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ABSTRACT From the years 2008 to 2014, a total of 1,155 water samples were col-
lected (spring to fall) from 24 surface water sampling sites located in a mixed-used
but predominantly agricultural (i.e., dairy livestock production) river basin in eastern
Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific
RNA (F-RNA) (genogroup | [GI] to GIV) coliphage and a suite of molecularly detected
viruses (norovirus [Gl to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovi-
rus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were de-
tected in 33 and 28% of the samples at maximum concentrations of 2,000 and
16,300 PFU - 100 ml~", respectively. Animal TTV, human TTV, kobuvirus, astrovirus,
and norovirus GllIl were the most prevalent viruses, found in 23, 20, 13, 12, and 11%
of samples, respectively. Viable F-DNA coliphage was found to be a modest positive
indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was
a modest positive predictor of norovirus and rotavirus. There were, however, a num-
ber of significant negative associations among F-specific coliphage and viruses.
F-DNA coliphage densities of >142 PFU - 100 ml~"' delineated conditions when
~95% of water samples contained some type of virus. Kobuvirus was the virus most
strongly related to detection of any other virus. Land use had some associations
with virus/F-specific coliphage detection, but season and surface water flow were
the variables that were most important for broadly delineating detection. Higher rel-
ative levels of detection of human viruses and human F-RNA coliphage were associ-
ated with higher relative degrees of upstream human land development in a catch-
ment.

IMPORTANCE This study is one of the first, to our knowledge, to evaluate relation-
ships among F-specific coliphages and a large suite of enteric viruses in mixed-use
but agriculturally dominated surface waters in Canada. This study suggested that re-
lationships between viable F-specific coliphages and molecularly detected viruses do
exist, but they are not always positive. Caution should be employed if viable
F-specific coliphages are to be used as indicators of virus presence in surface waters.
This study elucidates relative effects of agriculture, wildlife, and human activity on
virus and F-specific coliphage detection. Seasonal and meteorological attributes play
a strong role in the detection of most virus and F-specific coliphage targets.
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iruses such as norovirus (NoV), rotavirus (RV), hepatitis A virus (HAV), hepatitis E

virus (HEV), adenovirus (AdV), and astrovirus can be excreted in high numbers in
human and/or animal waste (1). These viruses can contaminate surface waters via
wastewater discharge, runoff and drainage from farming operations, and leakage from
faulty septic systems (2-8). With ever-increasing anthropogenic stresses and pressures
on surface water resources, identifying the driving factors that govern fecal pollution in
open watershed systems and implementing management practices/strategies de-
signed to ultimately reduce infection risks are becoming more crucial (9, 10). Important
in this regard is the determination of the source of fecal pollution via biomarkers and
host-specific pathogens (e.g., human, wildlife, and livestock), the seasonality of patho-
gen occurrence, and waterborne pathogen linkages to environmental/land use factors
(11-14).

As it is not yet practical to ubiquitously test for the presence of all waterborne
pathogens in a timely and tractable manner, water impairment guidelines are defined
on the basis of levels of fecal indicator organisms, such as Escherichia coli, fecal
coliforms, or enterococci (9). However, viruses often survive longer in water and can be
more resistant to environmental stress than fecal indicator bacteria (FIB). Moreover,
infectious viruses have been recovered at critical levels from surface waters that have
met FIB impairment criteria (15). Therefore, for human infectious viruses, other types of
indicators with preferred characteristics, depending on the application, will be required
(9, 16-21).

F-specific coliphages have been identified as indicators of fecal contamination, as
they primarily infect coliform bacteria present in the mammalian gut (9, 16, 18, 22-24).
The F-specific coliphage group is composed of multiple groups of bacteriophages that
infect bacteria via the F-specific pili (F-pili) and contain members with single-stranded
DNA genomes (F-specific DNA [F-DNA] coliphages) or RNA genomes (F-specific RNA
[F-RNA] coliphages). The enumeration and characterization of viable F-specific co-
liphage are relatively inexpensive and rapid. While F-RNA coliphages have been well
characterized and have the added potential of discriminating between human and
animal sources, much less is known about the distribution, survival, and ecology of
F-DNA coliphages (17, 24-27). The F-DNA coliphages belong to the Inoviridae family
and appear to have a higher genetic relatedness as a group than the F-RNA coliphages
(27). F-RNA coliphages belong to the Leviviridae family, which is subdivided into the
genera Levivirus and Allolevirus, and 4 serologically and phylogenetically separate
genogroups (28, 29). F-RNA genogroups | (F-RNA GI) and Il (F-RNA GlI) belong to the
Levivirus genus, while F-RNA genogroups Il [F-RNA GllII] and IV [F-RNA GIV] are part of
the Allolevirus genus. Genogroups | and IV are generally associated with animals [animal
F-RNA] (but genogroup | has been isolated in sewage), and genogroups Il and IIl are
predominantly associated with humans [human F-RNA] but have been isolated from
swine and chicken excrements (17, 28, 30-32). Different rates of survival at different
temperatures for subgroups of F-specific coliphages have been reported in surface
water (27, 30, 33, 34). In addition, the numbers and shedding frequency of F-specific
coliphages shed by individual hosts can be highly variable, which can result in vari-
ability in detection and density in surface waters when fecal contamination occurs
(35-37).

Adenoviruses (AdV) are gaining attention as a potential viral indicator as they are
ubiquitous in sewage and surface water and are more resistant to disinfection from UV
treatment than other viruses (19). AdV have a double-stranded DNA genome and
display great diversity, with 7 species and 52 serotypes, where AdV types 40 and 41 are
typically associated with gastroenteritis in children (38). Detection of AdV can be used
for fecal source tracking in water, as human, porcine, bovine, and avian AdV are host
specific (1, 39). AdV infections in animals are either asymptomatic or associated with
mild enteric or respiratory diseases (1). Although many types of human AdV (HAdV) can
be detected using cell culture, they vary with serotype and cell line and are laborious
and time-consuming to measure in water (40). HAdV are readily detected and quanti-
fied in surface waters using PCR methods (40-43). With molecular detection techniques,
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it is possible to detect nucleic acids of many human-pathogenic viruses, such as NoV,
HAV, HEV, and others that are difficult or impossible to cultivate, although no conclu-
sions about virus infectivity can be made from these techniques. Molecular detection
methods have opened up research opportunities to explore the potential utility of
other viruses as indicators of fecal contamination.

Torque teno virus (TTV) is a potential viral indicator of fecal contamination, as it is
frequently shed by humans and animals (44-47). TTV is a small virus classified in the
Anelloviridae family with a high-genetic-diversity DNA genome (44, 45, 48). TTV is
associated with persistent and transient infections, such as acute gastroenteritis, but is
also excreted by healthy individuals, so it is not clear if TTV is part of the normal gut
flora (19, 48-50). Some studies have demonstrated that TTV is very stable in the
environment and more resistant to decontamination treatments than AdV (51, 52).
However, as for several enteric viruses, there is no cell line supporting TTV replication
in vitro.

Further information and data on the associations between indicator viruses and
human-pathogenic viruses in impacted surface waters will be required before such viral
indicator approaches are employed broadly. A positive correlation between the con-
centrations of F-RNA genogroup Il and HAdV was reported in river water of an urban
area in France, while a significant correlation was not detected between genomic
copies of HAdV and culturable coliphages, F-specific coliphages, or FIB in urban rivers
of California (42, 53). A meta-analysis revealed that F-specific coliphages can be good
indicators for viral pathogens (21). When 5 pathogens and 8 commonly used indicators
were compared, a positive correlation was only found for F-specific coliphages and AdV
but not for other comparisons (21). The U.S. Environmental Protection Agency (USEPA)
provides an expansive review of the use of coliphages as a fecal pollution indicator
organism, but several studies therein found insignificant and negative coliphage-virus
associations (54). Evidence was also provided therein supporting potential relationships
between coliphages found in water and human health.

The primary objective of this study was to determine the degree of correlation
among viable F-specific coliphages and a suite of molecularly detected human and
animal enteric viruses (i.e.,, AdV, TTV, HAV, HEV, astrovirus, NoV genogroup | [GI] to GIV,
rotavirus [RV], and kobuvirus) in surface water of several watersheds in a mixed-use, but
predominantly agricultural river basin in eastern Ontario, Canada. A secondary objec-
tive was to determine the seasonality and environment/land use factors associated with
these virus and F-specific coliphage targets.

RESULTS

Occurrence of F-coliphage and viruses in water. F-DNA and F-RNA coliphage
were detected in 33 and 28% of the water samples, respectively. The prevalence of
F-DNA and F-RNA coliphage was greater than that of any specific virus (Table 1). The
maximum numbers of F-DNA coliphage were 8-fold lower than the maximum numbers
of F-RNA coliphages, where F-RNA Gl was detected most frequently (21%), while F-RNA
GIV was not detected in any water sample. Just over half of the samples (55%) exhibited
detections for any virus. Human TTV and animal TTV were detected in 20 and 23% of
the samples, respectively, while astrovirus, NoV GlII (often associated with bovines), and
kobuvirus were detected in more than 10% of the samples and AdV 40/41 in 3% of the
samples.

Table 2 shows the levels of detection of any virus, animal virus, human virus, and
F-specific coliphage in water samples for individual sample sites. For all the sample
sites, the average percentages of detection of any virus, animal virus, human virus,
F-RNA or F-DNA coliphage, F-DNA coliphage, human F-RNA coliphage, and animal
F-RNA coliphage in water were 55, 36, 42, 53, 33, 15, and 79%, respectively. Some
notable observations include site 12 on the mixed-use Little Castor River, which had the
highest detection by percentage of all sites for any virus (67%) and human virus (52%),
while the stream draining from a forested catchment with no human or agricultural
upstream land uses (site 24) had the lowest percentages of any virus (35%) and animal
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TABLE 1 Summary of virus detections and maximum F-specific coliphage densities

No. of % No. of % Maximum PFU -
Coliphage or virus¢ detections detections nondetections nondetections 100 ml—'4
F-DNA 383 33 786 67 2,000
F-RNA 330 28 835 72 16,300
Human F-RNA 161 14 1,004 86 16,300
Animal F-RNA 248 21 917 79 925
F-RNA GlI 247 21 918 79 16,300
F-RNA GlI 118 10 1,047 90 925
F-RNA GlII 53 5 1,112 95 450
F-RNA GIV 0 0 1,165 100 ND
Hepatitis E (HEV) 20 2 1,135 98 NA
Hepatitis A (HAV) 18 2 1,014 98 NA
Astrovirus 83 12 638 88 NA
Norovirus Gl (NoV GI) 48 4 1,107 96 NA
Norovirus Gll (NoV 57 5 1,098 95 NA
Gll)
Norovirus Glll (NoV 89 11 755 89 NA
Glll)
Norovirus GIV (NoV 59 7 785 93 NA
GIV)
Rotavirus (RV) 23 2 1,132 98 NA
Human torque teno 236 20 919 80 NA
virus (TTV)
Animal TTV 260 23 895 77 NA
Adenovirus 40/41 28 3 1,004 97 NA
(AdV 40/41)
General adenoviruses 22 2 1,010 98 NA
(general AdV)
Kobuvirus 16 13 107 87 NA
Any virus® 634 55 521 45 NA

aND, not detected (below detection limit); NA, not applicable.
bF-specific coliphage not included.
See Materials and Methods for virus group definitions.

virus (15%) detection. The percentages for F-RNA and F-DNA coliphage detection were
greatest at site 14 and lowest at site 24 (forested catchment). Site 14 is located on a
surface drainage network draining crop fields and is an area associated with a suite of
municipal sewage treatment lagoons (the degree of hydrological connectivity of the
drainage channel with the lagoons is unknown). The lowest percentages of human
F-RNA coliphage detection were found at site 22 and site 24. Site 22 was located
immediately downstream of a protected stream channel/riparian zone that received
primarily agricultural drainage but, interestingly, has been a site subjected to septic
system leakage inputs (6, 39, 55). The lowest animal F-RNA coliphage detection was at
site 22. The highest level of animal F-RNA coliphage detection was observed at site 24
and site 10 (a site immediately downstream of a cow pasture where cattle had access
to the water course [56]).

Associations between F-specific coliphage and viruses in water. Fig. 2A shows
significantly higher percentages of detection of kobuvirus, astrovirus, and AdV 40/41
when F-RNA coliphage and F-DNA coliphage were not detected in a sample. The
reverse was true for human TTV and any TTV (there were higher detection percentages
associated with F-RNA and/or F-DNA coliphage detection). For just F-DNA coliphage,
these same relationships held true except for significantly higher levels of detection of
animal TTV when F-DNA coliphage was detected in a water sample, and there was no
significant difference in the levels of detection of kobuvirus with respect to F-DNA
coliphage (Fig. 2B). For F-RNA coliphage only, significant detection associations were
found for a vast array of viruses, but 7 out of the 9 significant associations indicated
lower levels of virus detection when F-RNA coliphage was present in a water sample
(Fig. 2C). Animal F-RNA coliphage associations with groups of viruses were only
significant among kobuvirus and animal TTV, both negatively (Fig. 3A). Regarding
human F-RNA coliphage detection, significant associations were found among human
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TTV, AdV 40/41, and human viruses; however, these detection relationships were all
negative (Fig. 3B).

Table 3 shows that a majority of the significant (P = 0.05) associations among
quantitative F-specific coliphage and virus detection/nondetection were negatively
related. That is, F-specific coliphage average rank sums were lower when viruses were
detected in a sample than when viruses were not detected in a sample. Positive
associations, however, included (i) F-RNA coliphage versus NoV (GlI, GlI, and GIV) and RV,
(i) F-DNA coliphage versus any, human, or animal TTV, and (iii) F-DNA coliphage versus
any, human, or animal virus.
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Classification and regression tree (CART) analyses were used to classify threshold
F-DNA coliphage densities above which there would be a higher relative prevalence of
viruses (groups). We focused this effort on F-DNA coliphage versus human virus, animal
virus, and any virus. F-DNA coliphage, as already underscored, had the strongest
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respectively.

positive associations with these virus groups, in relation to F-RNA coliphage. Table 4
indicates that a grand proportion of virus detections were associated with lower F-DNA
threshold groupings (~=88 PFU - 100 ml~" for human virus and ~=142 PFU - 100
ml~" for animal and any virus), but the greatest classification percentages of virus-
positive samples were above threshold values (percentages of virus positivity were 66,
87, and 95% for animal, human, and any virus, respectively), albeit the numbers of
samples for these groups were small in relation to the total number of virus detections.

Intervirus associations in water. Table 5 indicates that for HEV, there were a suite
of significant Fisher’s exact test results, primarily with NoV, but Phi coefficients, while all
positive, were all low. Low Phi coefficients were also found for HAV. Astrovirus versus
any virus had a modest Phi coefficient of 0.41. NoV Gl and Gll were associated with a
suite of significant Fisher's exact test results; however, the associated Phi coefficients
were predominantly positive but low. Interestingly, NoV GlII versus any virus had a
modest positive Phi coefficient of 0.40. This could be important considering that NoV
Glll is often associated with bovine fecal pollution, bovines being the dominant
livestock in the region. Both animal TTV and human TTV versus any virus had modestly
positive Phi coefficients (0.46 to 0.49). The strongest Phi coefficient belonged to
kobuvirus versus any virus, at 0.51.
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TABLE 4 Classification of virus detections on the basis of F-DNA coliphage densities using
CART analyses

. . S No. of sampl ith:
Classification criterion: 0. of samples wit

CART Dependent (target) F-DNA coliphage density Virus Virus % virus
model variable (PFU - 100 ml—") detection nondetection detection
1 Human virus >87.5 41 6 87
Human virus =87.5 421 673 39
2 Animal virus >141.5 25 13 66
Animal virus =141.5 386 717 35
3 Any virus >141.5 36 2 95
Any virus =1415 590 513 54

Seasonality and environmental/land use associations with viruses and
F-specific coliphage. Fig. 4 shows the seasonal detection of F-RNA and F-DNA co-
liphage and viruses. Levels of detection were greatest for human F-RNA coliphage,
animal F-RNA coliphage, F-RNA and/or F-DNA coliphage, and F-DNA coliphage in fall
(24%), fall (38%), summer (62%), and summer (47% samples), respectively. For the
statistically significant seasonal differences, levels of detection of HAV, NoV (Gl, Gll, and
GIV), human TTV, animal TTV, AdV 40/41, and general AdV were greatest in summer
(47%), summer (3%), summer (6, 7, and 12%, respectively), summer (25%), fall (27%),
spring (8%), and spring (4% of samples), respectively. NoV GlIl detection was greatest
in spring (16% of samples), a time period when livestock manure is applied to land.
Seasonality was not significant for the detection of any TTV, animal virus, HEV, astro-
virus, RV, or kobuvirus.

TABLE 5 Significant Fisher's exact test results among virus targets, and associated Phi
coefficients

Phi Fisher’s exact
Virus vs virus coefficient test P value
Hepatitis E virus vs norovirus Gl 0.07 0.05
Hepatitis E virus vs norovirus GllI 0.24 0.00
Hepatitis E virus vs norovirus GIV 0.15 0.00
Hepatitis E virus vs adenovirus 40/41 0.16 0.00
Hepatitis E virus vs kobuvirus 0.33 0.02
Hepatitis E virus vs any virus 0.12 0.00
Hepatitis A virus vs astrovirus 0.15 0.00
Hepatitis A virus vs any virus 0.12 0.00
Astrovirus vs norovirus GllI 0.10 0.02
Astrovirus vs any virus 0.41 0.00
Norovirus Gl vs norovirus Gl 0.11 0.00
Norovirus Gl vs norovirus GllI 0.12 0.00
Norovirus Gl vs norovirus GIV 0.12 0.00
Norovirus Gl vs human TTV —0.09 0.00
Norovirus Gl vs any virus 0.19 0.00
Norovirus GIl vs norovirus Glll 0.10 0.01
Norovirus Gll vs animal TTV —0.08 0.01
Norovirus Gll vs any virus 0.21 0.00
Norovirus GlIl vs norovirus GIV 0.27 0.00
Norovirus GllIl vs any virus 0.40 0.00
Norovirus GIV vs animal TTV —0.07 0.02
Norovirus GIV vs any virus 0.32 0.00
Rotavirus vs any virus 0.13 0.00
Human TTV vs animal TTV 0.35 0.00
Human TTV vs any virus 0.46 0.00
Animal TTV vs any virus 0.49 0.00
Adenovirus 40/41 vs general adenovirus 0.31 0.00
Adenovirus 40/41 vs any virus 0.14 0.00
General adenovirus vs any virus 0.13 0.00
Kobuvirus vs any virus 0.51 0.00
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FIG 4 The percentage of various virus and F-specific coliphage detection and nondetection in samples
grouped by season. Significant seasonality was determined via Fisher's exact test (3 seasons by presence/
absence). x = P = 0.05.

Table 6 documents exploratory data mining results for a suite of virus and F-specific
coliphage targets. The independent variables used in this analysis are given in Table S1
and are exploratory variables that have been utilized consistently in other works for
pathogen association (see, e.g., reference 13). The approach defines optimal indepen-
dent variable conditions that classify dependent variables (virus and F-specific co-
liphage detection and nondetection) on the basis of independent variable criteria.
Some noteworthy results are as follows: for F-DNA coliphage, most detections were
associated with daily mean air temperature of >4.25°C and total rainfall on the day of
sampling of =4.1 mm. The majority of the F-RNA coliphage as well as animal F-RNA
coliphage detections occurred during fall, in relation to the other seasons. Human
F-RNA coliphage were most strongly associated with a daily mean air temperature of
=9.25°C and developed land upstream (5 km) of >1%; the developed land variable split
condition suggests there was a positive association between human F-RNA coliphage
and degree of urban/rural development for daily mean air temperatures of <9.25°C.
Regarding human virus, a majority of the detections were associated with mean daily
river discharge of =1.64 m3 - s=' and developed land upstream (2 km) of >0.2%. The
positive relationship between detection and human development for the discharge
condition highlights positive-occurrence links between lower-discharge conditions and
human land development. For animal virus, two independent variable criteria defined
conditions associated with higher relative levels of virus detection; these were mean
daily river discharge of >0.39 m3- s~ and total rainfall on the day of sampling of >0.30
mm, and a mean daily river discharge of =<0.39 m3 - s='. These are two contrasting
situations, the first being higher relative discharge and rainfall inducing detection, and
the second being lower-discharge conditions exclusively (animal virus presence is
basically bimodal in the context of discharge). Some other notable virus-specific results
include those for HEV, where greater HEV detection occurred when the total rainfall on
the day of sampling was >0.60 mm and the electrical conductivity of water was >0.60
mS - cm~" (higher salt content is usually linked to fertilizer-based nutrients in water in
this area [13] under rainfall conditions). For NoV, the associations were different for
each genogroup, where the detection of most NoV Gl was associated with a daily mean
air temperature of >5.90°C and a total rainfall on the day of sampling of =5.30 mm;
proportionally higher levels of NoV Gl detection occurred when the daily mean air
temperature was >23.40°C. NoV GlIl was associated with an oxidation-reduction po-
tential of =145.10 mV or a combination of an oxidation-reduction potential of >145.10
mV and daily mean air temperature of =<21.15°C, while NoV GIV detection was strongly
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associated with mean daily river discharge of =<1.56 m3 - s~ and pasture forage land
upstream (10 km) of =35%.

DISCUSSION

Detection and densities of F-specific coliphage and viruses in water and
environmental/land use associations. The detection of viruses in surface water varies
greatly in the literature (54, 57). Payment and Locas summarize a large 20-year
assessment of somatic and F-specific RNA coliphage and a suite of enteric viruses
primarily in groundwater in Canada (58). Other studies focusing on surface water, such
as those by Baggi et al. (59), Hot et al. (60), Skraber et al. (18), Westrell et al. (61),
Espinosa et al. (62), Lodder et al. (63), and Viau et al. (64), examined collocated enteric
virus and somatic and/or F-specific coliphage occurrence in fresh surface waters within
a variety of impacted and lower-impacted regions throughout the world. But, to our
knowledge, studies evaluating this broad suite of viral and F-specific coliphage geno-
group targets over multiple years and surface waters from multiple (sub)watersheds
have not been conducted for mixed-use predominantly agricultural regions. Untan-
gling sources of fecal pollution in agro-ecosystems impacted by mixes of wildlife,
livestock, and human fecal pollution is a rapidly emerging source water protection
issue, and in parallel with new advances in molecular detection methods in combina-
tion with geospatial and statistical/data mining techniques, this work helps provide a
Canadian baseline for future surveillance initiatives within an agricultural context.

F-DNA and F-RNA coliphages in this study were detected in 33 and 28% of the water
samples, respectively. Wolf et al. found that 100% of river water samples likely impacted
by both human and animal contamination were positive for F-RNA coliphage, with
maximum numbers similar to those found herein (65). In this study, F-RNA coliphage Gl
was the most frequent and most abundant genogroup detected, which was expected,
given that the samples were predominantly from agriculturally and wildlife-impacted
surface waters (12). Moreover, increased rates of survival for F-RNA coliphage Gl
compared to those of other F-RNA coliphage subgroups at different temperatures may
contribute to a greater prevalence or persistence of F-RNA coliphage Gl in surface water
(17, 30, 33, 66, 67). The stream systems studied had varied depth and substrates, which
will contribute to there being a range in surface water temperatures affecting both
persistence and viability. The lack of detection of F-RNA coliphage GIV in surface water
found here is also in agreement with other studies (17, 65, 66).

Human and animal F-RNA coliphage detection levels were relatively low at site 22,
an agricultural stream at the end of a cattle pasture area with a protected riparian
buffer (55). Interestingly, this location has historically received highly transient fecal
pollution inputs from leaking septic systems from homes immediately upstream, and
from a relative framework, enhanced inputs of wildlife fecal matter resulting from
riparian zone protection (e.g., Canada goose Bacteroidales markers [68]). Animal F-RNA
was detected in relatively high quantities while human F-RNA was detected in relatively
low quantities at site 24, a forested catchment area with no known upstream impact by
humans or agriculture. This site did have some of the highest levels of detection of
human and Canada goose Bacteroidales markers; however, as observed by Marti et al.,
the reasons for these observations are not fully clear (68). Frey et al. observed the
presence of Campylobacter, Salmonella, and ruminant/bovine Bacteroidales markers in
runoff from sediments in the area of study, especially around site 10 (impacted by
pasturing cattle and direct cattle access to water) (56). In this study, at site 10, we
observed some of the highest levels of detection of animal F-RNA coliphage, which is
consistent with the Frey et al. ruminant/bovine marker observations. Site 12, located on
a tributary with mixed land uses, had the greatest any virus detection, with associated
detection levels of ~20% human F-RNA and ~78% animal F-RNA. For this site, few
human, no pig, ~20% ruminant, ~7% muskrat, and no goose Bacteroidales markers
were observed (68). The results of the site virus, F-specific coliphage, and source
detections discussed here indicate that sources of viruses/coliphages are complex and
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vary in both time and space transiently; moreover, they are not always coherent and
consistent with detections associated with other biomarkers and pathogens.

The detection results obtained in this study show that 55% of the samples analyzed
had at least one virus detected, suggesting that there is a need to carry out more-
refined microbial risk assessments (10). Human and animal TTV viruses were most
frequently detected in 20% and 23% of the surface water samples, respectively. This is
not surprising, since the TTV virus is highly prevalent in humans, yet its link with disease
is not well defined. Some authors have reported that TTV could be part of the normal
flora for both humans and animals (making it a potential source tracking marker, which
would help explain its high prevalence in certain populations and in water observed in
this study [69, 70]). Some recent studies have suggested that human TTV virus could be
involved in cases of gastroenteritis and that TTVs could be responsible for pathologies
in swine as well, particularly in coinfection with circovirus type 2 (50, 71-73). The
presence of human TTV in water has been frequently observed by others. A recent
study reported that human TTV was found in 38 to 100% of wastewaters (74).

Levels of detection of the main human-pathogenic viruses in the surface waters
from this study varied from 2% for HAV and HEV up to 12% for astrovirus. Astrovirus is
responsible for a considerable proportion of gastroenteritis cases in young children, the
elderly, and the immunosuppressed (75-77). NoV GllI, which is considered to be an
etiologic agent frequently associated with cases of gastroenteritis, was found in only
5% of water samples, perhaps reflecting the agricultural impact in the watershed (as
reflected also in the somewhat higher level of detection of NoV GllI, at ~11%). Overall,
the persistence of NoV in the environment, particularly in water, has often been
observed, but there is in tandem high variability in terms of both prevalence and
concentrations in surface and waste waters (78-80).

In this study, there were seasonal associations with the detection of F-DNA co-
liphages, where detection was highest in summer (when animal activity in the basin is
greatest). Animal and human F-RNA coliphages were associated with the fall season.
Cole et al. reported that the prevalence of F-DNA coliphages was significantly higher
during the warmer months and early fall (17). A seasonal effect was reported for the
survival of F-RNA coliphage in surface waters in California (67). F-DNA and F-RNA
coliphages can die off faster at temperatures of 20°C or warmer than at 10°C or lower
(27, 67). The presence or absence of a seasonal effect will be influenced by the climatic
region in which the sample was taken (as well as the water body in terms of substrate
and depth; see reference 81), as systemically higher maximum water temperatures in
warmer climates may not be typical or sustained in a more northern climate. While
overall, F-specific colipages were found in this study to be most strongly linked to
seasonal attributes, the greatest number of human F-RNA coliphage detections were
found via CART data mining analyses to be associated with both lower relative mean
air temperature (i.e., cooler seasons) and higher relative degrees of developed land. This
was the only CART-based F-specific coliphage finding to classify data on the basis of an
urban/rural land development variable, with a 76% weighted classification accuracy.
The CART result appears to be coherent with potential septic leakages that can occur
in the area, as well as wastewater treatment plant effluents, which are typically
discharged under higher-river-flow conditions in the cooler spring and fall seasons (6).
Somewhat like human F-RNA coliphage, human virus associations with environment/
land use indicated that most detections occurred where urban/rural development was
relatively higher.

Environmental occurrences of and infections by NoV, AdV, RV, and astrovirus have
been associated with cooler seasons (45, 82-84). In this work, we observed increased
levels of detection of NoV Gl, Gll, and GIV in summer, while GlIl was highest in spring,
which could be related to agricultural practices, such as bovine manure applications
on fields. Rotavirus was rarely observed, and astrovirus detections showed no
seasonality.

The highest levels of animal virus detection were associated with higher relative
water flow conditions and relatively higher daily rainfall, suggesting more spatially

February 2017 Volume 83 Issue 3 e02763-16

Applied and Environmental Microbiology

aem.asm.org 15


http://aem.asm.org

Jones et al.

uniform hydrologically driven inputs (e.g., surface runoff, tile drainage, and in-stream
mobilization of antecedent waters/sediment/stream detritus [55, 85]). HEV detection
was also linked to relatively higher daily rainfalls, as well as higher relative water
electrical conductivity values (i.e., salts). Wilkes et al. documented livestock Cryptospo-
ridium and higher odds of bacterial pathogen occurrence in fall when stream/river
discharge and nitrate (a salt that will increase electrical conductivity in water) concen-
trations in water were relatively higher (12). TTV was bimodal in detection with respect
to relative river discharge (which might be suggestive of systemic hydrologically driven
inputs from land to stream) and intrinsic inputs from wildlife/urban under nonflushing
conditions (i.e., low-flow conditions where contaminants can accumulate).

Overall, seasonality, expressed through air and water temperature and season
variables, was extremely important for delineating the detection of viruses and
F-specific coliphage in water. Seasonality in pathogen/indicator prevalence in the study
region is linked to seasonal application of livestock manures to land (spring and fall)
and subsequent movement of fecal pollution to stream, wastewater treatment plant
(WWTP) lagoon dumping (spring and fall) in the South Nation River proper, wildlife
fecal inputs into water courses, and wetter fall conditions promoting water course fecal
pollution (13, 86).

F-specific coliphage-virus relationships. Associations between F-specific co-
liphage and viruses vary from modestly strong to negative (e.g., see references 21, 54,
and 87). In this study, significant positive associations were found between the pres-
ence of F-DNA coliphages and human TTV, animal TTV, and any TTV. As TTV was the
most frequently detected virus in the any virus group, the positive associations of
F-DNA coliphages with the combined virus grouping were significantly influenced by
TTV. In contrast, the presence of AdV 40/41, kobuvirus, astrovirus, human TTV, and any
TTV (which includes human TTV as a subset) were associated with the absence of
F-specific coliphage (F-RNA and F-DNA combined). The significance and number of the
negative associations among the detection of viable F-specific coliphage and molecu-
larly detected viruses were not entirely unexpected. Negative correlations might indi-
cate that the viruses and F-specific coliphages had different fecal pollution sources and
environmental reservoirs (54). Another factor could be that F-specific coliphages were
detected by plaque assay and the viruses detected by molecular methods. Enteric viral
genomes protected by a protein viral capsid can persist longer than some other
infectious particles (42, 53). This also has bearing regarding differences in environmen-
tal persistence of the two microbial targets. Wu et al. reported that correlations
between indicators and pathogens were strongest for conventional detection methods
(odds ratio [OR], 2.36, positive association) and weakest for molecular detection meth-
ods (OR, 0.40) (21). In addition to the differences in the detection of infectious particles
versus genomes, the absence of detection of F-specific coliphages and presence of
other viruses may also be due to relative differences in viral and coliphage loads
detected in the water samples. Fecal contamination from a single animal may also not
be easily detected, since not all animals in a herd, for example, will carry and shed
F-specific coliphages at equal levels; hence, inputs may be overwhelmingly diluted
once entering the broader surface water environment (22, 88).

In our study, relatively small volumes of water were concentrated for the detection
of viruses, while in many other surface water studies, larger volumes of water, up to 10
to 1,000 liters, are not uncommon (22, 65, 89). In the absence of significant fecal
pollution inputs, the levels of F-specific coliphage may be well below the limit of
detection. In such cases, perhaps an enrichment method for the detection of F-specific
coliphages would provide more valuable information than direct enumeration (87).
When Ballester et al. retested archived seawater sample concentrates prepared from
large volumes (>100 liters of water) for the presence of coliphages, the rate of
detection increased from 8% to 58% using a two-step enrichment method (87).
However, with respect to sampling and laboratory management, processing larger
volumes of water can be logistically cumbersome and would preclude, potentially, the
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identification of viral contamination in surface waters captured via the smaller-volume
approaches defined in the current study, where over 1,150 samples from 24 surface
water sampling sites were processed and analyzed. Such virus molecular detection
approaches can be viewed as a preliminary screening for identifying where and when
more-intensive monitoring or microbial risk assessments (e.g., viability) need to be
performed, and potentially where coliphage could be used as an indicator of viral
pollution in water.

Virus versus virus associations. In this study, modestly strong associations were
observed between the detection of astroviruses versus any virus, norovirus GlIl versus
any virus, animal and human TTV and any virus, as well as kobuvirus versus any virus.
These virus groups were the most frequently detected viruses in the water samples.
NoV GlIl is associated with bovines, while kobuviruses are found in animals and humans
(90, 91). Associations were not observed between TTV and kobuvirus. Information on
correlations between TTV, kobuvirus, or NoV GllIl and other pathogenic viruses is scarce
(43). Diniz-Mendes et al. reported a lack of correlation between TTV and HAV in streams
in a setting where both viruses were endemic (45).

TTV is being considered a suitable indicator of viral contamination in surface and
drinking water broadly because it chronically infects humans; some studies have shown
it is relatively abundant throughout the seasons, relative to human NoV and human
AdV (for example, see references 45, 46, and 92-94). In this study, TTV was found to be
positively associated with F-DNA coliphage and relatively abundant seasonally com-
pared to other viruses.

Nevertheless, TTV results vary geographically, with reported human carriage rates as
low as 10% to as high as 96% depending on the region/country (43, 47, 95, 96). In some
cases, low concentrations of TTV DNA in sample water suggest that TTV may not
necessarily be suitable as a single indicator of viral contamination of surface water (47).
The limitations of TTV as a potential indicator virus were also raised by Verani et al. due
to its low prevalence (97).

NoV Glll is associated with bovines, and very little information is currently available
about its prevalence in Canadian cattle herds. However, the virus does seem to have
the ability to transport and persist in the environment (98, 99), and in the South Nation
River basin, where dairy livestock operations predominate, NoV GlIl was observed in
many surface water samples. NoV GlIl had many significant positive associations with
other viruses and virus groups. Hence, its potential as a virus indicator is promising. To
our knowledge, the studies by Wilkes et al. (4, 39) are some of the first to report NoV
Glll in an agriculture-dominated watershed setting.

Conclusion. This study was one of the first surveillance attempts to assess associ-
ations and detections among viable F-DNA and F-RNA coliphage and a suite of
molecularly detected viruses in surface waters of a mixed-use but predominantly
agricultural region in Canada. Viable F-DNA coliphage was found to be a reasonable
indicator of molecularly detected TTV. Stronger positive associations and codetection
were found between F-DNA coliphage and TTV than between F-RNA coliphage and
TTV. This has not been previously reported, to our knowledge. F-RNA coliphage, unlike
F-DNA coliphage, was a reasonable predictor of NoV and RV, however. There was a
large number of F-specific coliphage-versus-virus relationships that were negative,
which suppresses the broad utility of F-specific coliphage as an indicator of virus
occurrences in raw surface water, as documented in this study. Water sample size was
relatively small to accommodate logistical constraints of this broader surveillance
initiative, and therefore, we may have underestimated the presence of viruses in some
circumstances where abundance may have been naturally lower. F-specific coliphages
were also present at low levels in surface water samples, suggesting that alternate
testing methods, such as a presence/absence approach using an enrichment method,
may improve the frequency of detection. Notwithstanding, molecular methods for the
detection of viruses in water surveillance initiatives, such as this, are desirable from a
logistical and cost perspective; moreover, they provide for the detection of a vast array
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of viral targets to define fecal pollution sources and pollution hot spots. It can be seen
in this way as a functional first-screening approach in terms of where to focus surface
water sampling for future assessments of viability and for quantitative microbial risk
assessments (10).

It was identified that F-DNA coliphage densities of >142 PFU - 100 ml~" delineated
conditions when ~95% of the water samples contained some type of detected virus.
This F-DNA coliphage density could be tested as a threshold value for virus detection
in other surface waters to evaluate linkages with, for example, recreational virus
exposure risks (10).

Generally speaking, the most important variables associated with virus and
F-specific coliphage occurrence in surface water were season/temperature and surface
water discharge. These factors are direct and indirect drivers of fecally derived pollution
in this river basin. Seasonality is potentially linked to factors, such as wildlife activity,
municipal wastewater lagoon discharge, septic leakages, land application of manure,
and soil and hydrological conditions that promote off-field and instream transport
processes. However, it was found that where human intervention was relatively lower,
levels of detection of human viruses and human F-RNA coliphage were relatively lower
(e.g., forest stream and small agricultural drainage systems hydrologically disconnected
from human fecal pollution sources), and where human intervention was relatively
more intensive, levels of detections of human viruses and human F-RNA coliphage were
relatively higher.

MATERIALS AND METHODS

Study site and sample collection. Water samples were collected in the South Nation River basin, in
eastern Ontario, Canada, from spring 2008 to fall 2010 and spring 2013 to fall 2014 (Fig. 1). General basin
land use is given in Table 2, where agriculture (dairy-based activities, including livestock cropping and
land applications of manure in spring and fall), urban, forest, and wetlands occupied, respectively, 0 to
90, 0 to 5, 9 to 100, and 0 to 4% of the upstream contributing areas of water sample sites (using 2013
data). See two studies by Wilkes et al. for further details on the site characteristics and land use (13, 86).
The maximum and minimum temperatures observed during the study period were 35°C (26 May 2010)
and —35°C (17 December 2013). Total annual rainfall for the study period years ranged between 680 mm
(2009) and 804 mm (2014) (climate data for Agriculture and Agri-Food Canada’s WEBs station measured
with Hobo weather station [Onset Computer Corporation, Bourne, MA] [Fig. 1]).

Water sampling occurred on a biweekly basis at sites 1 to 24 (Fig. 1 and Table 2). A total of 1,155 site
visits were made during this period, where a distinct 1 liter of sample water was collected for the
molecular detection of viruses, and a separate 1 liter of sample water was collected for quantification of
viable F-specific coliphages. Water samples were shipped overnight on ice to Agriculture and Agri-Food
Canada’s (AAFC's) research center in Lacombe, Alberta, Canada, for characterization of F-RNA and F-DNA
coliphage, and to AAFC's research center in Saint-Hyacinthe, Quebec, Canada, for molecular detection of
enteric viruses.

F-RNA and F-DNA coliphages. Isolates were selected as described in reference 55. The RNA from
confirmed F-RNA coliphage isolates was obtained from F-RNA coliphage suspensions that were thawed
and diluted 1:50 in DNase/RNase-free water, boiled for 5 min, held on ice for 2 min, and then centrifuged
at 14,000 X g for 10 s. The RNA extracts of F-RNA coliphages were genotyped into genogroups | through
IV by real-time reverse transcription-PCR (RT-PCR). Real-time RT-PCRs were carried out with a QuantiTect
multiplex no-ROX RT-PCR kit (Qiagen, Inc., Mississauga, Ontario, Canada) on a Stratagene MX3005P
quantitative PCR (qPCR) thermocycler (Agilent), using conditions as described by Jones et al. (100).
Genogroups | and IV were detected by a duplex assay using LV1 and GIV primers and probes, as
described by Jones et al. (100), and genogroups Il and Ill were detected in individual reactions using the
primers and probes as described in Wolf et al. (65). Each 25-ul reaction mixture contained 200 nM each
forward and reverse primers and probe, 0.25 ul of QuantiTect multiplex RT mixture, 0.03 uM of ROX
reference dye, and 2.5 ul of RNA extract in 1X QuantiTect multiplex RT-PCR mastermix. RNA extracts that
were positive for Gl or GIV were assigned to F-RNA coliphage of animal origin, and those that were
positive for Gll or GlIl were assigned to F-RNA coliphage of human origin for each water sample (taking
into consideration that source definitions may not be absolute). The detection limits for viable phages
were 5 liter~7, and the genome copies by RT-PCR were 120 liter—'.

Viruses. Water samples were processed for the detection of HAV, HEV, astrovirus, NoV G, GlI, GlIl, and
GIV, RV, human TTV, animal TTV, AdV 40/41, general AdV, and kobuvirus. The samples were processed
as described in reference 6. Feline calicivirus was added to each sample of water before any manipulation
as an internal process control to monitor the concentration and extraction processes and to evaluate the
presence of inhibitors; negative controls were also employed (6). For each detected virus, standard curves
were made to estimate the amount of viral genomes, as described by Wilkes et al. (6).

For kobuvirus, which we describe in detail here (not described in the previous methods), the cDNA
synthesis was carried out using SuperScript Il (Invitrogen), according to the manufacturer’'s recommen-
dations. Briefly, a 20-ul final volume containing 10 ul of RNA extract, 10 mM deoxynucleotide triphos-
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phate (dNTP), 4 ul of 5X first-strand buffer, 10 pmol of the antisense primer, 40 U of RNaseOUT, and 200
U of SuperScript Ill. The reverse transcription was performed at 55°C for 1 h. PCRs were performed in a
total volume of 50 ul using the HotStar Tag Plus master mix 2X kit (Qiagen), according to the
manufacturer’s recommendations, in an Mastercycler gradient PCR system (Eppendorf, Mississauga,
Ontario, Canada). cDNA (10 ul) was used as the template. The PCR primers Univ-KOBU-F and Univ-
KOBU-R were used at a final concentration of 500 nM each (90). They were designed for the conserved
RNA-dependent RNA polymerase (RdRp) gene of kobuviruses and amplify a 216-bp-long PCR fragment.
The PCR was conducted under the following conditions: 1 cycle at 95°C for 15 min and 40 cycles of 95°C
for 30 s, 51°C for 90 s, and 72°C for 45 s, followed by a final elongation step of 72°C for 10 min. The
amplified products were separated on a 2% agarose gel with amplicons visualized with ethidium
bromide staining.

For this study, broad groupings of viruses were created based on their generalized host association

(again taking into consideration that assignations may not be absolute) for microbial source tracking
purposes (4). For defining animal virus, the grouped viruses were norovirus Gll, norovirus GllIl, animal TTV,
kobuvirus, RV, and HEV. For human virus, the grouped viruses were HAV, astrovirus, norovirus Gl,
norovirus Gll, norovirus GIV, RV, human TTV, AdV 40/41, and general AdV.

Statistical treatment. Fisher's exact tests were used to examine the significance of contingency

among the detection/nondetection of F-specific coliphage and detection nondetection of singular
viruses (groups) (2 by 2 table) (R version 3.2.2; The Foundation for Statistical Computing, Vienna, Austria).
For these same comparisons, Phi coefficients were calculated in R to discriminate the strength of the
association between the detection/nondetection of viruses and the detection/nondetection of F-specific
coliphage. A Phi coefficient of 1 is indicative of a strong positive correlation between categorical data, a Phi
coefficient of —0.3 to 0.3 is indicative of no effective correlation, and a Phi coefficient of —1 is indicative of
a strong negative correlation between categorical data. Fisher's exact tests were also used to test for seasonal
significance among the singular virus (virus groups) and F-specific coliphage using a 3 by 2 (3 season and
detection/nondetection) contingency table approach (R version 3.2.2, fisher.test function of stats package
[101, 102]). To determine if quantitative F-specific coliphage distributions were significantly different among
detection and nondetection groups of viruses, nonparametric Mann-Whitney U rank sum tests, using
continuity corrections, were employed (Statistica version 12; StatSoft, Inc., Tulsa, OK). For all of the previous

statistical treatments of the data, significance was defined as a P value of =0.05.
Data mining was conducted to explore associations among the detection/nondetection of microbi-

ological targets (dependent variables) and a suite of independent land use (proportions of developed
land, pasture and forage land, and agriculture land), physiographic (Strahler stream order [104]), and
hydrological variables (e.g., stream flow) (Table S1). Classification and regression tree (CART) (Salford
Predictive Modeler version 7.0 64-bit; Salford Systems, San Diego, CA) data mining was employed in
classification tree mode, according to approaches outlined in reference 12. Also, we used CART in
classification mode to evaluate threshold F-DNA densities associated with the detection and nondetec-
tion of viral targets. For CART analyses, we only present cross-validated tree models generated to a
maximum of two levels (maximum of four classification groups) (4, 13).

SUPPLEMENTAL MATERIAL

AEM.02763-16.

TEXT S1, PDF file, 0.2 MB.
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