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Accurate high-resolution refinement of protein structure models is
a formidable challenge because of the delicate balance of forces in
the native state, the difficulty in sampling the very large number
of alternative tightly packed conformations, and the inaccuracies in
current force fields. Indeed, energy-based refinement of compar-
ative models generally leads to degradation rather than improve-
ment in model quality, and, hence, most current comparative
modeling procedures omit physically based refinement. However,
despite their inaccuracies, current force fields do contain informa-
tion that is orthogonal to the evolutionary information on which
comparative models are based, and, hence, refinement might be
able to improve comparative models if the space that is sampled is
restricted sufficiently so that false attractors are avoided. Here, we
use the principal components of the variation of backbone struc-
tures within a homologous family to define a small number of
evolutionarily favored sampling directions and show that model
quality can be improved by energy-based optimization along these
directions.

W ith the progression of structural genomics initiatives (1–3),
comparative modeling has become an increasingly impor-

tant method for building protein structure models (4, 5). After
a suitable structure template is chosen, accurate comparative
modeling requires a correct alignment between the target pro-
tein sequence and the template sequence, an accurate method
for modeling the loops (the insertions and deletions in an
alignment) and side chains, and, finally, a method for refining the
coordinates derived from the template structure toward those of
the true native structure (6–8). In this study, we focus on this last
model-refinement step. Improvement of the accuracy of compar-
ative models is very important because accurate comparative
models potentially can be used for many applications, such as virtual
drug scanning (9), molecular replacement (10), and function pre-
diction (11). Refinement is particularly important when the se-
quence identity between a target protein and the template protein
is �30% (12), because models built by using current methods
generally have rms deviations (rmsd) of �1.5 Å (13).

However, high-resolution refinement is as formidable as it is
important. This difficulty is due to both the large size of
conformational space and the delicate balance of forces in the
native state. Indeed, in the recent CASP5 experiment (The 5th
Community Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction), most refined
structures had larger rmsd to the native structure than the
starting template backbone conformation (7). High-resolution
refinement is thus a very stringent test of accuracy that perhaps
no current force field satisfies.

Progress on this very important but very challenging problem
may be facilitated by focusing on more constrained and thus
more tractable refinement problems. We were led to thinking
about such problems by the observation that a refinement
protocol that did not markedly improve de novo structure-
prediction models was very much more successful on the more

constrained rigid-body protein–protein docking problem (14).
The greatly reduced number of backbone degrees of freedom in
the protein–protein docking problem significantly reduces the
number of false attractors in the free-energy landscape: As
illustrated in ref. 14, the docking free-energy landscapes typically
are funneled strongly into the native minimum.

The conceptual step forward in this paper is to use evolution-
ary information to reduce the number of degrees of freedom in
the monomeric protein-refinement problem to mimic the situ-
ation in the protein–protein docking problem. We accomplish
this goal by restricting sampling to the subspace defined by the
largest principal components (PCs) of the variation in the
structural core of homologous proteins. This strategy greatly
enhances the sampling of near-native backbone conformations,
and the low-energy models identified by using the Rosetta
high-resolution energy function (15, 16) usually have lower rmsd
to the native backbones than the starting templates. This re-
stricted refinement problem can provide a testing ground for
evaluating and improving potential functions for the unrestricted
comparative-modeling refinement problem. More practically,
the refinement of structure cores by energy-based sampling
along evolutionarily preferred directions can serve as the first
step toward improving a model structure built from a template.
After a more accurate structure core is obtained, the rest of the
structure can be built by using loop modeling and side-chain
repacking (6).

Methods
Data Set. A set of protein structure families was derived from the
Structural Classification of Proteins (SCOP) ASTRAL95 do-
main structure database (17, 18). For each structure family, one
protein was chosen randomly as the target to be modeled, and
information from structures in the family with sequence identity
from 10 to 30% and rmsd from 1.0 to 4.0 Å to the target protein
was used to caluculate the PCs. Information from more closely
related homologues was excluded to mimic the situation in a
difficult comparative-modeling scenario. For computational ef-
ficiency, only proteins with �150 residues were included in the
test set. The 77 structure families in the test set span five SCOP
(17) class categories, which are all � proteins, all � proteins, ���
proteins, � � � proteins, and small proteins, to ensure the
generality of the reported results. Details on the SCOP families
and target proteins used in the tests are provided in Table 1,
which is published as supporting information on the PNAS web
site.
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Protein Structure Data. Each protein with n backbone atoms (N,
C�, C, O, and C�) is represented by a vector of length 3 n, which
is comprised of the n � (x,y,z) coordinates. Based on the
alignment between a model structure and its homologous struc-
tures, coordinate displacement vectors (CDVs) are constructed
by subtracting the coordinates of the model structure from those
of each homologous structure. If residue i (with coordinate
xi,yi,zi) in the model structure is aligned with residue j (with
coordinate xj,yj,zj) in a homologous structure, the CDV entry for
that position is defined by (xi � xj, yi � yj, zi � zj). When there
is a gap in the alignment, no variation information can be
obtained for that position, and the position is excluded from the
displacement vector. Hence, a displacement vector has length 3
na, where na is the number of backbone atoms of the residues at
sequence positions that are aligned for all family members.
These sequence positions are considered the core region of the
structure family.

PC Analysis. The CDVs for a protein family define a high-
dimensional space that represents the structural variation within
the family. We used PC analysis (19) to identify the major
directions of variation in this space. The PCs are orthogonal
linear combinations of the CDVs; the first PC accounts for the
largest amount of structural variation, and the following PCs
account for decreasing amounts of structural variation. To
obtain the PCs, we applied singular-value decomposition (20, 21)
on the CDVs derived from structurally aligned homologous
backbone conformations. Specifically, representing each CDV as
a column of the data matrix X, the singular value decomposition
of X gives X � ULVT. The columns of matrix U constitute an
orthogonal basis for the displacement vector space, and the
diagonal matrix L gives the magnitude associated with each basis
vector. The PCs of the CDVs then are constructed by multiplying
U � L. Note that the PCs are linear combinations of the original
CDVs: Because matrix V is orthogonal, UL � XV.

Structure Alignment. To generate the CDVs between protein
backbone structures, an alignment of the proteins is needed.
MAMMOTH-MULT (D. Lupyan, A. Leo-Macias, and A.R.O., un-
published program), a multiple-alignment version of the struc-
tural alignment program MAMMOTH (22), is used to align mul-
tiple protein backbone structures.

rmsd Calculation. The rmsd of two protein structure backbones is
defined as

rmsd �
��

i�1

n

�x1,i � x2,i�
2 � �y1,i � y2,i�

2 � �z1,i � z2,i�
2

na
,

[1]

where na is the number of aligned backbone atoms, and (x1,i, y1,i,
z1,i) and (x2,i, y2,i, z2,i) are the ith atom coordinates of proteins 1
and 2, respectively. The rmsd is computed as described in ref. 23.

Sequence Alignment. PSI-BLAST (24) was used to align the sequence
to be modeled with a multiple-sequence alignment generated
from a multiple-structure alignment of the protein family.

Energy Evaluation. For each backbone conformation, we carried
out a combinatorial Monte Carlo optimization (25) of the
side-chain conformations in Roland Dunbrack’s backbone-
dependent rotamer library (26) by using the Rosetta full-atom
energy function (the ‘‘repacking’’ process). The energy function
is dominated by a Lennard–Jones potential, an implicit solvation
model, and an orientation-dependent hydrogen-bonding term;

the potential function is specified in detail in the supplementary
material to ref. 27. The side-chain torsion angles then are further
optimized by continuous-energy minimization by using the Dav-
idson–Fletcher–Powell (DFP) quasi-Newton method (20).

Simplex and Powell Optimization. The implementations of the
Simplex and Powell local optimizations given in Numerical
Recipes (20) were used to optimize the Rosetta energy function
in the space defined by the PCs of variation in the structural
family. The starting structure was selected as described in Test
I, II, and III in Results. The variables subjected to the optimi-
zation are the amplitudes of the displacement along each of the
PCs, and the objective function is the Rosetta energy function.
For Simplex optimization, the starting n � 1 points are the
starting structure plus n structures generated by shifting the
starting structure along one of the PCs by 0.2 times the amplitude
of the component. For Powell optimization, the starting point is
the starting structure, and the starting directions are the n PC
vectors.

Grid Search. The space defined by the three largest PCs of
variation in the structural family was sampled by using a grid-
searching procedure. Eleven evenly separated points were se-
lected along each of the three directions, which results in 113 �
1331 backbone conformations. The energy of each conformation
was determined by side-chain repacking followed by minimiza-
tion as described above. A second, finer grid search in the
neighborhood of the minimum identified in the initial search can
be carried out to increase the sampling resolution. To determine
the range of values over which sampling is performed, we carried
out initial tests on five proteins in which structures were per-
turbed by up to half the principal component amplitude, and we
identified ranges for each of the tests in which the energy minima
fell (perturbations of structures by more than half the PC analysis
amplitudes can produce large distortions of bond lengths and
angles). For test I, a sampling interval of �1�10 to �1�10 of the
PC amplitude was found to be sufficient to bracket the global
minimum, whereas for test II and III, where the starting struc-
ture is further from the native structure, a larger sampling
interval from �4�10 to �4�10 of the PC amplitude generally
bracketed the minimum.

Eliminating Distortion of Bond Angles and Lengths. The sampled
decoys were subjected to a fast minimization (100 standard
steps) in the CHARMM force field (28). This step was solely for
eliminating distortions in bond lengths and angles accompanying
the displacement of the coordinates when moving along the PCs,
while at the same time maintaining the backbone structure
almost unchanged. After this minimization, the bond lengths and
angles had distributions similar to those in experimentally de-
termined structures.

Refinement Protocol. Starting from a comparative model, the
CDVs of all structures in the homologous family relative to the
model were extracted, and PC analysis was performed. A grid
search then was carried out along the first three PCs. For each
conformation, the residue side chains were optimized by repack-
ing, followed by continuous minimization as described above,
and the energy was evaluated. The decoy with the lowest energy
was selected, and the distortions in backbone bond lengths and
angles were eliminated.

Results
Most Structural Variation in a Protein Family Can Be Described by
Several PCs. Refinement of protein backbone structure models
requires an efficient way to sample the backbone conformation
space near the native structure. Here, we explore the use of the
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space defined by the PCs of the structural variation in naturally
occurring protein families for high-resolution refinement.

Fig. 1 shows an example of the variation in the structural core
of the insect phospholipase A2 family [a.133.1.1 (SCOP data-
base)] and the variation described by the first three PCs. The
amount of the backbone conformational variation described by
increasing numbers of PCs is shown in Fig. 2. Although the
fraction of the total variation described by a certain number of
PCs differs from one structural family to another, most of the
variation can be described by the first several PCs. Remarkably,

the first PC generally can describe 40–90% of the backbone
conformational variation in a structural family, and the first
three PCs combined can describe 65–99% of the conformational
variation. With the number of family members increasing, there
is generally larger variation in a structure family; thus, lesser
variation can be explained by the first several PCs. But even in
a case where there are 36 structure members, structure family
b.1.1.1 (SCOP database), the first three PCs still describe 75%
of the variation. This finding suggests that by searching the
subspace defined by the first several PCs, we can efficiently
sample the majority of backbone conformational variation con-
tained in the homologous structures.

The PCs of Conformational Displacement Vectors Define Efficient
Searching Directions. The PCs are essentially linear combinations
of the variation in different proteins; thus, they contain infor-
mation on the concerted conformational changes of all backbone
residues. Moving protein backbone residues along the directions
defined by PCs of backbone conformational variation should be
able to search effectively the near-native conformation space. To
test this hypothesis, a single structure randomly selected to be the
‘‘starting model’’ was excluded from the multiple structural
alignment, and PCs were computed from the remaining family
members. The aligned residues in the starting model then were
moved in the directions defined by PCs or random directions,
and the conformation with the lowest rmsd to the native
conformation was recorded. As shown in Fig. 5 (which is
published as supporting information on the PNAS web site), with
more and more conformation space accessible with an increasing
number of components, the sampled model backbone with the
lowest rmsd is progressively closer to the native conformation.
Sampling along the directions defined by PCs generates models
much closer to the native backbone conformation, indicating
that using the PC directions is an efficient way to explore
near-native backbone conformation space, than does sampling
along random directions.

Combining Energy Evaluation and Sampling Along PCs to Improve
Model Accuracy. We investigated the extent to which energy
calculations can be used to find close-to-native physically plau-
sible models in the set of conformations generated by sampling
along the PCs. The Rosetta potential energy function, which is
dominated by a 12–6 Lennard–Jones potential, an orientation-
dependent hydrogen-bonding term (29), and an implicit solva-
tion model (30), was used to evaluate models sampled along the
directions defined by PCs. Three tests were carried out as
described below. In all tests, the model selected as the template
was excluded from the computation of the PCs.

Three Tests Reflect Three Possible Scenarios in Comparative Modeling.
Test I. When the closest structural neighbor to the native structure
among all homologous structures is known, it should be used as
a backbone template to model the target protein. In reality, the
closest structure cannot always be unambiguously chosen a
priori, but this test represents a challenge for high-resolution
refinement using PCs of natural structure variation, because no
better individual backbone structure is present in the homolo-
gous set that is used to define the sampling space. To simulate
this case, all homologous backbone structures are superimposed
on the target native backbone, and the one with the lowest rmsd
is used as a template to model the target protein.
Test II. In reality, the structure template used to model a target
protein has to be selected according to certain criteria, such as
sequence similarity and�or energy evaluation. A comparison
between using sequence similarity [both sequence identity- and
BLOSUM62 (31) matrix-based similarity score] and the Rosetta
potential energy as template-selection criteria revealed that the
Rosetta energy function results in a better near-native template

Fig. 1. Variation in structure family and variation represented by PCs. (a)
Superposition of the cores of all eight structures in structure family a.133.1.1.
(b–d) Backbone conformations sampled along the direction defined by the
first PC (b), the second PC (c), and the third PC (d).

Fig. 2. Fraction of structural variation explained by PCs. Each line represents
a structure family. With additional PCs, more and more variation can be
described. The dashed line indicates that the first three PCs can describe at
least 65% of the variation observed in each structure family.

15348 � www.pnas.org�cgi�doi�10.1073�pnas.0404703101 Qian et al.



on average. Specifically, the templates selected by the lowest
Rosetta energy criterion give an average rmsd of 2.00 Å com-
pared with the native structures, whereas the templates selected
by the highest sequence ID or the highest BLOSUM62 similarity
score criterion give an average rmsd of 2.17 and 2.28 Å,
respectively. Therefore, for each test family, the target protein
sequence was threaded onto each homologous structure, and the
model structure with the lowest Rosetta full-atom energy score
was selected as the template.
Test III. The above two tests both use structural alignment
between homologous structures and the target native structure
to define the mapping of variation in homologous structures to
the model structure. In reality, the mapping between the target
sequence and homologous sequences has to be determined by an
alignment algorithm. This alignment most certainly will intro-
duce errors into the modeling process. To assess the effect of
alignment errors, in test III a PSI-BLAST sequence-profile align-
ment was used for each test family, and the structure template
was selected according to the protocol described in test II. This
test is not intended to show that the method can recover from
bad alignments; rather, it is a way to assess the practical
usefulness of the method when alignment errors are present.

Sampling Strategy. As illustrated in Fig. 5, moving along the
direction defined by the first PC usually brings about the largest
conformational improvement in the backbone, and it is not
obvious how many of the remaining PCs should be sampled.
Increasing the number of directions will increase the chance of
finding native-like conformations, but it also will increase the
size of the space that must be sampled and, hence, will make
location of the global minimum a much more challenging task.
In addition, the increased size of the space will bring in more
false attractors in the energy landscape.

We initially sought to refine structures in the space defined by
all of the PCs by using both the Simplex and Powell methods (20).
As illustrated in Fig. 6, which is published as supporting infor-
mation on the PNAS web site, optimization of the energy by
using the Simplex method often considerably reduced both the
energy and the rmsd of the input structures. The more contin-
uous Powell method was less successful, and further examination
of the energy landscape showed that it was quite rugged (Fig. 7,
which is published as supporting information on the PNAS web
site), which is not surprising because for every backbone defined
by a particular perturbation along the PCs, a complete side-chain
rotamer-packing calculation is carried out, followed by side-
chain minimization (see Methods).

Backbone Conformations in the Space Spanned by the Three Largest
PCs Are Often Closer to the Native Backbone Conformation than the
Starting Template. Because optimization methods such as the
Simplex and Powell method are readily trapped in local minima,
we experimented with grid sampling, which is much less sensitive
to local minima. To make grid sampling feasible, we restricted
the search to the space defined by the three largest PCs, which
has the further advantage of being enriched in low-rmsd struc-
tures, as shown below.

In most of the homologous families, a significant fraction of
the sampled backbone conformations have lower rmsd to the
native structure than the rmsd between the starting model and
the native structure. In comparison, random perturbations of a
model backbone structure most often increase the rmsd to the
native backbone structure. Fig. 8, which is published as support-
ing information on the PNAS web site, shows the percentage of
decoys with rmsd lower than the starting model for each
homologous family in test I, II, and III. For example, in 	27%
of the test sets in test II, �30% of decoys have lower rmsd to
native than the starting model; in half of the test sets, �20% of
decoys have lower rmsd than the starting model.

The high percentage of sampled decoys with rmsd lower than
the starting model can be understood by considering the way that
the conformation space is sampled. The directions along which
the starting model is perturbed are defined by variation in its
structural homologs. If the structural variation contained in the
homologous structures is a reasonable representation of the
variation in the target native conformation (which of course does
not contribute to the PC calculation), then moving a model
backbone along the directions defined by the variation can either
decrease the rmsd between the model and the native structure
when the model backbone is moved ‘‘toward’’ the native back-
bone or increase the rmsd when the model backbone is moved
‘‘away from’’ the native backbone. When sampled along the
directions defined by the first three PCs, both positive and
negative sides are explored equally, so that 	12.5% (1�2 �
1�2 � 1�2) of decoys should have lower rmsd than the starting
structure. The instances in Fig. 8 where �12.5% of decoys have
lower rmsd than the native structure may be those in which the
first PC largely dominates sampling; in the limit in which only this
direction is sampled, the frequency would be expected to ap-
proach 50% (indeed, there is no percentage �50% in Fig. 8).

Low-rmsd Physically Viable Structures Can Be Selected Based on the
Energy. After repacking and minimizing (see Methods) side-chain
conformations on the decoy backbone conformations, the Ro-
setta full-atom energy is evaluated, and the lowest-energy con-
formation is identified. Fig. 3 shows the difference in rmsd to the
native structure between this lowest-energy conformation and
the starting model. In all three tests, most of the lowest-energy
selected conformations have significantly lower rmsd to the
native backbones than do the starting models. Greater improve-
ment throughout the test sets is achieved when the final model
is selected from the five lowest-energy decoys from each set (Fig.
9, which is published as supporting information on the PNAS
web site). In many, but not all, cases there was a quite strong
correlation between rmsd and energy (for example, see Fig. 10,
which is published as supporting information on the PNAS web
site).

The results from test II demonstrate the greatest improvement
over all three tests. This result is not surprising, because test II
has correct alignments, and the suboptimal starting templates
allow larger space for improvement. In the hard case of test I, the
starting model is already very close to native, so the improvement
is expected to be small. In test III, the improvements are also
small, indicating that the method is sensitive to alignment errors.
Even so, for most families tested, the improvements are obvious.
Note that six families are not tested in test III, because PSI-BLAST
could not align these target sequences with their homologous
sequence profiles. These six families are still listed in Fig. 3c for
comparison purposes and account for six zero-improvement data
points. The extent of improvement of the models was similar for
the cases in which the similarity between the query sequence and
the starting template was between 10% and 20% and the cases
in which the similarity was between 20% and 30%.

Fig. 4 shows an example of the improvement of backbone
structures after refinement. The structural cores of histidyl-
tRNA synthetase C-terminal domain (domain d1kmma1 from
family C.51.1.1) before and after refinement are shown, along
with the native conformation. Comparing the refined confor-
mation and the starting model with the native conformation
shows the improvement throughout the backbone structure.

We experimented with a further round of grid-based optimi-
zation along the fourth through sixth PCs starting from the
minimum found in a previous search along the first three PCs.
As shown in Fig. 10, neither the energy nor the rmsd changed
significantly in this second optimization step. We also experi-
mented with a second grid search along the first three PCs,
starting with the minimum defined in the first grid search after
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regularization by using CHARMM (see Methods). We carried out
this experiment because it seemed possible that distortions in
bond lengths and angles caused by the perturbations along the
PCs might limit the extent of perturbation along any one
direction and, hence, that further optimization might be possible
after regularizing the bond lengths and angles. However, as
shown in Fig. 11 (which is published as supporting information
on the PNAS web site), the results after this second optimization
step again were not significantly different from those after the
first step.

To determine whether the decreases in backbone rmsd were
associated with improvements in side-chain packing, we com-
pared the accuracy of �1 recovery in the starting models and the
lowest-energy refined decoys. As shown in Fig. 12, which is
published as supporting information on the PNAS web site, there
was some improvement in �1 recovery for test I, whereas there
was less improvement for tests II and III.

Discussion
By combining energy-based refinement with sampling along
evolutionarily observed directions, we partially can overcome
the two principal obstacles to energy-based refinement of com-
parative models: the very large and rugged nature of the
landscape being sampled, and the inaccuracy of current force
fields. Sampling is greatly facilitated because the PCs represent
feasible concerted movements of the chain and, furthermore,
represent directions sampled evolutionarily. Problems associ-
ated with inaccuracies in the energy function are reduced
because the great reduction in the size of the space being
sampled eliminates most false attractors.

The improvements of model conformation in test III (with
PSI-BLAST alignment) are generally smaller than those in test II
(with structural alignment), indicating that the utility of the
directions defined by PCs is sensitive to alignment errors. The
energy decrease from the starting models to the lowest-energy
decoys obtained in the grid search is significantly less with
incorrect alignments, and it may be possible to select better
alignments by using this criterion. Thus, it may be possible to
extend iterative alignment and model evaluation methods (32) to
include high-resolution refinement.

Other fields where backbone flexibility must be modeled may
profit from the application of the method described here. In flexible
backbone protein–protein docking, plausible alternative conforma-
tions of the partners may be generated by sampling along the PCs.
For generation of amino acid sequence profiles to represent pro-

Fig. 3. Improvement of protein backbone core region by sampling along the
directions defined by the first three PCs and selecting low-energy decoys by
using the Rosetta energy function. rmsd improvement of the lowest-energy
decoys in tests I (a), II (b), and III (c) is shown. The improvement of rmsd is
measured by (rmsd of starting model � rmsd of refined model). Positive values
indicate improvement of backbone conformations.

Fig. 4. Example of successful model refinement. Red, model structure; blue,
native structure; green, refined structure. The rmsd between the model
structure and native structure is 2.36 Å, and the rmsd between the refined
structure and native structure is 1.42 Å.

15350 � www.pnas.org�cgi�doi�10.1073�pnas.0404703101 Qian et al.



tein families for remote homology detection, backbone sampling
along these directions is likely to create more useful and relevant
ensembles than random sampling (33, 34). More generally, com-
bining with the evolutionary information contained in families of
homologous proteins can increase the limited current utility of
physically based refinement methods and provide a stepping stone
toward the long-range goal of improving model accuracy by using
physically based methods alone.
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