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Abstract

Understanding how the brain operates requires understanding how large sets of neurons function 

together. Modern recording technology makes it possible to simultaneously record the activity of 

hundreds of neurons, and technological developments will soon allow recording of thousands or 

tens of thousands. As with all experimental techniques, these methods are subject to confounds 

that complicate the interpretation of such recordings, and could lead to erroneous scientific 

conclusions. Here, we discuss methods for assessing and improving the quality of data from these 

techniques, and outline likely future directions in this field.

Introduction

The more powerful an experimental method, the more care must be taken to ensure its 

correct application. The two leading methods for measuring the activity of many neurons 

simultaneously – multichannel electrophysiology and population calcium imaging – are 

benefiting from an exploding range of technical innovations. The increasing complexity of 

these methods, however, requires increasingly sophisticated approaches to ensure the quality 

of the data recorded. Quality control is more essential than ever, to ensure the scientific 

conclusions based on data from these methods are correct, and not a result of experimental 

artifacts.

In this Review, we discuss some factors that can affect data quality in neuronal population 

recordings. Careful experiments, of course, are the foundation of high quality data. 

Experimental design involves inevitable tradeoffs, for example between the number of 

neurons that can be recorded and the error rates that are acceptable. It is also important that 

scientists use appropriate data processing techniques to reliably identify individual neurons, 
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and detect when signals are likely to be corrupted. At present – as with many other 

techniques – the involvement of human operators plays an important role in these quality 

control procedures, and is currently unavoidable. While effective at catching or correcting 

data quality problems, input from human operators can also produce biases if not carefully 

applied.

There can be multiple types of experimental errors in neurophysiology, whose importance 

depends on the scientific question. False-positive errors – the assignment of spikes to a 

neuron that did not actually fire them – can lead to invalid conclusions about how 

information is encoded. False-negative errors – omission of spikes that a neuron genuinely 

fired – will have a potentially milder consequence of underestimating firing rate and 

reliability, but only if the errors occur at random: if the errors are themselves correlated with 

other factors (such as particular patterns of network activity, bursting, or movement), then 

invalid conclusions could again arise. In population recordings, false positive and false 

negative errors often arise together, resulting from the incorrect assignment of one cell's 

spikes to another, from the incorrect merging of multiple cells' spikes together, or from 

incorrect splitting of a single neuron's spikes into multiple detected cells. These correlated 

errors can lead to potentially invalid conclusions about population coding and correlation 

patterns. Furthermore, selection bias (a systematic failure to detect certain types of cells) can 

give an incorrect picture of how information is encoded at the population level.

Ultimately, a proper understanding of the limitations in current experimental techniques will 

only be achieved when sufficient “ground truth” data has been collected. In practice, 

“ground truth” refers to measurement of neural population activity simultaneously with a 

method such as on-cell electrophysiology, which offers nearly perfect detection of all spikes 

fired by a single neuron. Such data are presently rare. Nevertheless, the existing ground truth 

data, together with other approaches such as simulation, has helped the field develop an 

understanding of the types of confounds that can occur, and methods to identify or correct 

errors. Careful application of these approaches can help ensure scientific conclusions based 

on data from population activity measurements are robust.

Extracellular electrophysiology

Extracellular neuronal recordings are typically performed by inserting microelectrodes, 

insulated everywhere except one or more small recording sites1. The signals from the 

electrodes are amplified and digitized with a sampling frequency in the range of 20–30KHz, 

a rate required to resolve extracellular action potentials waveforms ( “spikes”) of duration 

the order of 1-2 msec. In addition to spike waveforms, the extracellular voltage contains a 

higher-amplitude, lower frequency “local field potential” signal, which is typically separated 

from the spike signals by filtering, and used to provide an indirect measure of ongoing 

global activity patterns.

An electrode with a single recording site can detect the activity of multiple neurons, but to 

separate the activity of these cells requires appropriate computational analyses. Typically, 

spikes are detected as crossings of an amplitude threshold, and a waveform is extracted for 

each spike and temporally realigned to subsample resolution. Because the extracellular spike 
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amplitudes and waveform shapes produced by different neurons at any one point in space 

can differ2, the firing of individual neurons can be separated by classifying the waveforms 

into discrete groups, a process known as “spike sorting”3–7. The peak amplitude of the spike 

decreases with the distance from the neuron to the recording site, and for neurons located 

closer than ~50 μm from the electrode tip, the spikes are large enough to be detected over 

background activity and it is often possible to separate them according to their shapes1, 8. 

For neurons further away, up to about 150–200 micrometers from the electrode tip, spikes 

can be detected but the difference in their shapes is masked by the noise and they are 

grouped together as “multiunit activity”. Neurons further away cannot be detected and they 

contribute to the background activity in the recording.

Why is spike sorting necessary?

The importance of spike sorting is dramatically illustrated by intracranial recordings made in 

the human brain. Consider an example recording made with a intracranial microwire 

electrode, implanted for clinical reasons into the hippocampus of an epilepsy patient, who 

viewed pictures presented in random order (Figure 1)9, 10. If one were to consider all 

detected spikes, without spike sorting, no obvious increase over baseline firing rate is visible 

for any of the stimuli. After separating the neurons based on spike shapes, however, a very 

different conclusion emerges: the spikes in the original signal reflected the mixed activity of 

multiple neurons, and these neurons are extremely selective to individual pictures: one 

neuron responded reliably to a picture of Vladimir Putin, and another responded to a picture 

of the Taj Majal. The spikes from these two neurons represent only about 4% and 1% of the 

total number of spikes recorded in this electrode, and this extreme selectivity could not have 

been detected without spike sorting. In general, the selectivity of single units in the human 

medial temporal lobe is higher than the selectivity observed for multiunits, where it is not 

possible to separate the contribution of the different units11. Correct spike sorting is thus 

essential to understand the neural code employed by this brain circuit. Without it, one would 

not only miss very sparse responses, but also make the erroneous conclusion that the circuit 

employs a “dense code”, in which individual units conveyed information about multiple 

stimuli, rather than a “sparse code” in which single cells are exquisitely tuned for particular 

stimuli.

Electrode design

The physical design of the electrodes used for extracellular electrophysiology makes a great 

difference to the type of signals recorded. Intracellular recordings represent a “gold 

standard” in neurophysiology, offering perfect spike detection, as well as the ability to 

measure and control membrane potentials, estimate synaptic conductances, control the cell's 

chemical environment, and stain for later anatomical reconstruction. Nevertheless, the 

difficulty of intracellular recording severely limits its use for large-scale studies. Electrodes 

placed directly outside the cell (juxtacellular or on-cell recordings) provide a somewhat 

easier way to obtain perfect isolation, but are still impractical to use at scale. Extracellular 

recordings – which rely on detection of electric fields tens of microns away from the 

recorded cell – are more straightforward, but also involve greater errors, which increase with 

the number of neurons recorded.
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The quality of extracellular unit isolation depends on the amplitudes of extracellular spikes 

relative to background noise. This noise arises from two sources. The first is thermal noise, 

which increases with the resistance of the recording electrode (e.g. Ref.12), and can be 

ameliorated by coating with materials such as PEDOT13. The second noise source is the 

firing of the large number of neurons that are too far from the recording site to produce 

sortable spikes (>~50 μm), but superimpose to produce “hash” in the same frequency 

range1, 8.

Different electrode designs offer complementary advantages. Small electrodes (with 

diameter < 5-10 μm and impedance > 1 MΩ) record from only a few nearby neurons14, but 

can show excellent unit isolation as they can be positioned very close to the neurons of 

interest; since spike amplitudes decay rapidly with distance2, 8, this results in large 

amplitudes relative to background activity. Larger electrodes (diameter several tens of μm) 

have impedances typically below 1 MΩ, and record the activity of neurons in a larger area. 

For single sites, a smaller ratio of the amplitudes of nearby neurons to those of the distant 

cells contributing to the background activity leads to a lower signal-to-noise ratio (SNR). 

The optimal design of an electrode thus depends on the techniques that are used to process 

the data: with limited spike sorting algorithms, it might be preferable to have small 

electrodes with large SNR, whereas with more advanced algorithms and multisite probes, 

larger, low impedance electrodes can increase the yield of identified neurons15, 16.

An important and understudied question concerns the degree to which electrode insertion 

damages the neural tissue that is being recorded. Calculations based on the decay of 

amplitudes with distance suggest that a single tetrode should be able to detect the activity of 

up to 100 single neurons in hippocampus, but in reality one typically finds an order of 

magnitude fewer1. Although it is possible that the missing “dark matter” neurons are healthy 

but not firing, or firing but not identified by current spike sorting algorithms17, insertion of 

the electrode may also have damaged or killed a substantial fraction of them. Systematic 

investigation of how electrode geometries, materials, and insertion strategies affect tissue 

damage would greatly help optimal electrode design.

Multichannel electrophysiology

Understanding complex brain processes requires the analysis of large and simultaneously 

recorded neuronal populations1, 18–22. Current multielectrode designs allow recording from 

hundreds of electrodes, and thus hundreds of neurons simultaneously4, 23–27, and these 

improvements have been matched by increased capabilities of data acquisition systems.

There are two major approaches to the design of multielectrode arrays. The first approach – 

exemplified by microwire arrays that have been used for animal studies28, or the 

microfabricated “Utah arrays” that have been implanted in human cortex to enable brain-

computer interfaces29 – consists of a large number of single-contact electrodes, with an 

inter-site distance of at least 100 μm. As any individual neuron can be detected by at most 

one of the recording sites, data processing for such electrodes (and the corresponding quality 

concerns) is the same as for single site electrodes. Thus, the recorded population size 

increases linearly with site count, although without independently movable contacts, many 
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sites may not record neurons. Furthermore, isolation quality does not improve with 

increasing site count.

The second approach to multielectrode array design is to use dense arrays with an intersite 

distance of less than 50 micrometers. This approach employs either twisted microwire 

bundles such as “tetrodes” (4 microwires twisted together30, 31), or micromachined silicon 

probes1, 32–35. High density probes allow recording the spikes of a single neuron from 

multiple sites. This improves spike sorting performance, as the spikes of two neurons can 

frequently look identical on one channel, but differ on others31, 36. With this method, unit 

isolation quality is expected to scale with site density, as confirmed by spatially subsampling 

of data from dense electrodes37. Nevertheless, the number of sites achievable is limited by 

constraints of manufacturing technology, for example shaft diameter (probes that are too 

thick may damage brain tissue), or the increased noise found with small, high-impedance 

recording sites. Furthermore, the benefits of high density probes require using spike sorting 

algorithms that can combine information from different channels.

Spike sorting methods

Spike sorting is more complex for dense arrays than for single contact electrodes. For 

tetrodes, the traditional method of spike sorting – still commonly applied in many labs – is 

purely manual cluster cutting. In this procedure, a set of features are computed for each 

spike, such as the peak amplitude on each channel, or waveform features evaluated by 

principal component analysis. Using a graphical interface, an operator manually draws 

boundaries around the resulting “clusters”, which correspond to putative single neurons. The 

operator is guided in this process by a number of additional tools, such as the computation of 

auto- and cross-correlograms, which can help identify poorly isolated units by the presence 

of refractory period violations.

Today, the most commonly employed spike sorting method is “semi-automatic”. With this 

approach, spike detection and feature extraction proceeds as before, but an automatic cluster 

analysis algorithm is run on the spike data, and a human operator uses a graphical interface 

similar to those used for manual sorting to check its output, and correct mistakes the 

algorithm has made where necessary (some examples of such possible mistakes are 

described below). Compared to purely manual spike sorting, the semi-automatic approach 

has two major advantages. The first is time: it takes substantially less human time to check 

the output of an automatic algorithm, than to perform a fully manual sort. The second 

advantage is that this approach achieves substantially lower errors than purely manual 

sorting, as demonstrated using ground-truth tetrode data36. These lower error rates occur 

because, the optimal boundary between clusters is a high-dimensional surface, which can be 

found by automatic algorithms but not drawn by human hand using a 2d computer 

interface36.

The presence of a human operator in the data processing pipeline raises the potential for 

subjectivity and bias to occur. However, while a fully-automatic spike sorting system would 

clearly be desirable, it has to date not proved possible to implement algorithms which work 

robustly in real-world in extracellular recordings. Similar constraints are faced in several 

other fields of data-intensive biology, such as electron-microscopic connectomics, which 
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also rely on manual operator curation38. Thus, while substantial developments have occurred 

to reduce the amount of manual operator time required for the sorting process37, 39, fully 

automatic systems are rarely applied in current practice. Fortunately, analyses comparing the 

decisions made by multiple expert operators have shown that their corrections of automatic 

cluster performance tend to be similar17, 37.

Validation of spike sorting

One of the largest problems for the development of spike sorting methods is the paucity of 

“ground truth” data, in which extracellular arrays are combined with other methods 

providing unambiguous recording of firing times. While invertebrate and in vitro 
preparations have provided some data on which to test algorithms40–42, the noise conditions 

and nonstationarity found in mammalian systems in vivo are substantially more challenging. 

The difficulty of obtaining ground truth data in vivo has made such data very rare8, 36, 43 

(https://crcns.org/data-sets/hc/hc-1). The data that is available, however, suggests that error 

rates for semi-automatic clustering with tetrodes can be of the order 5-10%, but the error 

rates of purely manual cluster cutting may be substantially higher36.

In the absence of suitable ground truth data, a number of methods have been used to 

generate “surrogate” ground truth to validate spike sorting algorithms. One approach 

consists of performing detailed biophysical simulations of extracellular activity44–46. The 

computational expense of this method, combined with uncertainty in exactly how to model 

the challenges of real data has encouraged other authors to try a different method. In this 

“hybrid” approach, spikes isolated from one recording are digitally added at known times to 

a second recording, or to a simulation of background activity16, 47, 48. This approach has 

been used to estimate the errors expected from semi-automatic analysis of high-count array 

data, again yielding an estimate of errors of the order 5-10%37. An alternative approach 

relies on measuring the reliability of the spike sorting algorithm under perturbations of the 

data set49.

Most current methods of spike sorting fail at times of high neuronal synchrony. In the 

hippocampus, for example, transient events of highly synchronous neural activity known as 

“sharp waves” are of great interest due to their proposed role in memory. Ground truth data 

suggests that error rates during sharp waves can be 5 times above average, reaching levels as 

high as 50% (Ref.36). Such errors could come from two sources. First, synchronous activity 

might lead to temporally overlapping spikes, which cannot be resolved by traditional spike 

sorting algorithms; but might be resolvable by newer algorithms based on template 

matching50–53. Alternatively, ripples might lead to the firing of otherwise silent cells with 

waveforms too similar to be distinguished accurately; consistent with this possibility, sharp 

waves are accompanied primarily by an increase in false positive, not false negative errors36.

Common confounds in extracellular electrophysiology

Isolation quality—In even the best quality extracellular recordings, most spikes will come 

from neurons far from the probe, with amplitudes too low for effective isolation. It is 

therefore important to identify which clusters correspond to well-isolated single cells, and 

which represent mixtures of several neurons. The importance of such metrics is underscored 
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by the fact that different operators – although they generally agree on which corrections to 

make in semi-automatic clustering – can have very different opinions on what constitutes a 

well-isolated unit37.

To address this issue, several quantitative metrics of cluster quality have been proposed. As 

all neurons exhibit an absolute refractory period, any cluster that shows a large fraction of 

inter-spike intervals (ISIs) less than 1-2 milliseconds cannot be a well isolated unit. 

However, the converse does not apply: an apparently clear refractory period does not imply 

good quality isolation. Indeed, a cluster that contained the intermixed spikes of two different 

neurons that fired at separate times (for example hippocampal neurons with non-overlapping 

place fields) would have a completely clear refractory period. Furthermore, manual 

examination of autocorrelograms in the presence of bursting can lead to an erroneous 

impression of a clean refractory period even for very poorly isolated cells36.

A second class of quality metrics measures how well the spikes of one cluster are separated 

from those of neighboring neurons12, 54–56. It is important to note, however, that there is no 

single threshold value that objectively defines “good” isolation quality: the criterion must 

depend on the scientific application. For example, an analysis of the structure of complex 

spike bursts – which involves a progressive decrease of amplitude as the burst continues (e.g. 

Refs.57, 58) – required a highly stringent criterion56. Accurate isolation is also critical to 

study pairwise correlations of spike trains59–61; for example, if the spikes of a single neuron 

are artificially divided into two clusters, these clusters will show a spurious negative 

correlation because their spikes will be always separated in time. Estimation of neuronal 

tuning and selectivity can be also highly sensitive to clustering errors, as demonstrated by 

the earlier example of human intracranial recordings. By contrast, for brain-machine-

interface applications, the exact identity of the neuron generating each spike might not be 

crucial, and it may be advantageous to use the largest possible number of recording sites in 

an unsupervised way, even if not sorted at all62, 63. Spike sorting may also be less critical 

where there is a topographic organization of responses – i.e. when nearby cells tend to fire to 

similar stimuli – compared to cases when nearby neurons fire to unrelated stimuli, as it has 

been described in the rodent64 and the human hippocampus9 (Figure 1).

When using an isolation quality metric, how should a scientist decide what threshold value 

of isolation quality to require for a particular scientific question? A simple method is to 

consider how the quantity being measured depends on isolation quality. For example, the 

cross-validated spatial information encoded by putative pyramidal cells of rat CA1 drops 

substantially for values of isolation distance54 less than 20, but reaches an asymptote above 

this value (Figure 2). This suggests that a threshold of 20 is suitable for analysis of spatial 

information coding in these cells.

Selection bias—Simultaneous intra- and extracellular recordings suggest that there should 

be approximately 140 single neurons within the radius recordable by a single tetrode in the 

hippocampus1, 8. However, actual tetrode recordings rarely detect more than a dozen 

neurons at a time. The reason for this disagreement has been attributed to the presence of 

silent neurons65, electrical insulation66, damage produced by electrode insertion67 or a 

potential inability of spike sorting algorithms to deal with large numbers of neurons17.
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Both manual and automatic spike sorting methods are likely to be biased against low-rate 

neurons: if a cell fires only a few spikes, these will not be sufficient to define a cluster and 

the cell will be missed. Given the preponderance of low-rate cells in brain circuits, a failure 

to account for this selection bias could lead to incorrect estimation of the firing 

distribution68. In neocortex, where superficial-layer pyramidal cells fire with lower rates 

than deep-layer pyramids and fast-spiking (FS) interneurons of all layers69–72, bias towards 

high-rate neurons has led most population electrophysiology to focused on deep cortical 

layers.

Historically, single neuron recordings have been performed by advancing the electrodes until 

neural activity is detected73. This method can lead to a different form of selection bias: not 

only will recordings be made primarily from high-rate neurons (perhaps again leading to a 

bias toward FS interneurons), but also from cells responding to the specific stimuli or 

conditions present at the time of the recording. Without care, this could lead to a 

“confirmation bias”: an investigator would find an over-abundance of neurons that respond 

precisely to the stimulus or condition being investigated.

Sampling bias in extracellular electrophysiology can be ameliorated by performing non-stop 

chronic recordings, using fixed electrodes, over very long time periods: recording 24 

hours/day for days or weeks can lead to sufficient spike numbers to define clusters even for 

cells of very low firing rate39.

Operator bias—Because spike sorting has a manual curation step, the possibility of 

subconscious operator biases must be very carefully excluded. As with many other 

procedures, when comparing recordings of subjects in different conditions, it is essential that 

the operator performs manual curation blinded to the condition of each recording. This is 

particularly important when analyzing quantities such as stability of firing patterns, which 

can be easily altered by the manual curation step74.

Another important concern regards the use of the neuron's firing correlates (e.g. sensory 

receptive fields or place fields) in the spike sorting process. While observing a similar firing 

pattern in two clusters does make it more likely that they represent the same cell, the use of 

receptive field information during clustering may bias results. Indeed, if neurons genuinely 

show receptive field plasticity, this will be underestimated if response stability is taken as a 

criterion for good isolation.

Electrode and waveform drift—Errors in spike sorting are of two types: the spikes of 

different cells can be erroneously merged together, or the spikes of a single cell can be 

erroneously separated into two or more clusters (“overclustering”), which often occurs when 

the spike waveforms of a particular neuron varies during the course of the experiment.

Waveform variability can occur for multiple reasons. The most common reason is “electrode 

drift”: the physical movement of the electrode relative to the brain. Due to the highly 

localized electric fields neurons produce2, 8, 16, even a few microns' movement is enough to 

cause substantial variability in spike amplitudes. This variability is largest for high 

amplitude spikes, consistent with the sharply-peaked structure of extracellular electric fields. 
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This problem is particularly severe in acute recordings, in which the electrode is fixed not to 

the skull, but to an external manipulator, meaning that small movements of the head, or 

relaxation of the brain after compression caused by probe insertion, will cause a movement 

of the cells relative to the electrodes. Physical electrode drifts are less serious in chronic 

recordings, where stable recordings have been observed for periods of days or weeks39, 75.

Not all waveform variability is caused by physical movement. Extracellular spike amplitudes 

decrease during the course of complex-spike bursts, and also decrease after prolonged firing, 

even without bursting56, 58. Moreover, extracellular waveform shapes can depend on cellular 

factors such as dendritic action potential backpropagation or electrogenesis, which can vary 

with firing history, inhibition and neuromodulation76, 77. The difficulty of quantitatively 

modeling these phenomena is one reason fully automatic spike sorting has so far proved 

challenging; nevertheless, the fact that these effects can be caught during manual curation 

suggests that automatic systems may also be eventually possible.

Outlook

While today's silicon probes have at most a few hundred channels, probes with thousands of 

channels are currently under development. These probes will raise new challenges for data 

processing and quality control, the most important concerning manual spike sorting. Purely 

manual sorting is clearly impossible for this size of data, and even curation of semi-

automatic sorting will become a serious burden. This burden can be dramatically reduced by 

the development of algorithms that minimize operator time, by directing attention to only 

those decisions that cannot be made automatically. Fully automatic spike sorting not only 

becomes more desirable with very high count probes, but it may also become more 

achievable. Electrode drift and the consequent spike shape changes presents one of the 

biggest barriers to fully automatic sorting; it is possible that large dense probes might 

sample the extracellular electric fields with enough spatial resolution to allow drift to be 

tracked and corrected in software.

A second challenge for spike sorting regards the long-term tracking of clusters, to study 

plasticity, for example, during learning experiments. With a few exceptions, scientists have 

been hesitant to use extracellular electrophysiology to study long-term plasticity of firing 

properties, as clusters may appear, disappear, merge or separate78–80, and it is critical not to 

confuse changes in tuning of neuronal populations with changes in the recording conditions 

or small electrode movements. Three techniques may ameliorate these problems. The first is 

the gradual refinement of chronic recording methods, which can now ensure high stability of 

many cells over multiple days or even weeks of recordings39, 75, 81. The second is the 

development of quantitative methods for unbiased assessment of cluster similarity, that may 

help identify neurons across multiple days78, 82–84. The third is the use of 24-hour 

recording39 which reduces the problem to a much easier one of tracking slow continuous 

changes, than tracking across sudden jumps between recording sessions.

Finally, and most important, there is a need for research into fundamental questions 

underpinning extracellular array recording. What electrode geometries, surface contact 

diameters, impedances, and materials provide the best data quality while avoiding tissue 

damage? How do these properties interact with the choice of sorting algorithms? The most 
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critical experiments to solve this problem involve collection of ground truth data, to quantify 

the performance of different electrodes and sorting methods without relying on simulations.

Population recording via calcium imaging

Calcium imaging is a complementary technique for measuring the activity of neuronal 

populations. Depolarization during action potentials opens voltage-gated Ca2+ channels and 

results in a transient increase in intracellular [Ca2+], which can be detected optically using 

fluorescent reporters: calcium-sensitive dyes or proteins. Calcium imaging can be used to 

infer patterns of spiking activity across hundreds to thousands of identified cells in 

vivo85, 86. Like any measurement, however, it demands careful application and analysis.

Calcium signals are correlated with neuronal spiking, but are an indirect reflection of it, and 

biophysical variations make the precise relationship between calcium signals and spiking 

variable87. Calcium reporters can themselves limit the precision of spike inference: although 

synthetic calcium dyes can be used in a linear regime, they still exhibit nonlinear features 

including saturation; and genetically encoded calcium indicator (GECI) proteins are highly 

nonlinear due to cooperative Ca2+ binding88.

The temporal resolution of the calcium signal is limited. Indicator kinetics are relatively 

slow (e.g., rise times of ~10 ms for single action potentials measured with synthetic dyes, 

and >50 ms for many GECIs). Furthermore, imaging methods that scan over space trade off 

recordable population size against sampling time. Recordings from large neuronal 

populations often require timesteps on the order of tens to hundreds of ms (Ref.86).

As with electrophysiology, the ultimate check on recording quality is ground truth, typically 

obtained by simultaneous on-cell patch recordings. Such recordings are feasible with some, 

but not all calcium imaging instrumentation. However, even in the absence of ground truth, 

good experimental design and rigorous analysis can improve data quality. Below, we discuss 

these considerations. Our discussion primarily relates to two-photon laser scanning 

microscopy, but several points are relevant to one-photon imaging, including wide-field 

imaging through GRIN lenses89, and light-sheet imaging in transparent specimens90.

Experimental design and measurement noise

As with any technique, instrumentation, preparation, and recording parameters must be 

tailored to the demands of the specific scientific application. Some experiments require 

detecting single action potentials and/or resolving precise spike counts in each neuron with 

minimal uncertainty. For others, detecting qualitative increases and decreases in spike rate 

suffices. Experimental design is critical because most optimizations involve tradeoffs. For 

example, high zoom (many pixels per neuron) and high frame rate can provide faithful 

estimates of spiking based on calcium signals91, but also limit the number of neurons that 

can be sampled in each imaging frame. Low frame rate acquisition can be sufficient to map 

population responses when the stimulus changes slower than the acquisition rate: for 

example, Ohki and colleagues92 mapped the orientation-tuned responses of hundreds of 

neurons at 0.61 frames / s, with a stimulus that changed at 0.0625 Hz. By contrast, Dombeck 
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and colleagues93 acquired 15.6 frames/s over smaller fields-of-view, to capture the activity 

of hippocampal place fields with sub-second resolution.

Imaging quality depends primarily on recording a sufficient number of photons per pixel. 

Photon emission exhibits Poisson-like variability (“shot noise”), with SNR scaling as the 

square root of the photon count94. Optimizing quality thus requires tuning parameters such 

as laser power and scan configuration, which includes parameters such as pixel dwell time, 

field-of-view, pixels per neuron, subject to the limitation that the overly-high laser power can 

cause tissue damage95. Optimized scan patterns96–98 can target sampling to individual 

neurons, but lack the spatial coverage required for posthoc motion correction. Photons per 

pixel can be estimated from parameters including the gain and offset of the photomultiplier 

tube (http://labrigger.com/blog/2010/07/30/measuring-the-gain-of-your-imaging-system/). 

Tradeoffs between photons per pixel, numbers of pixels, and SNR can quantified using 

signal detection theory, and compared and optimized for specific experiments99, 100101. For 

example, GCaMP6s imaging can provide single AP detection with nearly 100% detection of 

all spikes when imaged at a high frame rate over a small field-of-view (30 μm × 30 μm at 60 

frames/s)91. However, larger field-of-view, population-level imaging (265 μm × 265 μm at 

59.1 frames/s) yields spike rate estimates that correlate with the true spike rate at an average 

level of ~ 0.5 (Pearson's R, using a 50 ms spike rate binning window)87. Quality is also 

affected by indicator properties and labeling intensity88, 94. Typically, however, these 

quantities are not measured for in vivo preparations, and parameters yielding high SNR data 

are identified by trial-and-error (e.g., dye concentration, viral vector titer, number of days 

after transfection to image).

Signal contamination

In densely labeled tissue, structures adjacent to cell bodies can contribute contaminating 

signals102. In areas such as neocortex, somata are distributed sparsely enough to make 

contamination from adjacent cell bodies rare103, permitting moderate-resolution imaging 

systems to accurately measure cellular-resolution dynamics92, 103, 104. However, in 

structures with densely packed cell bodies, such as the hippocampus or cerebellar granular 

layer, cell-to-cell contamination cannot be ignored.

Calcium imaging of large populations typically leads to contamination from signals arising 

in the neuropil: the axons and dendrites of nearby cells, whose activity produces a 

substantial contamination of the signal recorded at any cell soma91, 105, 106. Even with two-

photon microscopy, axial resolution is often limited to several microns or more, although in-

plane (lateral) resolution can be sub-micron (Fig. 3a). Furthermore, even high resolution (i.e. 

high numerical aperture) imaging systems are precluded from realizing their full resolution 

in practice, due to optical aberrations caused by brain tissue and the loss of marginal rays 

when imaging deep107, 108. Imaging system aberrations can also limit resolution, particularly 

when imaging outside of the very center of the field-of-view109110. GRIN lenses, used to 

access deep structures, also suffer from significant aberrations111112. Adaptive optics can 

compensate for aberrations of the focused excitation light113, but the emitted fluorescence 

photons are still subjected to scattering and aberrations in the tissue and optical systems. 

Neuropil contamination can be somewhat mitigated by expressing GECIs in sparsely, for 
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example using transgenic mice with Thy1 promoters, or conditional viral 

strategies91, 114–116. However, neuropil contamination represents a serious concerns for 

calcium imaging. The neuropil signal reflects the summed activity of a large number of 

neurons, the majority of which will typically be located close to the imaged region, and can 

thus itself be tuned for similar stimuli or behavioral variables117. If not accounted for, 

neuropil contamination can lead to spurious conclusions about neuronal encoding. It is 

therefore essential that this contamination be understood and, to the extent possible, 

removed during analysis. Approaches will be discussed in “data processing”, below.

Motion artifacts

When imaging in living subjects, heartbeat, breathing, and motor behavior can all contribute 

significant movement artifacts. While heartbeat-associated movements in the brain are 

typically on the order of 1 μm or less118, breathing and motor behavior can cause larger 

movements over 10 μm119, 120. Movement amplitudes vary by brain area and can be reduced 

by appropriate surgical preparation121. During movements, cells can change their pixel 

location in the imaging plane (XY), or in and out of the plane of focus (Z). If temporal 

resolution is high enough to make frame-to-frame XY movement small, movement can be 

corrected through image registration, e.g. global cross-correlation or line-by-line 

alignment117, 122, 123. Large and faster XY movements may require more complex model-

based algorithms119, 124. Motion in Z is more difficult to correct, since the neighboring 

planes are typically not recorded. Generally, point spread functions (PSFs) are extended in 

Z, making motion artifacts due to small Z movements less problematic125, 126. In cases with 

large Z movement, multiplane imaging127 and online motion correction120, 128 can help 

minimize artifacts.

Data processing

Before calcium data can be used for scientific analysis, it requires preprocessing, typically 

involving: image alignment/motion correction; segmentation to find regions of interest 

(ROIs) corresponding to imaged cells; time course extraction; neuropil compensation; and, 

optionally, spike train estimation. In some analysis algorithms, multiple steps are performed 

in concert.

Segmentation and time course extraction—The simplest way to define ROIs 

corresponding to individual neurons is with binary masks, which can be drawn manually or 

with varying degrees of automation85. With binary masks, neuropil contamination must be 

estimated and subtracted out in a separate step, and can be estimated using either an average 

of the neuropil signal surrounding the cell of interest129 (Fig. 3b–f), or by subtracting the 

first principal component of the contamination130, 131.

More ambitious approaches describe each pixel's calcium signal as a superposition of signals 

from one or more cell bodies or processes, neuropil, and potentially other sources (e.g., 

instrumental noise). This is typically framed as a matrix factorization problem, where the 

spatial components (neuronal ROIs) and temporal components (neuronal time courses) are 

simultaneously learned. As with spike-sorting, the results of such automatic algorithms must 

be verified on a case-by-case basis. For example, methods based on PCA/ICA131, 132 can 
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identify negative temporal signals, which cannot represent neuronal time courses; these 

methods can also produce ROIs corresponding multiple neurons or dendritic regions, since 

the algorithm has no prior information about the spatial extent of signal sources. Constrained 

nonnegative matrix factorization, optimized for the particular characteristics of calcium 

imaging data133, 134 provides promising results even in the presence of signal crosstalk106, 

while a new combined clustering and factorization method can accurately process over 

10,000 cells in approximately real time135. As matrix factorization methods separate 

temporally distinct patterns of activity, they may fail on neighboring cells that exhibit highly 

synchronous activity; a supervised learning approach might avoid this shortcoming96. 

Furthermore, any activity-dependent algorithm will be biased towards active cells; labeling 

cell nuclei with static (not calcium-dependent) fluorescent proteins can help identify cell 

bodies independent of activity117. Similarly, “dictionary” methods have been developed to 

detect cells based on average/resting fluorescence activity, thus finding a large number of 

inactive cells136.

Manually verifying the results of automatic algorithms is time-consuming, but some simple 

automatic techniques can catch many artifacts. The zero-lag cross-correlation of ROI pairs 

can identify contamination of one cell's signal by another. These correlations should usually 

be close to zero, rarely above 0.5, and values > 0.8 typically indicate contamination. Minor 

contamination can result in smaller increases in correlation values, and so time courses from 

nearby cells should be checked particularly closely. Correlation due to contamination should 

be more stable in time than correlation due to neuronal firing, so rolling correlation analysis 

(with width substantially above that of a fluorescence transient) can help identify unusually 

stable correlations due to contamination. Excluding individual highly-contaminated pixels 

will result in less contaminated ROIs. As genuine neuronal correlations can be affected by 

brain state, this analysis is best performed on data obtained under conditions of relative 

desynchronization (e.g., stimulus-evoked activity rather than spontaneous activity under 

anesthesia). Finally, correlating the time-series of individual pixels to stimulus and 

behavioral variables can help diagnose artifacts.

Evaluation of segmentation approaches would benefit from a systematic comparison of 

algorithms against ground-truth. Ground truth for segmentation can be hard to obtain, or 

even define, but options include hand annotation, or co-expressing anatomical markers (e.g. 

fluorescent proteins that are confined to the nucleus) that report the presence or absence of a 

neuron soma at a location. The Neurofinder challenge provides several ground truth datasets 

and a web application for comparing algorithm results (http://neurofinder.codeneuro.org/), 

and ground truth data is also available at https://crcns.org/data-sets/methods/cai-1. 

Surprisingly, nearly all segmentation algorithms thus far have taken an unsupervised 

approach – trying to infer neurons directly from data, rather than by training a supervised 

model on existing annotations, as is common in object recognition, behavioral classification, 

and anatomical segmentation. Especially with the availability of annotated data, supervised 

methods could be a fruitful avenue of exploration.

Spike inference—The calcium signal is only an indirect reflection of spiking. Many 

analysis approaches aim to derive from the calcium fluorescence time course of each neuron 

an estimate of firing rates or exact spike times.
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The calcium signal can be approximated as a temporally filtered version of the spike train. 

Although the decay kinetics of this filter are typically slow (half-decay times are hundreds to 

thousands of ms), its rise kinetics can be fast (times-to-peak are tens of ms). The simplest 

approach is thus deconvolution with an estimated unitary response, such as an instantaneous 

rise and exponential decay137, 138. In practice, deconvolution performance is limited by 

several factors. The relationship between calcium signals and spiking is complex, nonlinear, 

and varies across neurons, especially during spike bursts. With GCaMP6f, for example, 

spike pairs can exhibit fluorescence transients whose size depends on inter-spike interval 

(personal communication from D. DiGregorio and S. Wang). As with segmentation, 

supervised learning methods using systematic ground truth data are a promising alternative 

to unsupervised deconvolution87. With present technology, estimates of spike times from 

calcium imaging should always be treated as approximations, though this uncertainty can be 

propagated through stages of analysis (Fig. 4)133.

Estimation of spike times is not necessary for many scientific questions. When neurons fire 

sparsely, for example, neuronal responses can be characterized by how the calcium response 

itself depends on stimulus or behavioral-related factors. The results of such analyses will not 

be numerically identical to analyses computed from actual counts (for example when 

computing correlations among neurons), but if interpreted correctly, this can avoid biases 

introduced by explicit spike estimation. This concept is explicitly formulated in hierarchical 

models that describe the calcium response as a function of spike times, which are in turn a 

function of the stimulus and/or behavior. The parameters of such an “encoding” function can 

be estimated directly without explicitly estimating spike times, instead treating them as 

latent factors (e.g. Refs.139, 140). Finally, spike detection can be simply viewed as a 

nonlinear denoising step to remove spurious low-amplitude signals, rather than an explicit 

estimator of spike times; in this view, procedures based on template matching, which are 

more flexible and less computationally expensive, may be appealing117.

Ground truth from electrophysiology—Experiments verifying 2-photon calcium 

imaging with ground truth from simultaneous on-cell electrophysiology have indicated 

encouraging results. It is important to match the imaging parameters between ground truth 

data sets and actual experiments: highly zoomed-in imaging offers a “best-case scenario” 

about how faithfully an indicator might report spiking, but may vary markedly from those 

obtained when imaging is zoomed-out to increase the number of neurons imaged (which 

also decreases the SNR of recorded cells). Single action potentials can be resolved >80% of 

the time in optimized systems, and multi-spike bursts are even more reliably detected91, 141. 

However, estimates of the number of spikes in multi-spike bursts is typically imprecise, and 

in practice larger fields-of-view decrease SNR and lead to overall correlation coefficients 

between 0.1 and 0.5 (Ref.87), though in some studies this has ranged up to 0.8 (Refs.118, 

141).

In some cases, it is impossible to perform calibration electrophysiology experiments. For 

example, the small working distance of GRIN lenses largely precludes correlative 

electrophysiology. Similarly, with air immersion objectives, simultaneous electrophysiology 

would so perturb the optical setup as to yield it largely irrelevant. In these cases – where 

ground truth is unobtainable – experiments should be designed to be insensitive to the 
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expected imprecision of spike inference. To bracket the precision of the estimated spike 

trains, experimenters can compare their data to electrophysiological recordings under similar 

circumstances. For example, data from extracellular recordings in mouse visual cortex can 

provide a baseline for calcium imaging studies, setting both the expected spontaneous firing 

rates and expected distribution of maximal firing rates in mouse visual cortex in response to 

drifting grating visual stimuli71, bearing in mind the selection bias in electrophysiology 

towards active cells.

Summary

Calcium imaging and extracellular electrophysiology can both provide high fidelity readout 

of neuronal population activity. They have complementary advantages: electrophysiology 

allows detection of single action potentials with submillisecond timing, in deep structures 

and multiple brain areas; calcium imaging can provide a comprehensive and less biased view 

of a local population, and interfaces easily with the genetic toolkit required to identify 

neurons based on cell type or connectivity.

Both methods are subject to experimental confounds, most notably spike sorting errors for 

electrophysiology, and signal contamination for calcium imaging. While these confounds 

cannot be avoided, they can be mitigated through careful experimental design. Furthermore, 

a detailed understanding of causes and consequences of these confounds makes erroneous 

scientific conclusions unlikely if they are used carefully. When objective measures of data 

quality exist, it is important that these are used and documented together with the scientific 

conclusions drawn. To gain a truly quantitative understanding of the error rates likely to 

occur in population recordings, however, it is essential that substantial further effort be put 

into collecting “ground truth” data calibrating these techniques against reliable measures of 

neural activity.
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Figure 1. 
Spike sorting is required to draw valid conclusions in extracellular electrophysiology. (a) 

Top, extracellular recording from a single microwire electrode in the hippocampus of a 

patient implanted with intracranial electrodes for clinical reasons. Bottom plots show 

overlapped all detected spikes (left), and the sorted spikes corresponding to 2 single units 

(clusters 3 and 5). (b) Responses to 5 pictures presented in an experimental session. 

Considering all the detected spikes together, no response can be observed in the raster plots. 

However, a clear response to Vladimir Putin appears when considering only the spikes 

corresponding to cluster 3, and a response to the Taj Majal appears when considering the 

spikes corresponding to cluster 5. Time zero corresponds to stimulus onset. For space 

reasons, only 2 of the 8 identified clusters and only 5 of the 14 presented pictures are shown, 

but there were no responses for these other clusters and pictures. Adapted from Ref.9.
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Figure 2. 
Quantitative measures of unit isolation in extracellular electrophysiology. Each point 

represents a single neuron recorded in CA1 of a rat exploring an environment, showing 

isolation distance (a measure of unit isolation quality54) vs. estimated spatial information 

content (which can be negative as it is computed by cross-validation142). The red curve 

represents a running median. The curve reaches an asymptote of ~1 bit/s for values of 

isolation distance greater than ~20, indicating that this is the true average for well-isolated 

cells. Data reanalyzed from Ref.142, with some points above the top y-axis value truncated 

for visualization purposes.
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Figure 3. 
Subtracting neuropil contamination from raw fluorescence time courses. (a) In two-photon 

imaging, the point spread function (PSF) is elongated in the axial dimension even in high 

numerical aperture systems. Pixels within the borders of cell bodies still contain signals 

from the surrounding neuropil. (b) The GECI GCaMP6s was expressed in mouse visual 

cortex neurons, resulting in brightly labeled cell bodies and neuropil. (c) Binary masks for 

cell body ROIs (black) were identified semi-automatically and neuropil regions were 

algorithmically constructed (avoiding pixels belonging to other potential cell bodies or black 

regions). (d) Raw traces for the fluorescence time courses of the selected cells. (e) 

Fluorescence time courses for the background regions for each selected cell. Note the high 

temporal correlation. (f) Fluorescence time courses after background subtraction. Note the 

reduced mean correlation141. All traces have been scaled to the same maximum height to 

better exhibit details in the time courses. Figure credit: J. N. Stirman, Y. Yu, S. L. Smith
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Figure 4. 
Probabilistic estimation of spike times from calcium signals. A model of calcium signal 

generation is inverted to yield a probability distribution of spike trains (blue raster), given a 

single observed calcium trace (black). (a), high signal-to-noise data leads to a highly certain 

estimate of spiking. (b), low signal-to-noise leads to an uncertain estimate, illustrated by the 

raster showing different spike trains that could have generated the calcium signal. 

Subsequent analysis can be performed using the entire spike train distribution. Figure credit: 

J. N. Stirman, Y. Yu, S. L. Smith.
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