olefin, and ,-halosulfide 48 using a halophilic
activator, AgOTf in the presence of DTBMP and

4Å molecular sieves.53)–56) Then, similar to the first-
generation synthesis, subjecting O-alkoxyacrylate 49
to radical cyclization allowed the stereoselective
construction of the G-ring of 50. The RCM reaction
of 50 and subsequent global deprotection provided
the target CTX3C (1).6),8),11),12) This new stream-
lined assembly improved the delivery of 1.

2.7. Synthesis of the left wing of CTX1B.
Ciguatoxin CTX1B (4) is biologically more potent
and structurally more complex than CTX3C
(1).21)–25),37) CTX1B (4) not only contains an addi-
tional dihydroxybutenyl side chain embedded in the
A-ring, but it also possesses a seven-membered E-ring
rather than the eight-membered ring of CTX3C (1).
The synthetic challenge presented by 4 is heightened
by the presence of the acid/base/oxidant-sensitive
bisallylic C5-ether.7),57) Indeed, the C-O bond at C5
was readily cleaved and rearrangement occurred,
especially when Lewis acid was used (Scheme 6).9)

Furthermore, the C21–C22 double bond in the E-ring
presented unexpected additional complications upon
radical cyclization. Thus, we were obliged to take
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a more reliable detour using the saturated E-ring
during construction of the ABCDE ring system and
then introducing the E-ring double bond at a later
stage. Finally, the fully functionalized left wing seg-
ment 74 of 4 was synthesized as shown in Scheme 7
via C-ring formation through stereoselective radical
cyclization of cis-vinyl sulfoxide as a key step.9)

2.8. Synthesis of the right wing of CTX1B.
The right wing segment (84) of CTX1B (4) was
synthesized from the HI ring fragment 10 and LM
ring fragment 80 (Scheme 8) in a manner similar to
7 in the synthesis of CTX3C (1) (Scheme 3).44),45)

2.9. The first total syntheses of CTX1B and
54-deoxyCTX1B. With a sufficient amount of the
left wing 74 in hand, we embarked on the critical
coupling of the left and right wings, 74 and 84a, to
construct the two major Pacific ciguatoxins, CTX1B
(3)24),25) and 54-deoxyCTX1B (4).26) This coupling
reaction is described in Scheme 9. The right wing
sulfide 84a44),45) was chlorinated using freshly recrys-
tallized NCS and the resultant ,-chlorosulfide was
coupled without purification to the left wing alcohol
74 by the action of AgOTf to provide O,S-acetal
85a.7) Despite extensive efforts, the yield of 85a
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could not be improved (926%), possibly due to the
presence of the A-ring dihydroxybutenyl substituent.
Strongly electron-withdrawing pentafluorophenyl
acrylate58) was attached to 86a instead of the methyl
ester to improve chemoselective 7-exo radical cycliza-
tion. Formation of the 7-membered G-ring was
achieved by radical reaction of 87a with n-Bu3SnH
and AIBN, which provided 88a in 42% yield, along
with the 6-exo product (20%).7)–9) Use of the methyl
ester significantly decreased the yield of the 7-exo
product. The resulting carboxylic acid 88a was
converted to the corresponding terminal olefin 89a,
and RCM reaction promoted by Grubbs’ catalyst
15 constructed the nine-membered F-ring in 63%
yield. Lastly, oxidative removal of the six 2-naph-
thylmethyl (NAP) groups21) with DDQ furnished
CTX1B (3) in 20% overall yield.7),9) The synthesis
of 54-deoxyCTX1B (4) was similarly accomplished
from 74 and 47. Thus, a practical, reliable and
stereoselective route to the Pacific ciguatoxins,
CTX1B (3) and 54-deoxyCTX1B (4),7),9) as well as
the left wing of Calibbean CTX (C-CTX)59),60) was
established.

2.10. Rational design of specific monoclonal
antibodies and direct sandwich immunoassay. In
addition to the traditional mouse bioassay using fish
extracts, several other methods have been developed
to detect ciguatoxins in contaminated fish.21),61)–63)

However, antibody-based immunoassays remain
the most desirable method for accurate, sensitive,
routine, and portable use. We therefore planned a
synthesis-based approach using rationally designed
synthetic haptens to address the problem of antibody
development. Numerous immunization studies in
collaboration with Profs. Tsumuraya and Fujii using
synthetic hapten-keyhole limpet hemocyanin (KLH)
conjugates showed that the polyether fragments,
which possess more than five ether rings and have
a surface area larger than 400Å2, can be used as
synthetic haptens to provide highly sensitive and
specific anti-CTX monoclonal antibodies (mAbs)
(Figs. 3 and 4).63)–70) These mAbs (10C9, 3D11, 8H4,
and 3G8) have been used to develop a direct sand-
wich enzyme-linked immunosorbent assay (ELISA)
method for the reliable detection of CTXs.70) The
protocol for this direct sandwich ELISA has been

trichlorobenzoylchloride
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3G8

Fig. 4. New strategy for synthesizing the CTX1B left wing (hapten)-protein conjugate and successful preparation of anti-CTX1B
monoclonal antibody.
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recently improved to provide a detection limit of
0.2 pg/mL (2 # 10!4 ppb) using an alkaline phospha-
tase (ALP)-fluorescent system (Fig. 5) (in prepara-
tion for publication). This detection limit is sufficient
to detect the very small amount of CTX contami-
nants in fish, as stipulated by FDA regulations
(0.01 ppb (F10 pg/g) CTX1B equivalents).61)

The molecular recognition and interactions
between CTX3C fragments and its specific antibody
10C9 Fab were elucidated by X-ray crystal structure
analysis to understand how protein recognizes
ladder-like polycyclic ethers (Fig. 6).71),72) Antibody
10C9 Fab has an extraordinarily large and deep
binding pocket at the center of the variable region,
where CTX3C-ABCDE fragment binds longitudi-
nally in the pocket via hydrogen bonds and van der
Waals interactions. Upon antigen-antibody complex-
ation, 10C9 Fab adjusts to the antigen fragment by
means of rotational motion in the variable region,
and furthermore its recognition requires molecular
rearrangements over the entire antibody structure.

2.11. Structure-activity relationship (SAR)
studies. Our versatile synthetic strategy enabled
the synthesis of F-ring modified analogs and their
biological evaluation using three approaches: 1)
competitive inhibition assays (Ki) using isotope-
labeled dihydrobrevetoxin B ([3H]PbTx-3 (92))

against rat brain synaptosomes, 2) in vivo toxicity
(cytotoxicity, EC50) tests using Neuro 2A, and 3)
mouse acute toxicity (LD50) assays. Brevetoxins and
CTXs bind to site 5 of the voltage-sensitive sodium
channel (VSSC) of excitable membranes.20),61) We
demonstrated that the nine-membered F ring plays
a critical role in the binding of CTXs to VSSC and
subsequent toxicity, and that the F ring drives the
CTX molecule into a shape suitable for potent
bioactivity (Table 1, Fig. 7). The rigid analog (90)
which possesses an eight-membered F-ring, as well as
the flexible analog (93) in which the F-ring is opened,
showed almost no binding to VSSC and no tox-
icity,38) while the ten-membered F-ring analog (91)
exhibited weak toxicity.39) These findings indicated
that the planar molecular shape of CTXs (Fig. 7)
and their limited conformational flexibility such as
F-ring (up and down) flipping20),25),73) give rise to
their biological activities. The synthetic fragments
and protected CTX3C (46) exhibit no detectable
toxicity, while the A-ring-opened CTX3C (94),
which possesses 12 ether rings, exhibited toxicity
intermediate between CTX3C (1) and the less toxic
PbTx-3 (92), which possesses 11 rings (Fig. 8).
These assays suggested that there is a significant
relationship between the size of the polycyclic region
(the number of fused rings) and biological activity.

Detection
Limits

(AttoPhos)

0.27 pg/mL

0.14 pg/mL

0.42 pg/mL

0.49 pg/mL

51-Hydroxy-
CTX 3C (2)

CTX 3C (1)

CTX1B (3)

54-Deoxy-
CTX1B (4)

FDA Regulation
0.01 ppb = 10 pg/g

Fig. 5. Detection limits of siguatoxins by advanced highly sensitive ELISA using an alkaline phosphatase (ALP)-fluorescent system.
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2.12. Related biological studies and remarks.
Since natural CTXs are not readily available,
synthetic CTXs have been used as the standards
for LC/MS analysis, and have led to confirmation
of the causative CTXs in ciguatera fish world-
wide.62),74),75) Synthetic CTXs have also accelerated

studies on the mechanisms of CTX binding and the
effects to voltage-sensitive sodium channels (VSSC)
and other ion channels,76)–82) the symptomatology of
CTX poisoning, and the long-term neurological
symptoms caused by CTX poisoning.83),84)

Table 1. Activity profiles of 51-hydroxyCTX3C analogs
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Fig. 6. The binding site of 10C9 Fab in complex with CTX3C-ABCDE fragment (antigen): (a) cross-section and (b) close-up view.
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Before concluding this chapter, it should be
noted that many synthetic studies have been
reported by laboratories around the world since we
completed the total synthesis of CTX3C (1) in
2001.4)–9) However, only one total synthesis of

CTX1B (3) aside from our synthesis has been
completed, by the Isobe group in 2009.85),86) Neither
the total synthesis of other ciguatoxin congeners nor
the successful preparation of anti-CTX monoclonal
antibodies has been reported to date.

12 rings

13 rings  11 rings

CTX3C tribenzyl ether (46) LD50 >180

(94)

(1) (92)

Fig. 8. Activity profiles of synthetic compounds.

M

F’A

M

51-hydroxyCTX3C (2)

rigid analog
(8-membered F-ring)

(90)

(90)

(2)

Fig. 7. Most stable molecular shapes of 51-hydroxyCTX3C and its 8-membered F-ring rigid analog, calculated by Macro Model ver. 8.6,
MM2*.
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3. Stereocontrolled syntheses of chromoprotein
enediyne antitumor antibiotics and

relevant mechanistic studies

Macromolecular chromoprotein antitumor anti-
biotics isolated from Actinomycete species, such as
C-1027,87),88) neocarzinostatin,89),90) kedarcidin,91),92)

and maduropeptin,93),94) are composed of a highly
reactive enediyne chromophore (Fig. 9) complexed
with an apoprotein. Their extremely potent cytotox-
icities are believed to originate from their high DNA-
binding affinity and the DNA-damaging reactivity
of the chromophores. The apoproteins (>10 kDa) are
single polypeptide chains of over 110 amino acid
residues cross-linked by two disulfide bonds. The
nine-membered enediyne chromophore is bound
noncovalently in the cleft of its apoprotein and is
stabilized.95)–99) Chromophores are highly unstable
at ambient temperature once released from the
apoprotein and either undergo Masamune-Bergman
aromatization spontaneously without an activator,
or can be activated by external activators such
as nucleophiles. Our project aimed to answer four
questions:

(1) How can we synthesize these highly strained,
unstable, and functionally complex nine-membered
enediyne chromophores?

(2) How does the apoprotein stabilize the
chromophore?

(3) What is the exact mechanism of the
Masamune-Bergman aromatization of enediyne
chromophores?

(4) Can we design a more stable chromophore-
apoprotein complex?

3.1. Synthesis of highly strained nine-
membered enediyne system. The highly strained,
functionalized, and complex architecture of the
unstable chromophores presents a daunting challenge
to their chemical synthesis.13)–17) After considerable
effort, we developed a strategy to synthesize the
highly strained cyclononadiyne system via intra-
molecular cerium acetylide addition to aldehyde,
in which C7,C8-cyclization created a trans diol
system suitable for generating epoxide functionality
(Scheme 10).100)–103) Interestingly, the cyclopentene
(C1–C12) double bond exo to the nine-membered
ring (104) is necessary to prevent extremely facile
Cope rearrangement to bis-allene and ring opening of
the strained cyclononadiyne system.100)

3.2. Equilibration of the bicyclic nine-
membered enediyne with p-benzyne. The cyclo-
aromatization of noncyclic hex-3-ene-1,5-diyne was
not affected by the reaction solvent and showed no
kinetic isotope effects; thus, the cyclization step was
concluded to be the rate-limiting (slowest) step.104)

In contrast, the decay rate of the synthetic bicyclic
nine-membered enediyne was dependent on the

maduropeptin chromophore (99)kedarcidin chromophore (98)
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reaction solvent and exhibited kinetic isotope effects
(Table 2).101),105) Thus, we found that the nine-
membered enediynes are in equilibrium with the p-
benzyne biradical intermediates and that hydrogen
abstraction by the p-benzyne intermediates is the

rate-limiting step (Fig. 10).101),102) This finding sug-
gested that the chromophore could be kinetically
stabilized and might exist indefinitely if it remains
free from H-donors in apoprotein. Furthermore, the
finding clarified how the nine-membered enediyne
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Table 2. Remarkable kinetic solvent isotope effect on the decay rate of the synthetic nine-membered enediyne system

107105

Entry Solvent t1/2 (min) k (#10!5 s!1) Relative Rate

1 CD2Cl2 680 1.7 0.035

2 CH3CN 610 1.9 0.039

3 1,4-dioxane-d8 310 3.7 0.076

4 1,4-dioxane 110 11 0.22

5 THF-d8a) 220 5.4 0.11

6 THF 68 17 0.35

7 CD3CD2OD 130 8.8 0.18

8 CH3CH2OH 65 18 0.37

9 1,4-C6D8/CD2Cl2 28 41 0.84

10 1,4-C6H8/CH2Cl2 23 49 1.0

a) Measured by 1H-NMR.
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chromophores cut the DNA double strand.106)–108)

The natural nine-membered enediyne chromophores
of C-1027 (97) and kedarcidin (98b) are also in
equilibrium with their p-benzyne forms (108 and
110, respectively),101),102),105),107) which abstract hy-
drogen atoms from their surroundings (solvent,
protein, or DNA, vide infra) to form stable aromat-
ized chromophores such as 109 (Fig. 11).

Based on the observed kinetics, we anticipated
that the ground state of the intermediate p-benzyne
biradical would be a triplet104) and thus detectable by
ESR.109) We were delighted to find that the natural
chromophore-apoprotein complex (holoprotein) of C-
1027 and synthetic bicyclic nine-membered enediyne
(105) are paramagnetic in the solid form110) and
in solution,101) respectively, and exhibit steady ESR
signals under deoxygenated conditions (Figs. 12 and
13). The spectra of 105 observed in CH2Cl2, CD2Cl2,
and CD3CN were identical, demonstrating that the
detected radical species did not arise from the
solvents.111) The g values (2.0023) of 105 confirmed
that the radical spectra were carbon-centered.
Thus, to help determine the position of the observed
radical species, C3- and C6-13C labeled isotopomers,
105a and 105b, respectively, were synthesized.112)

However, their spectra showed no significant
broadening compared to that of unlabeled 105
(Fig. 13).111) Based on the reported value of the
13C hyperfine splitting constant of phenyl radical

(a13C-, F 12.25mT), it was unlikely that the spin
density is located at the 13C labeled C3 or C6
position. These results, including spin trapping
experiments,113) indicated that the p-benzyne inter-
mediate 106 was generated but the observed para-
magnetic species should not be directly attributed
to the equilibrated 106, but rather to more stable
secondary radical species.111)

3.3. Mechanism of self-degradation of C-1027
and design of a kinetically stabilized analog.
Chromoprotein antibiotics exemplified by C-1027
are remarkable because the apoprotein stabilizes the
radical-generating chromophore by tight binding.
Our NMR analysis of the structures of the C-1027
apoprotein and its complex with the aromatized
chromophore (109) indicated that the apoprotein
kinetically stabilizes the enediyne moiety of 97 by
positioning the p-benzyne biradical of 108 in the
cleft, thus limiting the accessibility of the biradical to
hydrogen sources and preventing the chromophore
from decomposing (Fig. 14).99),114) Once encapsu-
lated stably in the apoprotein, the highly reactive
chromophore (97) can be transported by the apo-
protein through the cells to its target, double-strand
DNA. Thus, the apoprotein appears to function both
as a stabilizer and as an effective carrier, making it a
potential drug delivery system (DDS). Despite these
potentially ideal properties as a DDS for a reactive
antitumor agent, C-1027 is known to undergo slow

Fig. 10. The kinetics and mechanism preventing spontaneous aromatization.
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aging, resulting in chromophore-mediated self-de-
composition. The apoprotein is presumably not able
to completely inhibit the radical-mediated reactions
of the chromophore (97), and C-1027 slowly decom-
poses to afford the aromatized chromophore.
The NMR-analyzed 3D-structure of the complex
(Fig. 14)99) indicated that the C6 (radical) position
is in spatial proximity to the ,-protons of Gly96
of the apoprotein (m/z 10489Da) and suggested
hydrogen-abstraction from Gly96. MALDI-TOFMS

analysis of the aged C1027 complex showed new
peaks at m/z 1444 and 9086Da, which correspond
to the peptide fragments oxidatively cleaved at the
Gly96 residue (Fig. 15).114) We thus designed and
prepared recombinant deuterated (D-Gly) apopro-
tein to improve the chromophore-stabilizing activity
due to the kinetic isotope effect.115) The results
demonstrated that kinetic stabilization of the reac-
tive chromophore enhanced the overall stability of
the small molecule-protein complex, thereby achiev-
ing more effective antitumor activities compared to
that of natural C-1027 (Fig. 16).115)

3.4. The first total synthesis and elucidation
of the stereochemistry of N1999-A2. A novel and
unstable nine-membered epoxyenediyne, N1999-A2
(96), was reported to exhibit extremely potent
cytotoxicity toward cultured cancer cells in 1998 by
Ando and coworkers at Ajinomoto Co. Ltd.116) The
structure of 96 is very similar to that of the aglycon
of neocarzinostatin chromophore (95) but lacks a
stabilizing carrier apoprotein. Since the stereochem-
istry of 96 was unknown, we synthesized its stereo-
isomers through C7,C8- or C5,C6-cyclization using
cerium acetylide (Scheme 11).14),117),118) Comparison
of the NMR and CD spectra, and the base-
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Fig. 12. The C-1027 antibiotic (holoprotein) powder is para-
magnetic and exhibits an ESR signal.

O

HO

Cl

H NH2

H

O

O

HN O

O

O

OMe

O

O
O

OH

OH

NMe2

C-1027 chromophore (97) p -benzyne form (108)

equilibrium

6 6

3 3
O

HO

Cl

H NH2

H

O

O

HN O

O

O

OMe

O

O
O

OH

OH

NMe2

aromatized chromophore (109)

O

HO

Cl

H NH2

H

O

O

HN O

O

O

OMe

O

O
O

OH

OH

NMe2

H

H

O

i-PrO

O

NH

Cl

OH

O

MeO

N

MeO O

O

N

OH

O
HO

OH

p -benzyne form (110)

equilibrium

O

i-PrO

O

NH

Cl

OH

O

MeO

N

MeO

O

O

O

N

OH

O
HO

OH

kedarcidin chromophore (98b)

O

O

O O

O

3

6

EtOH, 25 °C

t1/2= 50 min

Fig. 11. The natural nine-membered enediyne chromophores of C-1027 and kedarcidin are in equilibrium with their p-benzyne form.
Each p-benzyne form abstracts hydrogen atoms from the surroundings to form an aromatized chromophore.

Total synthesis and related studies of natural productsNo. 8] 307



selectivities of these stereoisomers during DNA
cleavage (Fig. 17), resulted in the determination of
the stereochemistry including the absolute configu-
ration of 96.14),117)

3.5. Synthesis of the neocarzinostatin chro-
mophore. Neocarzinostatin (NCS), the first
chromoprotein enediyne antibiotic, was isolated from
a culture of Streptomyces carzinostatics in 1965 by
Ishida and coworkers at Tohoku University.89), 90) Its
potent antibacterial and antitumor activities derive

from the inhibition of DNA synthesis and DNA
degradation in cells by the labile chromophore (95).
The chromophore-binding structure and the stabili-
zation interactions in the NCS complex was elu-
cidated by 2D-NMR method.95)–98) Mechanistic
studies using 95 and synthetic chromophore analogs
clarified the various chemical mechanisms of trigger-
ing the aromatization, the carbon-radical formation,
and DNA cleaving abilities.119)–133) Then, an effi-
cient route to the highly strained neocarzinostatin
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Fig. 13. ESR spectra of synthetic nine-membered enediyne (105) in deoxygenated CD2Cl2 at rt: (A) unlabeled 105, (B) 13C3-labeled
105a, and (C) 13C6-labeled 105b.

Fig. 14. NMR analyzed solution structure of the complex of C-1027 apoprotein and the aromatized chromophore (109).
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chromophore aglycon (117) was developed
(Scheme 12).13),134)–136) The present strategy involved
a stereoselective intramolecular cerium acetylide-
aldehyde cyclization to form the C4,C5-trans-diol
system, which was adequate to form the ,-epoxide.
This aglycon (117) was extremely unstable, but was
nonetheless glycosylated by the Myers group to
complete the total synthesis of labile neocarzinostatin
chromophore (95).137),138)

3.6. Determination of the absolute configu-
ration of the C-1027 chromophore and synthesis
of its protected aglycon. The antitumor antibiotic
C-1027, which is a complex between the reactive

chromophore 9788) and an apoprotein,99) was discov-
ered by Otani and coworkers at Taiho Co. Ltd. in
1988.87) The chromophore 97 is responsible for DNA
recognition and damage, and the apoprotein func-
tions as an effective drug-delivery system (vide
supra). The free chromophore (97) is the most labile
enediyne studied to date. Chromophore 97 was
transformed in ethanol at room temperature by
Masamune-Bergman cyclization and subsequent hy-
drogen abstraction to provide an aromatized chro-
mophore (109) with a half-life of 50min and in 82%
yield (Fig. 11).105) In a biological setting, the p-
benzyne biradical 108 abstracts hydrogen atoms

(108)(97)

m/z 10489

m/z 9086

Fig. 15. Proposed self-degradation mechanism of C-1027.

(108) (108)

Fig. 16. Rational design of more active C-1027.
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from DNA in a sequence-selective manner to cause
oxidative double-strand cleavage. The structure of
9788) as well as kedarcidin chromophore (98b)92) is
highly unusual. The complicated fused-ring system
of 97 comprises a cyclopentadiene ring, a highly
strained nine-membered enediyne ring, a func-
tionalized benzoxazine ring, and a chlorocatechol-
containing 17-membered macrolactone that displays
nonbiaryl atropisomerism. These structural and
functional complexities make the total synthesis
of the chromophore (97) extremely challenging.
We first determined the absolute configuration of
97,139),140) and then developed new and effective
methodologies for the construction of the nine-
membered enediyne structure.100),101) This approach
enabled the first synthesis of the exceedingly unstable
core structure (125) of the chromophore (97)
(Scheme 13)141)–149) and the labile protected aglycon
(131) (Scheme 15; in preparation for publication).16)

There are several key features of our syntheses.
The first is stereoselective and efficient synthesis of
three fragments (118, 119, and 121). The second
is CsF- and Pd(0)-mediated convergent assembly of
these three fragments. The third is an atropselective

macrocyclization of 122 controlled by strategic pro-
tection of both the C9-OH and C23-OH groups.146)

Without this protection, the atropselectivity was
decreased or reversed; in addition, the C9-protection
was also effective for preventing dimerization of the
cyclopentadiene moiety introduced via deprotection
of the MOM group followed by phenylselenenylation
and H2O2 oxidation. The fourth key feature is a
cerium amide promoted nine-membered diyne ring
cyclization between C5 and C6 of 123,141) assisted by
the ansa-macrolide linkage with a diBoc-protected
amine. The final feature is an extremely facile SmI2-
mediated reductive 1,2-elimination of 124 using p-
trifluoromethylbenzoate as an electron acceptor for
chemoselective olefination in the presence of poten-
tially reactive functionalities such as the doubly
allylic OTES group at C9 and the propargylic OAr
moiety at C8.16) However, when the benzoxazine
ester was attached, its ,,O-unsaturated carbonyl
group was reduced preferentially and rapidly to
afford 128 (Scheme 14). Therefore, this functionality
was masked in the hydrate form as 129 for the SmI2–
reduction, then dehydrated to complete the total
synthesis of the labile aglycon (131), a more stable
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compound than the core structure (125) (in prepa-
ration for publication). A stereocontrolled glycosyla-
tion method was developed,144),149) and further
studies directed toward the total synthesis of 97 is
under way.

The powerful yet mild nature of this olefination
methodology also enabled access to the aglycon of
the kedarcidin chromophore (98b), as shown in
Scheme 15.

3.7. Synthesis of the protected aglycon of the
kedarcidin chromophore. The structure of the
chromophore of the chromoprotein enediyne anti-
tumor antibiotic kedarcidine92),150),151) underwent
several revisions because of its high instability and
elusive, complex architecture. Its structure (98),
possessing an ,-azatyrosyl ansamacrolide linkage,
was first assigned by scientists at Bristol-Myers
Squibb in 1992.92) In 1997, we revised the ,-amino
acid to the corresponding O-amino acid derivative,
and simultaneously the absolute structure of the
whole molecule was updated as 98a based on the
synthetic studies.150) In 2007, Myers and coworkers
completed the formidable total synthesis of 98a,

whose 1H NMR data led to an additional revision of
the C10 stereochemistry, as shown in structure 98b
(Fig. 18).151) Finally, we developed an enantioselec-
tive synthetic route152)–156) to the unstable protected
aglycon (142) of kedarcidin chromophore with the
revised C10 stereochemistry (98b), which underwent
spontaneous cycloaromatization in 1,4-cyclohexa-
diene/benzene to give an aromatized chromophore
(143) (Scheme 15).17) Since the kedarcidin chromo-
phore (98b) has also an additional ansa-macrolide
linkage to the strained nine-membered enediyne
core, similar to the C-1027 chromophore (97),
their total syntheses were more difficult than those
of neocarzinostatin (95)13),137),138) and N1999-A2
(96b).14),117) The key features of our synthesis of the
aglycon (142) of the chromophore (98b) are: 1) the
efficient convergent assembly of four fragments (134,
135, 137, and 139); 2) a novel strategy to synthesize
the alkynyl epoxide (134) concisely from 132 and
133; 3) a cerium amide promoted nine-membered
diyne ring cyclization between C5 and C6 of 140
in the presence of the ansa-bridge; and 4) a SmI2-
mediated reductive 1,2-elimination for chemoselec-
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tive olefination in the presence of the C8,C9 epoxide
and the highly functionalized ansa-macrolide.17),156)

The NMR data of 142,17) including chemical shifts,
coupling constants, and NOE, were consistent with

those of the natural chromophore,92) while synthetic
142 is a protected aglycon.157)–159) The results of our
spectroscopic studies17) strongly support the recently
revised stereochemical structure (98b).151)
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3.8. The first total synthesis and structural
revision of the maduropeptin chromophore.
Maduropeptin is a novel member of the family of
chromoprotein antitumor antibiotics.93) The isolated
chromophore (99) is composed of a unique nine-
membered diyne core and a glycoside side chain.94)

Although 99 is the methanol adduct of a structurally
undefined labile chromophore, it showed DNA
cleavage site selectivity similar to that of the
holoprotein. The complex, highly unsaturated, and
functionalized molecular architecture of 99 differs
from those of the other enediyne chromophores
(95,90),138) 97,88),140) and 98b151)) of related chromo-
protein antitumor antibiotics and clearly presented a
daunting challenge for chemical synthesis. In partic-
ular, controlling the stereoselectivity of both the
C4,13-Z-olefin and non-biaryl atropselectivity within
the macrocycle necessitated the development and
application of new strategies.160)–163) The synthesis of
aglycon 155 started with the convergent assembly of
three fragments (144, 145, and 148) (Scheme 16).
Our CsF-promoted coupling between epoxide 144
and the sterically hindered phenol 145 produced aryl
ether 146,160) which was converted to enol trifrate
147 and coupled with acetylene moiety 148 under
Sonogashira conditions. The two most characteristic
rings, the highly strained 9-membered diyne and
the 15-membered ansa-macrolactam, were then con-
structed. After screening various reaction conditions,
we found that a mixture of LiN(SiMe2Ph)2 and CeCl3
in THF promoted the acetylide-aldehyde condensa-
tion to furnish diyne 150 with the C5-,-hydroxy
group in a completely stereoselective fashion.163) The
next lactamization was performed by slow addition
of the isolated azido-pentafluorophenyl ester 151
to excess triphenylphosphine in THF-H2O (30:1)
through the intermediacy of the corresponding C14
primary amine. It is noteworthy that those key ring
formation reactions were performed under non-high-

dilution conditions on a gram scale without decreas-
ing the yield. The last phase of the aglycon synthesis
was the introduction of the C4,13-Z-olefin through
the SmI2-promoted facile 1,2-elimination of bis-p-
(trifluoromethyl)benzoate 152. The stereoselective
formation of the Z-olefin of the protected aglycon as a
mixture of atropisomers (153 and 154) was realized
by the ring strain of the 15-membered macrocycle;
without the macrocycle, an E,Z-mixture was pro-
duced. The ratio of the atropisomers highly depends
on the polarity of the solvent and the chromato-
graphically separated isomers equilibrated at room
temperature to provide the same mixture after
several hours. Acid-promoted global deprotection of
the mixture of 153 and 154 gave rise to the aglycon
155 as the sole atropisomer that corresponds to the
natural chromophore 99.163)

The final manipulation for completing the total
synthesis of maduropeptin chromophore 99 was a
glycosylation (Scheme 17). The C9 tertiary alcohol
156 derived from a mixture of 153 and 154 was
glycosylated smoothly with 157 using TMSOTf as a
Lewis acid without the formation of the anomeric
isomer or migration of the benzoyl group. Removal of
two benzoyl groups and three TES groups completed
the total synthesis of 99.15) However, the 1H and 13C
NMR spectra of synthetic 99were found to differ from
those of the natural product. Upon closer inspection,
the structure of the natural maduropeptin chromo-
phore was suggested as the structure 99a, which
possesses the antipodal madurosamine moiety, and
was confirmed by its total synthesis using antipodal
madurosamine derivative 158.15) The absolute struc-
ture of the chromophore remains to be determined.

3.9. Biomimetic total syntheses of cyano-
sporasides and fijinolide from nine-membered
cyclic enediyne precursors through site-selective
p-benzyne hydrochlorination. The cyanospora-
sides are a collection of monochlorinated benzenoid
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derivatives isolated from marine actinomy-
cetes.164),165) All derivatives feature one of two types
of cyanocyclopenta[a]indene frameworks which are
regioisomeric in the position of a single chlorine atom.
It is proposed that these chloro-substituted benze-
noids are formed biosynthetically through the cyclo-
aromatization of a bicyclic nine-membered enediyne
precursor. We successfully synthesized unstable
bicyclic precursor 161, which was spontaneously
transannulated into the p-benzyne 162, and realized
its differential 1,4-hydrochlorination to produce C3-
chloro- (163) and C6-chloro-benzenoid (164) under
either radical (organochlorine) or ionic (chloride-salt)
conditions, respectively (Scheme 18). Our bio-in-
spired approach culminated in the first regiodiver-
gent total syntheses of the aglycons 165 of type A
(168), and 167 of type B (169), as well as of
cyanosporasides D (166) and E (167).166) It is
noteworthy that differential reactivity between C3
and C6 was observed in p-benzyne 162; thus, the
sterically more accessible C6 position preferentially
abstracted hydrogen over chlorine atoms in the
radical pathway and reacted preferentially with a
chloride anion in the ionic pathway.106),107),110),111),113)

The above methodology was applied to a bio-
mimetic synthesis of the aglycon of fijiolides A (181)
and B (182).167) These 3-chlorocyclopenta[a]indene
derivatives were isolated from marine Norcardiopsis
species, whereas no C6-chlorinated fijiolides were
isolated. New unstable 9-membered enediyne 172
with a TES group on C13-OH has the same structure
as the core of C-1027 chromophore (97)16) and was
synthesized from 123 (Scheme 13). Enediyne 172
was treated with LiCl in DMSO to determine if
the C6-chlorinated product 174 (R1FH, R2FCl)
was formed as expected, given the results of 161
(Scheme 19). However, neither 174 nor C3-chlori-
nated 175 was produced, suggesting that the
innately more reactive C6 position111),113) was cov-
ered by the benzene ring of the ansa-bridge, and
that steric hindrance around the C3 due to the TES
group might inhibit the reaction of p-benzyne 173.
Therefore, the C13-TES group of 172 was selectively
removed to afford 176. The reaction of 176 with LiCl
in DMSO gave rise to the C3-chlorinated 179, which
is a protected aglycon of fijiolides A (181) and B
(182). Thus, the ansa-macrolide ring played a key
role for controlling the regioselectivity of the reaction
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of p-benzyne intermediate 177. The intermediacy of
carbanion 178 was confirmed by formation of C6-
deuterated aglycon 180 in DMSO-d6 as a reaction
solvent (in preparation for publication).

4. Total syntheses of milbemycin ,1 and
avermectin B1a revisited

In the 1970s, Ōmura’s group at the Kitasato
Institute and researchers at the Merck Sharp and
Dohme Research Laboratories discovered potent
antiparasitic agents, the avermectins, from the
culture broth of Streptomyces avermitilis (S. aver-
mectinius).168),169) Of these agents, avermectin B1a

(202, Scheme 21) is the most potent anthelmintic
congener. Avermectins are 16-membered macrolac-
tones that consist of a 6,6-spiroacetal north segment
attached to the disaccharide oleandrosyl-oleandrosyl,
and a unique, highly sensitive hexahydrobenzofuran
south segment, which is responsible for their bio-
logical activity. Avermectins and structurally related
milbemycins170) attracted keen interest from syn-
thetic organic chemists and the total syntheses of
avermectin B1a (202) and milbemycins were achieved
by several groups.171)–178) These successful syntheses,

however, used several indirect strategies, such as the
deconjugation-epimerization strategy, to control the
position of the C3–C4 double bond and C2-stereo-
chemistry, and were less than satisfactory in terms of
stereo- and regio-control. Previously, we developed a
straightforward route to the hexahydrobenzofuran
segment,179) which allowed us to complete a total
synthesis of milbemycin ,1 (205).19) We recently
achieved an improved and efficient approach to
the south (190) and north segments (196)180)

(Scheme 20), as well as a stereocontrolled total
synthesis of avermectin B1a (202) (Scheme 21).18)

The highlight of our total synthesis of 202 was a
unique but powerful strategy of protecting the O-
hydroxy aldehyde moiety as trityl oxetane acetal
(190, 198). This enabled us to synthesize and
preserve the tetrahydrobenzofuran moiety without
serious isomerization or decomposition during the
entire synthetic sequence.18)

5. Other bioactive natural products

In addition to the above syntheses, we developed
several convenient methodologies such as yeast-
mediated enantiospecific reduction of potassium
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O-ketoalkanoates performed in a “bucket”
(Scheme 22).181) This was applied to the large-scale
preparation of optically pure (S)-citronellol, which is
not readily available from natural sources.182)–184)

Another convenient methodologies185),186) are highly
diastereoselective functionalizations of olefins medi-
ated by iodocarbamation187),188) and conjugate addi-
tion189)–195) of O-carbamates;196) these approaches
are useful for the synthesis of important amino
sugars of anthracycline antibiotics190)–192) as well as
1,3-diols,187) amino alcohols,188) piperidines,193) and
amino acids.194),195)

We also achieved total syntheses of the archi-
tecturally interesting bioactive natural products
listed in Fig. 19,197)–226) as well as development of
asymmetric oxidation205)–208) and asymmetric Bailis-
Hillman reaction209) using newly developed chiral
ligands (225–227) (Scheme 23) but do not discuss
these in this account due to space limitations.

6. Conclusion

The total synthesis of natural products with
complex architectures and potent bioactivities is a
most rewarding and challenging endeavor in the
chemical sciences. Our total syntheses and related
innovative investigations have been reviewed, focus-
ing on the 3 nm-long polycyclic ciguatoxins and the
highly strained and labile nine-membered enediynes.
Such endeavors have stimulated the development of
a multitude of powerful synthetic strategies, tactics,
and methodologies, and have not only advanced
biological, medicinal, and pharmaceutical studies,
but also helped to tackle real-life public health
problems. As a consequence of these studies, the
author has realized that the success in total synthesis
is not merely the end of research, but rather the
beginning of new scientific endeavors based on the
power and versatility of chemical synthesis.
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On the other hand, it should be emphasized that
the discovery of new bioactive molecules from nature
has long been the basis for developing the molecular
sciences and addressing social welfare issues, as
exemplified by the work of Prof. Satoshi Ōmura.
However, the application of advanced powerful
analytical tools, assay systems, and gene technolo-
gies, now means new bioactive natural products are
being increasingly isolated and identified only in
micro-, nano-, or pico-gram quantities. Thus, the
discovery of new bioactive natural products will
become increasingly more difficult and more chal-
lenging in the future.
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