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Abstract

Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the 

shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, 

and a scarcity of nutrients. These problems may be circumvented in part by the ability of 

uropathogenic Escherichia coli (UPEC) and several other uropathogens to invade the epithelial 

cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional 

nutrients and protection from both host defenses and antibiotic treatments. Translocation through 

host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of 

stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary 

tract infections (UTIs). Here we review the mechanisms and consequences of host cell invasion by 

uropathogenic bacteria, with consideration of the defenses that are brought to bear against 

facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to 

the pathogenesis of UTIs in human patients is also assessed, along with some of the emerging 

treatment options that build upon our growing understanding of the infectious life cycle of UPEC 

and other uropathogenic bacteria.

INTRODUCTION

The ability of bacterial pathogens to invade host cells can have profound effects on the 

establishment, persistence, and propagation of infections. By entering host cells and 

subsequently avoiding destruction within degradative lysosomes, bacteria can gain better 

access to scarce resources as well as protection from host defenses and antibiotics. 

Furthermore, host cell invasion can facilitate the dissemination of bacteria within and across 

tissue barriers. The actual benefits afforded to intracellular bacterial pathogens can be highly 

context-dependent and sometimes difficult to discern. Over the past three decades, a number 

of bacterial species that were conventionally thought to be strictly extracellular pathogens 

were found to have alternative intracellular lifestyles (1, 2). Among these facultative 

intracellular pathogens are strains of uropathogenic Escherichia coli (UPEC) and other 

bacteria that cause urinary tract infections (UTIs). These infections are very common, 

especially among females, and are prone to recur even after treatment with appropriate 

antibiotics (3, 4). Nearly one-third of women will have an acute UTI by the age of 24 and 

about 25% of these individuals will experience at least one recurrent UTI within 6 months of 

the initial infection. Many individuals endure painful bouts of recurrent and chronic UTIs 
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throughout their lives (5). The capacity of some uropathogens to persist and even multiply 

within host cells may help explain why some UTIs repeatedly recur while also opening the 

door for new treatment options.

TAKING NOTICE OF INTRACELLULAR UROPATHOGENS

One of the first indications that uropathogenic bacteria could occupy intracellular niches 

within the urinary tract came from observations dating to the late 1970s. Using an 

experimental rat UTI model and transmission electron microscopy (TEM), researchers 

observed that UPEC could enter the large, terminally differentiated epithelial umbrella cells 

that line the lumenal surface of the bladder urothelium (6). Several years later another group 

working with a mouse UTI model reported similar results (7). In each of these rodent 

infection models, the intracellular bacteria were observed both within membrane-bound 

vacuoles and free within the host cell cytosol. At the time, it was supposed that the bladder 

umbrella cells were killing the internalized bacteria as part of an innate host defense. This 

conclusion was in line with earlier work suggesting that uroepithelial cells have the capacity 

to act like phagocytes (8). In this 1974 study, it was noted that epithelial cells within the 

urothelium could engulf and destroy erythrocytes that were released due to hemorrhage of 

submucosal capillaries following the treatment of rats with bladder cytotoxins or 

carcinogens. The idea that UPEC strains could actually benefit from entry into host bladder 

cells did not gain a strong foothold until the late 1990s in the wake of observations made by 

researchers who were imaging the interactions between UPEC and the bladder mucosa in a 

mouse UTI model (9).

UPEC typically enter the urinary tract via an ascending route, transiting through the urethral 

opening and up the urethra before colonizing the bladder. Within the bladder, UPEC can 

utilize peritrichous filamentous adhesive organelles known as type 1 pili (or fimbriae) to 

engage the bladder umbrella cells (Fig. 1A). Each type 1 pilus is comprised of a 7-nm-wide 

rod made up of repeating FimA subunits linked via adapter subunits to a distal 3-nm-wide 

tip fibrillum containing the FimH adhesin (Fig. 1B) (10, 11). FimH can bind a variety of 

mannose-containing glycoprotein receptors, including the tetraspanin membrane protein 

Uroplakin 1a (UP1a) (12). UP1a is one of four major uroplakin proteins that are embedded 

as two-dimensional quasi-crystalline arrays of 16-nm-wide hexameric complexes within the 

apical membranes of the terminally differentiated bladder umbrella cells (Fig. 1C) (13). The 

uroplakin complexes and specialized tight junctions that link the umbrella cells, as well as 

underlying layers of less differentiated epithelial cells, create an exceptionally strong 

permeability barrier (14–16). In 1998, high-resolution imaging of mouse bladders that were 

infected via transurethral catheterization showed UPEC tethered to the uroplakin-studded 

surfaces of bladder umbrella cells via numerous type 1 pili (Fig. 1A) (9). This study also 

revealed the host plasma membrane zippering around some of the adherent bacteria via 

contacts with the distal tips of the type 1 pili (Fig. 1D–E). Follow-up work indicated that 

these bacteria were internalized, but not killed by the bladder cells (9, 17). In addition, the 

internalized bacteria were found to be markedly better at persisting within the bladder than 

their extracellular counterparts (9, 18–24).
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THE FATES OF INTRACELLULAR UPEC

Following internalization by bladder epithelial cells in mice and in culture, UPEC is initially 

trafficked into membrane-bound compartments that are similar to late endosomes (25–27). 

Within these compartments, UPEC growth is restricted and the pathogens appear to enter an 

almost quiescent state. However, UPEC can also occasionally break out into the host cytosol 

and subsequently undergo rampant multiplication, forming large biofilm-like intracellular 

bacterial communities (IBCs) that can contain more than ten thousand bacteria (Fig. 2A–B) 

(17, 21, 23, 26, 28). IBCs are clonal; thus each is usually derived from a single pathogen that 

manages to enter the host cytosol (21). The development of IBCs occurs primarily within the 

umbrella cells, even though UPEC can also invade the underlying, less differentiated 

epithelial cells that comprise the bladder urothelium (Fig. 2B–E) (17, 26, 27, 29). In mice, 

anywhere from 3 to 700 IBCs can be detected in a single bladder within just a few hours 

after inoculation with UPEC (21). IBCs begin as loose assemblies of rod-shaped bacteria 

that can multiply with doubling times of less than 30 minutes (23). This is not much slower 

than the doubling times of E. coli strains in rich broth culture, indicating that the host 

cytosol likely has abundant nutrients that UPEC can utilize. As bacteria within the IBCs 

multiply, many produce daughter cells that are smaller and more coccoid in shape. This 

morphological change may enable higher numbers of bacteria to be packed within the host 

cell while also providing added protection against phagocytes (23, 30).

Eventually, the integrity of the infected umbrella cells is compromised, and bacteria begin to 

spill out into the surrounding environment (Fig. 3A–B) (17, 23). The emergent bacteria are 

often highly motile, and can go on to infect neighboring cells or are flushed from the urinary 

tract with the flow of urine. At this stage, UPEC will also temporarily transition into 

partially septated filamentous forms that can attain lengths of greater than 100 µm. These 

remarkably long bacteria, which are resistant to killing by phagocytes, can worm their way 

through tight openings in the host plasma membrane and can extend relatively large 

distances within and between host cells (Fig. 3C–D) (17, 23, 31). The formation of 

filamentous bacteria during the final stages of IBC development is important for the 

dissemination and persistence of UPEC within the urinary tract (31, 32).

IBCs provide UPEC with a means to rapidly multiply within a protected niche, isolated from 

the shear flow of urine, infiltrating phagocytes, and many other host defenses. Rounds of 

IBC growth and subsequent dispersal are observed in mouse models during the acute phase 

of a UTI, but the numbers of detectable IBCs eventually fade as the infection progresses (21, 

23, 26, 33). This is likely due to multiple factors, including the upregulation of host defenses 

and the loss of susceptible umbrella cells, many of which are shed in response to a UTI (Fig. 

3E) (9, 17, 23, 26). Though IBCs do not serve as stable long-term repositories of UPEC 

within the urinary tract, they can nonetheless have sizable effects on the progression and 

persistence of a UTI. In particular, the more IBCs that form in mice during the first 24 hours 

of a bladder infection the greater the chances are for the development of chronic UTIs (21). 

This correlation may reflect an ability of some of the bacteria that are released from IBCs to 

establish long-lived, mostly quiescent reservoirs within the urothelium (17, 21, 26, 27, 29). 

These intracellular bacterial reservoirs, bound within endosomal membranes, can persist in 

the bladder for many days and weeks, even when the host is treated with antibiotics that 
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completely sterilize the urine (18–20, 22, 24, 29). The resurgence of UPEC from 

intracellular reservoirs is proposed to be an important source for relapsing and ostensibly 

recurrent UTIs.

INTRACELLULAR UROPATHOGENS IN THE HUMAN HOST

An ability to invade bladder epithelial cells and form both IBCs and quiescent reservoirs is 

widespread among UPEC isolates and has been documented in a range of genetically 

distinct mice and in various cell culture-based assays (34, 35). However, the relevance of 

host cell invasion by uropathogens to UTIs in the human population is the subject of some 

debate (for example, see (36, 37)). Nonetheless, evidence that intracellular bacteria 

contribute to disease within the human urinary tract is gaining traction.

One of the earliest examples of intracellular bacteria found within the human urinary tract 

comes from a 1985 study of patients with Lower Urinary Tract Symptoms (LUTS) (38). 

Individuals with LUTS can present with a variety of problems, including urinary urgency, 

frequency, dysuria, and bladder pain. Microscopic examination of bladder biopsies revealed 

the presence of intracellular bacteria in 8 out of 16 patients who had LUTS in the absence of 

bacteriuria (38). More recent studies have confirmed and extended these findings, showing 

that intracellular bacteria are especially common in LUTS patients with idiopathic 

overactive bladder (39–42). The apparent involvement of intracellular uropathogens in the 

etiology of LUTS for a large subset of patients is intriguing, and suggests that the optimized 

use of host membrane-permeable antibiotics or other therapeutics that target invasive 

bacteria may be valuable treatment alternatives for these individuals.

The examination of LUTS patients also demonstrated that results from bacteriological 

analysis of urine samples do not necessarily reflect levels of bacterial colonization within the 

urinary tract (38). Specifically, culture-based diagnostic approaches do not take into account 

microbes that are associated with the bladder mucosa and they can severely underestimate 

bacterial titers if IBCs or filamentous pathogens are present (41). These issues may lead to 

the underdiagnosis of bacteriuria and UTI in a variety of patient populations. For example, 

in a recent study of 23 renal transplant recipients who were being screened for UTI, 

intracellular bacteria were observed in shed uroepithelial cells from 44% of the patients, but 

only one patient tested positive for bacteriuria by routine urine culture assays (43).

Intracellular bacteria, including IBCs, have also been documented in other diverse patient 

populations. In one study, microscopic examination of clean-catch urine specimens indicated 

the presence of IBCs within shed uroepithelial cells that were collected from young women 

who had acute uncomplicated UTI or a history of UTI (44). Of 65 women with UPEC-

associated infections, 22% showed signs of IBCs and 45% had filamentous bacteria, which 

are often associated with IBC development. These were not observed in any samples 

recovered from 20 asymptomatic women. Interestingly, UTI symptoms were prolonged in 

women in whom IBC-containing uroepithelial cells were detected. Other work employing 

confocal microscopy revealed intracellular bacteria in 49 out of 133 (~37%) urine samples 

collected from children with UPEC-associated UTI (45, 46). In these individuals, the 
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presence of intracellular E. coli was associated with recurrent UTIs, and this link was 

stronger in children who lacked any functional or morphological urinary abnormalities.

Cumulatively, these findings support the notion that uroepithelial cells can serve as staging 

grounds for rapid intracellular bacterial growth and as shelters for persistent bacterial 

reservoirs within the human urinary tract. Of note, recurrent UTIs are often caused by the 

same strain that was responsible for the initial infection, even when separated in time by 

many weeks or years (47–50). One interpretation of these data is that some recurrent UTIs 

develop due to the recrudescence of intracellular bacterial reservoirs that are not effectively 

cleared from the urinary tract following an initial infection. Though recurrent UTIs also 

certainly arise by re-inoculation of the urinary tract with bacteria coming from outside 

niches such as the vagina and gut, the potential for UPEC growth and long-term persistence 

within uroepithelial cells warrants attention when considering the nature of recalcitrant UTIs 

and the development of more efficacious treatment strategies.

MECHANISMS OF BLADDER CELL INVASION BY UPEC

The type 1 pilus-associated adhesin FimH is the major facilitator of UPEC entry into host 

cells. UPEC mutants that lack FimH are unable to effectively invade bladder epithelial cells 

either in cell culture model systems or in mice (9, 25). Furthermore, latex beads that are 

coated with FimH are readily internalized by bladder cells in culture, in contrast to beads 

that are coated with control proteins. The FimH-mediated uptake of bacteria or beads 

requires actin cytoskeletal rearrangements that drive the host plasma membrane to zipper 

around and eventually engulf the adherent particles (25, 51). This zippering mechanism 

resembles the host cell invasion processes used by a number of other bacterial pathogens, 

including Listeria monocytogenes and Yersinia spp. These invasive pathogens cause the 

directed reorganization of the host actin cytoskeleton by stimulating specific host receptors 

and downstream signaling cascades (52).

As the major receptor available to FimH on the bladder surface, UP1a is presumed to be an 

important mediator of UPEC entry into umbrella cells. UP1a has a single N-linked 

oligosaccharide side chain that is recognized by the mannose-binding domain of FimH (12, 

53). During maturation and transport to the apical plasma membrane of umbrella cells, UP1a 

forms 16-nm-wide hexameric complexes with the integral membrane uroplakin proteins 

UP1b, UPII, and UPIIIa (13). These complexes are further organized into plaques that are 

about 0.5 µm in diameter (see Fig. 1C). In umbrella cells, pairs of maturing plaques are 

assembled within discoidal vesicles, separated by inter-plaque hinge regions that lack the 

uroplakin complexes. As the bladder fills with urine, the discoidal vesicles are mobilized 

from the cytosol to add membrane and uroplakins to the lumenal surface of the bladder (54). 

When the bladder is emptied, excess uroplakin plaques are internalized and degraded 

through a process referred to as compensatory endocytosis (55).

The bulk of each uroplakin protein on the umbrella cell surface is extracellular, with only the 

type-1 membrane protein UPIIIa having a sizable cytoplasmic tail (13). This gives the apical 

plasma membrane an asymmetric appearance when viewed from the side by TEM, and 

earned it the label of Asymmetric Unit Membrane (AUM) (56). Each hexagonal uroplakin 
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complex within the AUM has a 3.7-nm wide central crevice that is lined in part by UP1a 

(13, 57). The localization of FimH at the distal tip of each type 1 pilus likely gives the 

adhesin better access to UP1a-associated mannose residues buried within the hexameric 

uroplakin complexes (9). Once formed, FimH interactions with UP1a may allow UPEC to 

enter umbrella cells by the same pathway used to take in uroplakin plaques during 

compensatory endocytosis. This rather passive entry mechanism could be expedited by the 

ability of FimH binding to elicit conformational changes within uroplakin transmembrane 

domains (58, 59). Work in bladder cell lines suggests that these changes can result in the 

phosphorylation of a threonine residue within the long cytoplasmic tail of UPIII by the host 

enzyme casein kinase II (CK2) (60). Subsequent downstream signaling events, including 

calcium fluxes, may in turn stimulate local cytoskeletal rearrangements leading to bacterial 

internalization. The highly flexible (hypercompliant) nature of the AUM could further aid 

the internalization process by allowing multiple uroplakin plaques to deform and envelop 

UPEC (see Fig. 1D–E) (59).

In addition to umbrella cells, FimH can mediate UPEC entry into immature uroepithelial 

cells and many other host cell types that lack uroplakins or uroplakin plaques. Over the 

years, researchers have found that FimH can bind a wide range of mannose-containing 

glycoproteins as well as a few non-glycosylated components of the extracellular matrix. The 

known receptors for FimH are numerous and include α3 and β1 integrin subunits, the 

leukocyte adhesion molecules CD11b and CD18, the glycophosphatidylinositol (GPI)-

anchored protein CD48, the pattern recognition receptor Toll-Like Receptor 4 (TLR4), 

carcinoembryonic antigen-related cell adhesion (CEACAM) family members, non-specific 

cross-reacting antigen (NCA)-50, glycoprotein 2, type I and type IV collagens, fibronectin, 

and laminin (61–72). Among these diverse receptors, α3 and β1 integrins have emerged as 

important mediators of host cell invasion by type 1-piliated bacteria (71).

Heterodimers of α and β integrin subunits serve as major surface-localized signaling 

conduits into and out of host cells, with especially important roles in connecting 

extracellular matrix (ECM) components with the actin cytoskeleton (73). These integrin 

subunits are expressed by umbrella cells and other epithelial cells found throughout the 

urinary tract (74, 75). Many bacterial pathogens, including Yersinia spp. and Group A 

Streptococcus, can invade host cells by engaging integrins either directly or indirectly via 

association with ECM proteins (76, 77). The heterodimerization of α3 and β1 integrin 

subunits creates a ligand-binding pocket that can recognize a number of ECM factors, 

including collagen, laminin, and fibronectin (78). FimH interactions with α3β1 integrins 

occur independent of the canonical ECM-binding site (71). Rather, FimH binds α3 and β1 

integrin subunits individually via N-linked high-mannose type glycan structures present in 

their extracellular domains. Subsets of the glycans that are associated with α3β1 integrins 

expressed by bladder epithelial cells are structurally similar to those that decorate UP1a (71, 

79–81).

In bladder cell infection models, α3 and β1 integrin subunits cluster around adherent and 

invading type 1-piliated bacteria, coincident with the accumulation of F-actin (71). FimH-

mediated invasion of host cells is inhibited by α3 and β1 integrin-specific blocking 

antibodies and by disruption of the β1 integrin gene. The use of conditional knockout mice 
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shows that α3β1 integrins also promote UPEC entry into host cells within the bladder 

urothelium in vivo (unpublished observations). Signaling cascades downstream of integrin 

receptors are modulated by the phosphorylation of conserved serine, threonine, and tyrosine 

residues within the cytoplasmic tail of β integrin subunits (73). The mutation of these 

residues within β1 integrin can have variable effects, either stimulating or hindering UPEC 

entry dependent upon the nature of the altered residue(s) (71). Not unexpectedly, many of 

the host factors that are known to modulate actin dynamics in association with integrin 

signaling have been implicated as mediators of host cell invasion by UPEC (Fig. 4). These 

factors include a spectrum of signaling scaffolds and adaptor proteins (e.g. paxillin, AP-2, 

clathrin heavy chain, NUMB, Dab2, and ARH), kinases (e.g. FAK, MAP kinases, PI-3 

kinase), Rho GTPases (e.g. Rac1, Cdc42, RhoA), and actin-binding proteins and nucleators 

(e.g. Arp2/3, WAVE2, α-actinin, vinculin) (25, 71, 82–84). Microtubules and microtubule-

associated factors (e.g. kinesin-1, HDAC6) may also stimulate the entry process, acting 

indirectly to modulate actin dynamics (85, 86).

In addition to actin rearrangements, the internalization of UPEC by bladder cells likely 

requires the addition of host membrane to the cell surface to accommodate the zippering 

process (87, 88). This membrane can be derived from various sources, including endosomal 

compartments, lysosomes, or, in the case of bladder umbrella cells, discoid vesicles. The 

delivery of membrane to sites of UPEC entry involves small GTP-binding proteins like 

Rab27b, which can also influence the intracellular trafficking and efflux of uroplakin 

plaques and UPEC alike (54, 89–91). The silencing of Rab27b expression inhibits UPEC 

entry into host cells, and internalized UPEC initially localize within Rab27b-positive 

compartments (82, 89).

One of the final steps of the internalization process leading to the formation of nascent, 

UPEC-containing Rab27b-positive vesicles within the host cytosol is catalyzed by the large 

GTPase dynamin2 (82, 92, 93). The activity of dynamin2 is enhanced by S-nitrosylation of a 

single cysteine residue via reaction with nitric oxide (NO) that is generated by endothelial 

NO synthase (NOS3) (92, 93). Within the bladder, the levels of NO and other reactive 

nitrogen species rapidly increase in response to infection (94). Reactive nitrogen species are 

produced by the host as an antimicrobial defense, but UPEC isolates are often highly 

resistant to the damaging effects these radicals (95–98). Consequently, UPEC can sidestep 

the dangers of eliciting NO production while simultaneously taking advantage of the 

benefits afforded to invasive pathogens by NO-enhanced dynamin2 activity.

To date, well over 40 host cell factors have been implicated as regulators of bladder cell 

invasion by UPEC downstream of FimH binding to either integrin subunits or UP1a. These 

host factors are interconnected within a veritable web of signaling pathways (Fig. 4B). 

Rather than acting autonomously, different FimH receptors and associated signaling 

pathways may promote UPEC entry in a synergistic fashion. For example, the uptake of 

uroplakin plaques by compensatory endocytosis requires the activation of β1 integrin-

associated signaling pathways (55). Consequently, it is feasible that FimH interactions with 

β1 integrins can promote the internalization of UP1a-bound UPEC into umbrella cells in 

part by stimulating compensatory endocytosis. The complexity of UPEC entry into host cells 

increases further when considering possible involvement of co-receptors like the host 

Lewis et al. Page 7

Microbiol Spectr. Author manuscript; available in PMC 2017 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complement receptor CD46 and contributions made by other bacterial factors that can also 

facilitate bacterial internalization (99, 100). The latter include Afa/Dr adhesins, E. coli 
common pili, Fml pili, flagella, Outer membrane protein T (OmpT), the salmochelin 

siderophore receptor IroN, and the Rho GTPase-activating toxin Cytotoxic Necrotizing 

Factor 1 (CNF1) (see Fig. 4A) (101–111). The specific sets of bacterial and host factors that 

are engaged by UPEC to gain access to intracellular niches likely vary as the pathogens 

encounter changing environments and host cell types during the course of a UTI.

REGULATION OF INTRACELLULAR BACTERIAL GROWTH AND 

PERSISTENCE

Within bladder epithelial cells, UPEC is trafficked into membrane-bound compartments that 

are positive for the late endosomal markers LAMP-1, lysobisphosphatidic acid (LBPA), and 

CD63 (Fig. 5) (27, 82). These compartments lack the lysosomal protease cathepsin D and 

may or may not be acidified. The endosomal trafficking of UPEC within bladder cells can 

also impinge upon autophagic pathways and multivesicular bodies (1, 112, 113). UPEC 

avoids destruction within degradative lysosomes in part by causing the upregulation and 

recruitment of the host protein Rab35 (114). This small GTPase has a key role in the 

endosomal recycling of transferrin receptor (TfR), and its co-localization with UPEC-

containing vacuoles aids iron acquisition by the pathogens and also prevents fusion with 

degradative lysosomes.

Although UPEC can survive for long periods bound within host endosomes, the 

intravacuolar growth of UPEC is restricted. This is partially attributable to host actin 

filaments (F-actin), which often surround UPEC-containing vacuoles within immature 

bladder epithelial cells (see Fig. 2B–E) (26). F-actin may limit bacterial growth by gating the 

trafficking of nutrients and/or other factors into and out of UPEC-containing vacuoles and 

by physically corralling the pathogens. The translocation of UPEC into the host cytosol 

where rapid growth and IBC development occurs is facilitated by the disruption of the actin 

cytoskeleton and endosomal membranes (26, 115). Within terminally differentiated umbrella 

cells, actin filaments are distributed primarily along basolateral surfaces and are sparse 

elsewhere (see Fig. 2) (116). This situation likely enables UPEC to more easily escape into 

the host cytosol and subsequently form IBCs. In contrast to umbrella cells, the much smaller 

immature transitional cells of the urothelium have a more dense arrangement of actin 

filaments. Bacteria that manage to invade these immature cells may become, in effect, 

locked within actin-bound endosomes. Although unable to effectively multiply, the near 

quiescent status of these intravacuolar bacteria renders them insensitive to many host 

defenses and antibiotics (17, 24). This is because current antibiotics are often only effective 

against growing bacteria and many are unable to cross host membranes. The latter effect is 

amplified when considering bacteria that are buried within the urothelium, which itself 

functions as an especially strong permeability barrier (14). Intracellular UPEC reservoirs 

have a quantifiable survival advantage within antibiotic-treated hosts (19, 20, 22, 24). The 

resurgence of UPEC from these reservoirs may be triggered by the re-localization of F-actin 

due terminal differentiation of umbrella cells or other processes, and may contribute to the 

development of chronic and relapsing UTIs (29).
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The development of quiescence intracellular UPEC reservoirs may also be facilitated by the 

activation of bacterial toxin-antitoxin (TA) systems. These systems consist of relatively 

stable toxins that are held in check by more labile antitoxins. Stressful conditions can result 

in degradation of the antitoxins and subsequent toxin activation. This, in turn, can cause 

bacteria to form quiescent, antibiotic-tolerant persister cells (117). Of the dozens of TA 

systems that have been identified, only a subset is encoded by strains of UPEC (118, 119). A 

few of these (YefM-YoeB, YbaJ-Hha, and PasTI) have been shown to promote UPEC 

persistence within the urinary tract, and may help regulate the establishment of quiescent 

reservoirs and IBC development (118).

The formation of IBCs within the cytosol of terminally differentiated bladder umbrella cells 

occurs in close association with host cytokeratin intermediate filaments, which can serve as 

scaffolding for biofilm development (see Fig. 3E) (26, 120). IBC maturation is also 

facilitated by multiple bacterial factors, including many that have been implicated in the 

production of extracellular biofilms. These include type 1 pili, the adhesin Ag43, capsule, 

OmpA, purine biosynthesis enzymes, and various regulators like Integration Host Factor 

(IHF), the QseC sensor kinase, the RNA chaperone Hfq, and the periplasmic prolyly 

isomerase and chaperone SurA (Fig. 5) (28, 121–129). Bacteria growing within IBCs appear 

to utilize non-glucose carbon sources such as galactoside and express stress resistance genes 

like yeaR that enable UPEC to better deal with oxidative and nitrosative stresses (97, 130). 

Not unexpectedly, bacterial iron acquisition systems are especially important to the 

intracellular survival and growth of UPEC (115, 130, 131).

ANTI-BACTERIAL DEFENSES AND LIABILITIES

The host can deploy a wide array of defenses to interfere with the ability of UPEC and other 

uropathogens to colonize uroepithelial cells. Among these is the flow of urine that can wash 

away non-adherent microbes, the secretion of anti-adherence factors like Tamm-Horsfall 

protein (THP) and Surfactant Protein D, and the production of antibacterial proteins such as 

secretory IgA, Ribonuclease 7, and defensins (132–137). When overwhelmed with bacteria, 

bladder epithelial cells can also initiate programmed cell death pathways that lead to their 

exfoliation and eventual clearance from the urinary tract with the flow of urine. This process 

entails the activation caspases, the exocytosis of lysosomes, and the disassembly of host 

tight junctions and other intercellular connections (9, 18, 138–142). The specific bacterial 

factors that elicit bladder cell exfoliation during a UTI are not yet well defined. However, 

exfoliation and host cell death may be enhanced by activation of the host kinase CK2 

downstream of FimH-mediated interactions with uroplakin complexes, as well as by the 

secreted bacterial toxins CNF1 and α-hemolysin (60, 143–147). The exfoliation of IBC-

containing umbrella cells can rid the host of huge numbers of bacteria (see Fig. 3E). 

However, this defense may also facilitate the dissemination of UPEC to other hosts and can 

promote bacterial dispersal within the urinary tract by compromising the barrier function of 

the urothelium (17). This problem is countered in part by the remarkable ability of the 

otherwise extremely stable urothelium to rapidly regenerate when damaged (6, 9, 148–151).

Like exfoliation, other host defense mechanisms can also have downsides. For example, the 

production of antibacterial peptides and the induction of inflammatory responses are 
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generally considered to be beneficial for the host (133, 152, 153). However, recent research 

in mice indicates that some antibacterial peptides, such as cathelicidin, can also potentiate 

UPEC colonization of the bladder while the excess stimulation of inflammatory responses 

can drive the development of chronic UTIs (33, 154). This effect could be in part attributable 

to the influx of neutrophils, which are important for the clearance of uropathogens, but can 

also disrupt inter-epithelial junctions and thereby facilitate UPEC dissemination. The 

difference between a host defense and a liability within the urinary tract is therefore not 

always easily discerned. This is further exemplified by considering the intracellular 

trafficking of UPEC.

Recent reports indicate that bladder epithelial cells can redirect invading bacteria, forcing 

their expulsion via TLR4- and cAMP-dependent trafficking pathways before they can 

establish either IBCs or intracellular reservoirs (Fig. 5) (89, 90, 113", 155). One of these 

expulsion pathways involves the assembly of exocyst complexes around UPEC-containing 

vacuoles downstream of the TLR4-dependent ubiquitination of the immune regulator 

TRAF3 (155). Another pathway expels bacteria via a more circuitous route in which UPEC 

first enters the host cytosol before being trafficked through autophagosomes and 

multivesicular bodies to lysosomes that are jettisoned through a process that is regulated by 

the cation channel TRPML3 (113). Although these non-lytic expulsion pathways can hinder 

bacterial colonization of individual bladder cells, they may also enable uropathogens to 

better disseminate by moving in and out of host cells. Specifically, expulsion pathways may 

promote bacterial transmission through host cell layers and could be especially valuable for 

a microbe endeavoring to ascend through the urinary tract against the bulk flow of urine.

The efflux of UPEC from IBCs within dying umbrella cells may similarly facilitate bacterial 

dissemination within the urinary tract (see Fig. 3) (17, 31). The emergence of filamentous 

bacterial forms in particular may be advantageous by allowing UPEC to span distances 

between host cells without losing contact with the urothelium. The filamentous bacteria 

themselves are a consequence of TLR4-dependent host defenses that cause activation of 

DNA damage SOS responses in UPEC and subsequent inhibition of bacterial septation (23, 

31, 32). In an alternate parallel pathway, activation of the bacterial cell division protein 

DamX can also induce transient filamentation upon exposure to liquid shear forces as 

encountered at the urothelium-urine interface (156). The altered morphology and surface 

characteristics of filamentous UPEC forms render these bacteria resistant to phagocytosis by 

neutrophils (23, 157). However, even if phagocytosis cannot be avoided, some UPEC strains 

can survive for some time within the phagosomal compartments of neutrophils and 

macrophages (61, 158–160). Transcriptional profiling recently identified 22 bacterial genes 

that seem to promote UPEC survival within macrophages (161). Among these were Phage-

shock-protein (Psp)-related genes, which enable bacteria to better deal with 

extracytoplasmic stresses and pH changes.

Possibly the first description of intracellular bacterial reservoirs within the urinary tract 

actually comes from the analysis of intra-macrophage E. coli communities. In patients 

suffering from a rare inflammatory condition known as urinary malakoplakia, viable 

intracellular E. coli populations were detected within macrophages in granulomatous ulcers 

isolated from bladder or kidney tissues (162–164). These intra-macrophage E. coli were 
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protected from antibiotic treatments that could sterilize the urine, leading the authors to 

suggest that intracellular bacterial reservoirs could contribute to the chronic and recurrent 

UTIs that often plague patients with malakoplakia. Although this work focused on bacterial 

survival within defective macrophages, it is highly reminiscent of findings made many years 

later with uroepithelial cells (9, 17, 24). The impact of enhanced UPEC survival within 

functionally normal immune cells on the progression and persistence of UTIs is unclear. 

However, a recent study indicates that tissue resident macrophages within the bladder can 

internalize and sequester large numbers of UPEC, which in turn impedes the development of 

adaptive responses to UTI (165). These observations raise the possibility that internalized 

UPEC might be able to alter the antigen presenting activities of macrophages.

BACTERIAL INVASION OF KIDNEY CELLS

Though most studies of host cell invasion by uropathogens have focused on the bladder, it 

has been appreciated for many years that bacteria can also enter renal epithelial cells (166–

168). UPEC does not appear to multiply or take up long-term residence within kidney cells, 

but their translocation through collecting duct epithelial cells can facilitate bacterial 

dissemination into the renal interstitium and then into the bloodstream (169). This in turn 

can result in the development of bacteremia and urosepsis. Within the collecting ducts of the 

kidneys, intercalated cells are likely primary portals for UPEC translocation into the renal 

interstitium (170). Several host and bacterial factors have been identified as facilitators of 

UPEC translocation through renal epithelial cells. These include sets of bacterial adhesins 

made up of P pili in combination with type 1 pili, Dr/Afa adhesins, or S pili (171). Type 1 

pili can also synergize with the complement component C3 and the C3 receptor CD46 to 

stimulate UPEC entry into renal epithelial cells (99, 100, 172). Another set of complement 

factors, C5a and its receptor C5aR1, promote UPEC colonization of the kidneys, in part, by 

enhancing bacterial survival within macrophages (173). The pattern recognition receptors 

TLR4 and TLR5 have also been implicated in the translocation of UPEC through renal 

epithelial cells, with the latter working in concert with bacterial flagella (169, 174, 175). The 

molecular machinery that controls the trafficking of UPEC through renal epithelial cells has 

not been defined.

OTHER INVASIVE UROPATHOGENS

UPEC are not alone in their ability to invade uroepithelial cells. The Gram-positive 

opportunistic uropathogens Staphylococcus saprophyticus, Streptococcus agalatiae, and 

Enterococcus faecalis can invade bladder epithelial cells, and the latter have been isolated 

within shed urothelial cells from LUTS patients (176–178). Proteus mirabilis, which is often 

associated with the formation of urinary stones, can transiently invade both kidney and 

bladder epithelial cells (179, 180). Host cell entry by this pathogen is facilitated by sets of 

bacterial trimeric autotransporter proteins, the sigma factor RpoE, the putrescine importer 

PlaP, flagella, and regulators of swarm cell formation (181–184). Klebsiella pneumoniae, 

which is a common cause of nosocomial UTIs, enter bladder uroepithelial cells via an actin- 

and microtubule-dependent pathway that is triggered by interactions between host 

glycoprotein receptors and a FimH orthologue (185–187). This entry mechanism is 

comparable to that used by type 1 piliated UPEC isolates. Similar to UPEC, K. pneumonia 
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and E. faecalis can both form IBC-like inclusions within bladder umbrella cells (178, 188). 

Interestingly, the presence of these and other opportunistic uropathogens during 

polymicrobial UTIs can select for more invasive UPEC isolates (189). This observation 

indicates that an ability to invade uroepithelial cells provides uropathogens with a bona fide 
competitive advantage within the urinary tract.

TARGETING INTRACELLULAR UROPATHOGENS

The treatment of UTIs is complicated by the ability of UPEC and other uropathogenic 

bacteria to invade uroepithelial cells where they are protected from the effects of most 

antibiotics. In the case of UPEC, the formation of long-live intracellular reservoirs may 

make complete eradication of the pathogen from the urinary tract especially difficult (17, 

24). The development of pilicides and mannosides that interfere with the functions of 

adhesive organelles like type 1 pili may prove useful in hindering bacterial invasion of 

uroepithelial as well as disrupting IBCs (190–192). Natural products from cranberry and 

other sources may likewise impede UPEC entry into host cells, either by preventing bacterial 

attachment or by disrupting signaling through β 1 integrin or other key host receptors (see 

Fig. 4) (84, 193–196).

To target intracellular bacterial reservoirs within the bladder after they are already 

established, it may be possible to use a “shock and kill” approach akin to therapies that are 

being developed to eradicate latent HIV reservoirs. In this case, a bladder cell exfoliant such 

as chitosan or imidazolium salts is instilled into the bladder lumen, triggering the rapid 

release of umbrella cells and the subsequent proliferation and differentiation of newly 

exposed immature uroepithelial cells (150, 197, 198). This process eradicates any reservoir 

populations that may be present within the superficial layer of bladder cells, but also induces 

the resurgence of UPEC from less mature uroepithelial cells as they differentiate and realign 

their actin filaments (29). The coordinate administration of antibiotics, which are entirely 

ineffective against intracellular UPEC populations, can then be used to clear the emergent 

pathogens. This strategy has worked well in mouse models, but its safety and efficacy in 

humans have not been addressed. Nonetheless, such exploratory studies in animal models 

are promising, and will hopefully lead basic researchers and clinicians alike to consider 

treatment strategies that take advantage of our growing knowledge of the mechanisms and 

consequences of host cell invasion by uropathogens.
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Figure 1. 
Type 1 pili mediate UPEC entry into bladder epithelial cells. (A) High-resolution deep-etch 

EM image showing UPEC (yellow) bound to a mouse bladder umbrella cell (blue) via 

multiple type 1 pili. (B) Close up view of a type 1 pilus, showing the 3-nm-wide FimH-

containing tip fibrillum structure (arrowhead). (C) Close-up view of the 16-nm-wide 

hexagonal uroplakin complexes that are embedded within the umbrella cell AUM. (D and E) 

High-resolution freeze-fracture/deep-etch EM images showing the AUM enveloping bound 
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UPEC. Scale bars = 0.5 µm. Images are reprinted from Proc Natl Acad Sci USA (18) and 

Science (9) with permission of the publishers.
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Figure 2. 
Localization of UPEC within the bladder urothelium. (A and B) Confocal images of tissue 

sections from infected mouse bladders shows IBCs (green) within umbrella cells (UC). F-

actin (red) is sparse within these host cells, but dense within the underlying immature cells 

(IC). A single bacterium, localized within a LAMP-1-positive compartment (blue) and 

surrounded by F-actin, is visible within one of the immature cells (box). (C–D) Images show 

magnified views of the area that is boxed out in (B). Figures reprinted from Cellular 
Microibiology (26) with permission of the publisher.
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Figure 3. 
The efflux and filamentation of UPEC coincident with the exfoliation of IBC-containing 

umbrella cells. (A – C) Scanning EM images show filamentous forms of UPEC, as well as 

their normal-sized counterparts, emerging from within IBCs. (D) Image from a hematoxylin-

and-eosin-stained bladder section highlights the ability of filamentous UPEC forms to 

extend long distances through umbrella cells. (E) Confocal image shows an IBC (blue) in 

close association with cytokeratin intermediate filaments (green) within an umbrella cell that 

is undergoing exfoliation. LAMP-1-positive compartments are red. Scale bars = 5 µm (A–

C); 10 µm (D and E). Images are from mouse bladders recovered 6 hours after transurethral 

inoculation with UPEC. The figures are modified from Cellular Microibiology (26) or 

reprinted from Infection and Immunity (17) with permission of the publishers.
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Figure 4. 
UPEC invasion of bladder epithelial cells. (A) Model depicts host and bacterial factors that 

have been identified as regulators of bladder cell invasion by UPEC. Potential therapeutics 

are also indicated. (B) The host factors that can modulate the FimH-dependent entry of 

UPEC into bladder cells are interconnected. The image in (B) was created using the 

STRING database (version 10.0) of known and predicted protein-protein interactions (199). 

Line thickness indicates the strength of the supporting data.
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Figure 5. 
The fates of UPEC following entry into bladder epithelial cells. See text for details.
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