
Technologies for imaging neural activity in large volumes

Na Ji1, Jeremy Freeman1, and Spencer L. Smith2

1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA

2Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for 
Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 
27599

Abstract

Neural circuitry has evolved to form distributed networks that act dynamically across large 

volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry 

across large volumes at the temporal resolution relevant to neural circuit function and behaviors. 

Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on 

two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, 

which restrict the image volume. Optical sampling time must be long enough to ensure high-

fidelity measurements, but optimized sampling strategies and point spread function engineering 

can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new 

computational strategies for the processing and analysis of volume imaging data of increasing size 

and complexity. Together, optical and computational advances are providing a broader view of 

neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior.

Introduction

In neural circuitry, action potentials are the coin of the realm. To understand how ensemble 

neural circuitry encodes stimuli, processes information, and guides adaptive behavior, it is 

essential to observe the spatiotemporal dynamics of action potential activity in populations 

of cells with single-neuron resolution.

Techniques for recording neural activity have evolved since Emil du Bois-Reymond’s (1818 

– 1896) discovery of the action potential using metal electrodes1. Since then, metal 

electrodes have shrunk in size2,3, and are banded together as tetrodes4 or arrays of 

electrodes2,3,5, in an attempt to record from more neurons while reducing damage to 

surrounding tissue. Electrodes offer unparalleled temporal resolution, but they suffer a 

fundamental limitation: they typically can only reliably isolate spikes from a subset of 

nearby neurons6. Thus, electrodes alone may not be sufficient for recording densely and 

comprehensively from large populations of neurons in parallel.
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Optical imaging can be more comprehensive and less invasive, as light can be focused and 

collected by instrumentation located away from the brain. To detect action potential activity, 

fluorescent indicators can be imaged. Originally, calcium dyes provided the strongest 

signals7, but the best genetically encoded indicators (e.g., GCaMP68) now rival the best dyes 

on some metrics9. These and other indicators can be used to infer neural activity with high 

sensitivity, and in some cases detect individual action potentials, though accuracy is limited 

by nonlinearities and signal-to-noise ratio. Indicator engineering is still undergoing rapid 

development, providing an array of new tools for measuring neural activity9. Imaging with 

fluorescent proteins also enables targeted recording of genetically-defined cell types, and 

chronic monitoring of the same neurons over months10.

Some neurobiological model systems are relatively transparent, making them particularly 

amenable to imaging. For example, neural activity in transparent larval zebrafish can be 

captured with light sheet imaging11. Many other preparations, including the mammalian 

brain, scatter light so strongly that most imaging approaches are useless beyond shallow 

depths. To image scattering tissue, two-photon laser scanning microscopy (2PLSM) is the 

method of choice12, capable of resolving individual neurons and their subcompartments 

hundreds of microns deep13–19, and is the focus of this review.

Advances in two-photon calcium imaging in vivo have increased image speed and depth, 

and provided greater flexibility of scan patterns. However, the field-of-view (FOV) of 

2PLSM in most implementations has remained limited to <1 mm2, and typically only a 

single z-plane (one thin optical section) is acquired. This small acquisition region is a critical 

barrier to progress in systems neuroscience because it limits imaging of neuronal activity 

across extended circuitry. During behavior, such circuitry processes information20–24 and 

generates internal dynamics to guide adaptive behavior. Observing activity in one slice at a 

time is akin to eavesdropping on one side of a telephone conversation: the content is 

incomplete and often uninterpretable. Observing all sides of the conversation—across a large 

volume—can reveal correlations, multi-area dynamics, signal transformations, and statistical 

properties crucial to understanding integrative brain function25,26. In this review, we discuss 

recent and emerging technical advances for imaging cellular-resolution neural activity from 

large brain volumes.

Instrumentation challenges

Technology to image large brain volumes must address two problems: optical access and 

sampling speed. Optical access is the problem of maximizing the brain volume over which 

individual neuron resolution can be maintained. It is limited by optical aberrations, light 

scattering, and the physical dimensions of imaging systems. Sampling speed is the problem 

of measuring activity in as many neurons as possible while maintaining the temporal 

resolution required by the experiment. It is limited by inertia of the instrumentation and the 

number of photons that can be collected from a given sample (i.e., pixel or voxel), which 

limits the signal-to-noise ratio (SNR) and is a function of several parameters including 

fluorescent probe brightness and the laser dwell time for each sample.
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Optical access

An imaging system has optical access to neurons within its field-of-view (FOV) over which 

individual neurons can be resolved, from the surface of the brain down to the maximum 

imaging depth (Fig. 1a). In many organisms, this requires surgical preparations such as 

thinned skull27,28, cranial windows29, cannulas30,31, embedded prisms32,33, or GRIN 

lenses34,35 (through-skull imaging has been demonstrated in mouse using three-photon 

excitation at 1.7 µm36). The maximal imaging depth depends on the tissue staining 

sparseness and brightness37 (sparse and bright staining can aid deep imaging), and thus 

cannot be precisely defined for a given instrument. Ultimately, imaging depth is limited by 

aberrations (brain-induced optical distortions that degrade image quality) as well as the 

attenuation by the opaque brain (loss of both excitation light and detectable fluorescence 

signal by tissue scattering and absorption) at depth38, and is limited to 5 – 6 attenuation 

lengths39. However, even at superficial depths, the optics within the microscope itself, due to 

their physical dimensions and designs, confines us to viewing only a limited FOV.

The basic optical layout of a laser scanning microscope involves a scan engine and an 

objective (Fig. 1b) that are constrained by simple geometric optics (Fig. 2). The scan engine 

generates a beam that pivots around a central point at the back focal plane of the objective 

(Figs. 1a and 2a). The objective has a numeric aperture (NA) which determines its resolving 

power, and a focal length (FL), which is commonly expressed as a magnification factor (FL 

is the focal length of the tube lens divided by magnification). The FOV is defined by the FL 

and the maximal scan angle (θ) of the laser entering the objective back focal plane (FOV = 

2×FL×tan(θ)) (Fig. 2b,c). In practice, θ is typically limited to ~1 – 5 degrees (measured 

from the central axis) because at higher angles the beam will be clipped by lenses in the 

objective, resulting in a distorted point spread function (PSF) and poor imaging quality.

For a given NA and θ, increases in FOV require increases in FL, which in turn require 

larger-diameter lenses (Fig. 2d). For example, the diameter of the objective back pupil 

increases linearly with FL for a particular NA (back pupil diameter, BPD = 2×FL×NA). To 

use the full NA of the system, the beam diameter must match the BPD, which requires a 

scan engine that scans a large-diameter beam over a range of θ. Therefore, a straightforward 

approach to create a large FOV imaging system is to simply scale up microscope objectives 

and scan engines to larger lenses, and scan at as high angles as possible.

However, there are engineering challenges in this approach. In high-NA imaging systems, 

even small increases in FOV are accompanied by large increases in BPD (Fig. 2d). 

Moreover, high θ requires careful correction of optical aberrations. Aberrations are inherent 

in real-world optics because the path difference for light passing through the center of lenses 

and light passing through the edges of lenses results in aberrated (distorted) wavefronts. In 

two-photon imaging, the problem is particularly serious because aberrations not only 

decrease resolution, but also decrease excitation efficiency. So images become both blurry 

and dimmer, and these effects can cause rapid degradation of image quality outside of a 

central FOV region. To correct for these aberrations, as the FOV increases, more lenses are 

required at a cost of system complexity and light loss. Moreover, the fastest beam scanning 

elements are often small (to minimize mass and inertia and maximize speed), and can only 

scan small-diameter beams. Thus, the beam has to be subsequently magnified to use the full 
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NA of the objective. However, the same optics that expand the beam diameter also decrease 

the scan angle. So aggressive beam expansion reduces θ and thus the FOV. In summary, 

engineering tradeoffs need to be made to optimize two-photon imaging systems for imaging 

large FOVs and volumes.

This engineering is facilitated by the modern optical design software and manufacturing, 

which has allowed individual neurobiology labs to design and build custom optical systems 

for two-photon imaging40–42. For example, a completely custom two-photon imaging 

system, using no commercial microscope parts, expanded the area of the FOV >50 fold 

compared to commercial two-photon imaging systems by optimizing the designs for both 

the microscope objective and scan engine40.

Microscope objectives critically govern the performance of an imaging system. In traditional 

biological microscopy, broad achromatic performance over the entire visible light range is a 

high priority to ensure accurate colocalization of multiple fluorescence labels. Maximizing 

the FOV, by contrast, is a lower priority. Thus, in commercial biological microscope 

systems, optical aberrations grow rapidly outside of the central highly corrected region43. By 

contrast, in large FOV two-photon imaging, achromatic performance may only be needed 

over a smaller wavelength range (typically in the infrared), since the visible fluorescence 

light is not imaged but simply sent to a single-channel detector. Therefore, maximizing the 

FOV involves a rebalancing of the priorities in optical design. For example, engineers can 

relax requirements for field flatness (since individual optical sections in a brain volume do 

not need to be perfectly flat) and broad achromatic correction (assuming a relatively narrow 

band of wavelengths are used for excitation) for the sake of low aberrations for the excitation 

wavelength across a large FOV (larger range of scan angles, up to 5 degrees).

Scan angles are typically rapidly varied using two low-inertia scan mirrors that are 

positioned close together, followed by a scan lens and tube lens to magnify the beam 

diameter to overfill the objective (which also results in a reduction of the scan angle by the 

inverse of the magnification factor) (Fig. 2b). Although this simple design is widely used, 

there is a variety of possible scan engines, each with its own selection of engineering 

tradeoffs. Ideally, scan mirrors should be optically relayed to one another to prevent beam 

walk in later elements, which can lead to beam clipping, aberrations, and degraded image 

quality. With close positioning and small scan angles, these negative consequences can be 

minimized, but such measures can also limit the FOV. Scan engines can include some or all 

of following: lenses, mirrors, mechanics, piezo actuators, voice-coil actuators, and acousto-

optic deflectors. Scan engines optimized for a specific purpose can offer substantial 

advantages over general-purpose scan engines44. Tsai and colleagues developed a scan 

engine for use with a 0.28 NA commercial objective (FL = 45 mm) that supports relatively 

low aberrations over a FOV 10-mm wide41. Voigt and colleagues presented a scan engine 

with two modular, temporally multiplexed focal plane units and low aberrations to support 

simultaneous imaging in two non-overlapped regions within a 1.7 mm wide FOV with a 0.8 

NA commercial objective (FL = 12.5 mm)45,46. Stirman and colleagues developed a scan 

engine with two temporally multiplexed beams for simultaneously imaging two regions that 

can be positioned anywhere within a 3.5-mm wide FOV of a custom objective (NA = 0.43, 

FL = 27.5 mm)40. Sofroniew et al. presented a scan engine with a fast small-angle resonant 
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scanner followed by large-angle scanners to support high-frame-rate scanning of 0.5-mm 

wide subfields that can be positioned anywhere within a 5-mm wide FOV of a custom 

objective (0.6 NA, FL = 21 mm)42. These FOV sizes are the extent over which the PSF 

remains sufficient for the intended experiment. In some cases the PSF is unchanged over the 

stated FOV40, while in others it can vary by 2 – 4 fold over the stated FOV41,42,47.

Imaging speed

Imaging speed is particularly important for understanding neural computation, where 

information-encoding electrical activity occurs on millisecond time scales. Even though 

commonly used fluorescent indicators of neuronal activity (e.g., the Ca2+ concentration 

indicators) function as low-pass-filters of these electrical signals, sub-second time resolution 

is still required. Both individual neurons and neural circuits often extend over hundreds of 

microns in each dimension. To image the entire volume at sufficient rates so as to capture all 

the calcium transients, a straightforward approach is to rapidly vary the 3D position of laser 

focus inside the brain. We discuss these and other volumetric imaging technologies below.

I. Planar imaging—Galvanometer-based optical scanners (or “galvos”), composed of 

lightweight mirrors mounted on galvanometers controlled by servo drivers, are the most 

commonly used devices to move the excitation laser focus in the plane perpendicular to 

optical axis (i.e., lateral or xy plane, although xz plane imaging is also possible using 

microprisms32,33,48,49). Varying the electric current passing through the galvanometer causes 

rapid rotation of the mounted mirror, and leads to changes in the direction of the reflected 

laser beam (Figs. 1b and 2a). These direction changes are converted to positional shifts of 

the laser focus on the focal plane of the objective (Fig. 3a). A pair of galvos that rotate along 

orthogonal axes direct the beam in 2D xy plane, usually with a raster (i.e., line-by-line) 

scanning pattern and sub-millisecond step response time (a few kilohertz linescan rates). 

Sometimes, one of the galvos is designed to oscillate at a fixed frequency (e.g., 8 kHz or 12 

kHz)50, to achieve higher frame rates (e.g., 512×512 pixels at 30 Hz or “video rate”, even 

higher rate such as 200 Hz can be achieved by simply reducing the number of lines51).

One alternative approach to mechanical laser scanning is to use acousto-optic deflectors 

(AODs) for beam steering. Piezoelectric transducers bonded to one surface of a transparent 

crystal, when driven at radio frequency (RF), can generate traveling acoustic waves inside 

the crystal and cause compression and rarefaction of the material, which lead to alterations 

in its refractive index. Because the resulting refractive index modulations are periodic, the 

crystal now acts as a diffractive grating and deflects a laser beam passing through, with the 

beam diffraction direction determined by the period of the grating. Because RF frequency 

determines grating period, rapid adjustments of the drive frequency allow the crystal to act 

like a fast tunable deflector. For example, ramping the frequency of the RF signal produces a 

line scan. 2D steering of the laser focus within the objective focal plane can be accomplished 

by two AODs arranged with their acoustic gratings at orthogonal directions52–54. 

Alternatively, an AOD can also be combined with a galvanometer-driven scanning mirror for 

hybrid 2D scanning55.
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Because AOD-based beam deflection involves no movable parts and is not constrained by 

inertia, 2D scanning at very high rates can be achieved. Raster scanning with an AOD for 

fast x-scan and a galvo for y-scan, Chen et al. recorded, at >1,000 frames · s−1 (80 scan lines 

per frame) over 28×9 µm2 area, sound-evoked calcium transients in single spines of mouse 

primary auditory cortical neurons in vivo56. In addition to raster scanning mode by ramping 

the RF drive signals, random-accessing operation can be achieved by generating RF drive 

signal of discretely changing frequencies, which allows selected positions (e.g., discrete 

compartments along a dendrite) to be accessed at arbitrary sequences with microsecond 

reposition time, a big advantage when compared with galvo-based raster scanning methods 

where field positions are sampled sequentially, irrespective whether all the positions are of 

experimental interest or not. With a pair of AODs programmed for random access, Iyer et al. 

visualized at 500 Hz over >10 sites (spanning 60×90 µm2) calcium transients that were 

triggered by back-propagating action potentials along CA1 pyramidal neuron dendrites in 

brain slices57. Using similar systems for 2D random accessing scans, Otsu et al. measured 

calcium transients from 30 – 80 spine heads and attached dendritic shafts of Purkinje cells in 

acute slices at frame rates of 0.5 – 1.5 kHz58, and Grewe et al. obtained fluorescence 

measurements from 34 – 91 neurons at a 180 – 490 Hz sampling rate from L2/3 of mouse 

cortices in vivo59.

II. Volume imaging

a. By objective motion: For volume imaging, in addition to scanning the focus in the lateral 

xy plane, the laser focus also needs to move relative to the sample in the axial z direction. 

For most neurobiological applications (e.g., in vivo imaging of mouse brains), the simplest 

way to obtain a 3D image stack is by translating the objective along its optical axis using a 

mechanical actuator, and taking a 2D raster-scanning image at each axial position (Fig. 3b). 

With 2D images routinely obtained at video rate and higher, the rate-limiting step in volume 

imaging is often the time delay between successive image planes that is required for 

mechanical oscillations to subside and the objective to settle into its appropriate axial 

position. This dead time between consecutive 2D scans can be minimized by continuously 

oscillating the objective throughout image acquisition (causing the image planes to tilt 

relative to the sample60). With fast piezoelectric objective positioners61, reasonable volume 

rates can be achieved over small axial ranges and have been used to measure calcium 

transients in volumes of brain tissues in vivo (e.g., 14-plane volume of 60 µm×60 µm×48 µm 

at 4 Hz62 and 150 µm×150 µm×45 µm volume at 1 Hz63, 3-plane volume at 7.8 Hz rate for 

600 µm×600 µm×20 µm64,65, 5-plane volume at 8.5 Hz rate for 80 µm×80 µm×25 µm66, 4-

plane volume of 260 µm×260 µm×24 µm at 7 Hz67). A further improvement in speed was 

made by Gobel et al., who demonstrated a 3D vector-scanning method where the laser focus 

was steered along a 3D trajectory that maximally sampled cell bodies within the volume. 

Driving the objective to oscillate axially in a sinusoidal pattern and providing synchronized 

control signals to the x and y galvos, they generated 3D scanning paths that sampled, at 10 

Hz, 375 cell somata within a 250 µm×250 µm×200 µm volume, which allowed them to 

monitor network activity patterns of neurons and astrocytes in vivo68. Katona et al. increased 

the volume image rate even further by driving their objective to oscillate at higher frequency 

(150 – 700 Hz, Roller Coaster scanning69). Even though overdriving reduces the amplitude 

of z scanning range to tens of microns, this method was successful in detecting spontaneous 
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dendritic events in long dendritic segments in vitro at very high speed (650 µm×650 µm×25 

µm at 150 Hz).

b. By divergence control: Moving the laser focus along optical axis without moving 

objective or sample avoids the problem posed by inertia, but requires controlling the 

wavefront of the excitation light, because a shift of focus axially relative to the objective 

corresponds to a change of the beam divergence (Fig. 3c). Devices such as deformable 

mirrors, spatial light modulators, variable-focus lenses, and AODs have been employed for 

this purpose. Reflecting the excitation light off a mirror with negative or positive curvature 

(or a spatial light modulator with proper phase patterns70) produces converging or diverging 

beam to achieve upward or downward focal offset71. Adjusting the mirror curvature rapidly 

(e.g., at 5 kHz72) therefore scans the focus axially. Variable-focus lenses have also been used 

to vary beam divergence for axial scanning. A variety of such lenses are commercially 

available and operate on different mechanisms, but are typically tuned by either changing the 

shape73 or the refractive index74 of the lens. Grewe et al. characterized a tunable lens 

assembly that, by having the curvature of one surface controlled electrically, can generate 

700 µm of axial shift, and used it to measure the calcium transients of 40 neurons across two 

image planes separated by 40 µm at 30 Hz75. More recently, Sheffield et al. used the same 

approach to image dendrites, somata, and axons of CA1 place cells in behaving mice (15.6 

Hz for 2-plane volume, 10.4 Hz for 3-plane volumes extending axially 58 – 284 µm)76. 

Another class of variable-focus lens uses ultrasound waves in a confined liquid to create a 

tunable gradient refractive index lens74. Because the ultrasound lens generates continuously 

varying beam divergence at ~MHz rates, leading to axial displacements that are faster than 

lateral displacements, axial scan can be used as the fast axis61. Using this approach, Kong et 

al. demonstrated volume imaging over 40 µm or 130 µm axial ranges with volume rates up 

to 56 Hz77.

Two orthogonal pairs of AODs can control beam divergence and allow 3D random access78. 

Each AOD pair consists of two AODs with chirped (i.e., continuously frequency-varied) and 

counter-propagating acoustic waves79, which deflect the beam laterally as well as alter its 

divergence, leading to independent lateral and axial focus repositioning. Using such a 

system to generate axial offsets of up to 50 µm, Reddy et al. monitored dendritic calcium 

dynamics at both laterally and axially distinct locations on apical dendrites in acute brain 

slices at up to 10 kHz80. Further refinements increased the axial range (to >137 µm) and 

improved excitation efficiency by reducing AOD-associated pulse-broadening81. Using 

AODs with large apertures, Katona et al. built a system that maintained dendrite-resolving 

resolution in a 290 µm×290 µm×200 µm core volume and single-cell resolution over a 700 

µm×700 µm×1,400 µm volume47. The system was used to image the backpropagation of 

action potential (BAP) at 3D locations spanning 700 µm×700 µm×140 µm in mouse acute 

hippocampal slices. With sub-millisecond temporal resolution, the latency of BAP-evoked 

calcium transients was measured along lengths of dendrites. Calcium transients from 532 

neurons within a 400 µm×400 µm×500 µm volume in vivo were also monitored at 56 Hz47. 

Such 3D AOD-based systems have been used to study network activities of neurons in 
vivo82.
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Even though these divergence-control-based axial-scanning methods can generate large axial 

shifts at high speed, because microscope objectives are designed to produce optimal 

performance for light of specific divergence (e.g., most commonly used infinity-corrected 

objectives require collimated incident beam)83, changing beam divergence leads to degraded 

focus at large z displacements. Even at tens of microns outside the natural z focus depth, 

defocus methods already suffer from degraded image quality and substantially reduced 

resolution and signal-to-noise ratio70,75,80,81 (although in principle, AODs can be driven to 

shape the excitation wavefront in order to correct for aberrations84,85). This can be 

problematic for experiments where diffraction-limited resolution is required (e.g., imaging 

synaptic terminals). To address this issue, Botcherby et al. introduced a remote focusing 

method, where the objective and the sample remain stationary, and axial scanning is carried 

out by moving a lightweight mirror upstream of the sample objective86,87 (Fig. 3d). Because 

this mirror is imaged onto the sample by an additional objective (top objective in Fig. 3d) 

and reflects the excitation light before it enters the imaging objective (bottom objective in 

Fig. 3d), axial movements of the mirror cause focal shifts in the sample. The aberrations 

experienced by the converging or diverging beam at the sample objective are canceled by 

those through the mirror objective, leading to aberration-free axial scanning over 200 µm88. 

Because of the low inertia of the remote mirror, z scanning can be so fast that z direction is 

no longer the slow axis, and 3D scanning of planes at arbitrary orientation89, curved surfaces 

of complex morphology (e.g., to adapt to sample topology90), and complex paths (sampled 

at >300 Hz88) has been demonstrated. Using galvos to move the remote mirror rapidly, 

Botcherby et al. measured calcium transients triggered by extracellular electrodes from two 

dendritic segments >30 µm apart axially and neurons extending 60 µm in z were monitored 

at 500 Hz and 1 kHz, respectively88. Positioning the remote mirror with a voice coil motor, 

Rupprecht et al. realized focal shifts >500 µm and demonstrated 6 Hz volume imaging of 

calcium dynamics (9 planes of 512×256 pixels over 240 µm depth) in adult zebrafish 

brain91.

c. By multiplexing: All the above methods reach high volume-imaging speed by moving a 

single focus rapidly in 3D. Another way to increase speed is by utilizing multiple foci to 

parallelize the imaging process. In principle, N spatially distinct foci can increase imaging 

speed N fold, if the fluorescent signal from each focus can be unambiguously assigned (Fig. 

3e). The conventional multifocal multiphoton microscopy scans a 2D array of foci across the 

xy plane92,93. Using spatial light modulators for wavefront shaping, the spatial arrangement 

of multiple foci can be flexibly controlled94. However, because images of the focal plane are 

captured by an array detector (rather than a single-element detector such as a photomultiplier 

tube), image depth is limited by sample scattering even with optimized detectors95. But the 

multifocal approaches can be made resistant to scattering if the fluorescence excited at each 

focus is temporally separated. Using two axially displaced and temporally delayed foci, 

Amir et al. demonstrated simultaneous imaging of two focal planes71. With a typical laser 

for two-photon excitation operating at ~80 MHz repetition rate, the maximal number of 

temporally distinguishable foci is determined by fluorescence decay lifetime. Using Fluo-4 

as calcium sensor (~1 ns lifetime), Cheng et al. simultaneously recorded activities of 

neurons in mouse neocortex on four imaging planes 90 µm apart at 60 Hz96. Reducing the 

repetition rate of the laser can increase the number of temporally multiplexed foci97. 
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Combining temporal with spectral multiplexing98 in brain volumes with different 

fluorescence labels (e.g., GCaMP and RCaMP), the volume imaging rate may be increased 

further. Temporal multiplexing have also been implemented together with defocus-based z 
control in multi-area two-photon microscopes to scan laterally and axially displaced 

volumes simultaneously40,46.

A fundamental difference between imaging experiments in the brain and those in other 

biological systems (e.g., imaging live cells or developing embryos) is that, in the brain, the 

structures of interest (e.g., neurons and their subcellular compartments) typically do not 

move during the few hours of experiment. As a result, it is often unnecessary to constantly 

monitor and resolve their positions in 3D. Using a spatial light modulator, Yang et al. 

generated seven axially displaced foci to simultaneously image seven planes in a brine 

shrimp. In the more scattering mouse brain, they generated three axially shifted foci to 

characterize the functional property of L2/3, L4, and L5 neurons (170 µm, 350 µm, and 500 

µm below pia, respectively) simultaneously at 10 Hz (three planes extending over 500 µm in 

z were also demonstrated)99. Here no temporal multiplexing was used to separate signals 

from different foci. But because activity in cortex is sparse, even though neurons at different 

z depths may overlap in the xy plane and cannot be resolved spatially, they can be 

segmented through their distinct activity patterns by independent component analysis100 or 

nonnegative matrix factorization methods101,102.

Taking this approach to the extreme, the speed of volumetric imaging is maximized when no 

attempt is made to resolve structures in the axial direction. This is equivalent to having 

axially shifted foci that are so close together as to form a continuous axial profile. One way 

to generate such an axially extended focus is by using annular illumination at the excitation 

objective103 (Fig. 3f), which form a focus known in optics as a Bessel beam. Using a phase 

mask to generate a high-NA Bessel beam, Botcherby et al. demonstrated extended depth-of-

field imaging for two-photon fluorescence microscopy104. Using an axicon (a refractive 

element shaped like a cone)105, Theriault et al. applied the extended depth-of-field imaging 

to brain slices106 and showed that displacement of the annular illumination on the objective 

back pupil can be used to recover depth information via stereoscopic imaging104,106. 

Because a single elongated focus now probes all the structures along the z axis within the 

extended depth of field, 2D frame rate becomes 3D volume rate. Using an easy-to-adapt 

SLM-based module to generate Bessel foci, Lu et al. demonstrated in vivo volume imaging 

of neurons in ferret, mouse, zebrafish, and fly brains over 160 µm in depth at up to 30 Hz 

volume rate107. Preserving synaptic resolution over large axial and lateral displacements, 

Bessel-focus-based extended depth-of-field imaging allowed functional characterization of 

dendritic spines over multiple dendrites extending over 60 µm in depth.

Sampling strategies

Now that we have discussed the instrumentation for imaging neural activity in large 

volumes, we turn our attention to the sampling strategies. To maximize the number of 

neurons that can be sampled within a brain volume, optimized scan strategies are required. 

Scan strategies can be compared by considering the neuron-samples per second, assuming 

sufficient signal-to-noise ratio (SNR) per sample. The SNR in imaging systems that are shot-
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noise-limited, increases with higher photon fluxes (shot noise scales as the square root of the 

number of photons detected). The SNR requirement sets the range of photon counts that 

must be obtained for each neuron at each time step108, and can vary from experiment to 

experiment. In some cases, single action potential resolution is needed, which requires high 

SNR measurements. In other experiments, more qualitative measurements of changes in 

activity are desired, and SNR can be traded off to image more neurons. Ultimately the SNR 

sets the minimal dwell time per pixel, which is generally on the order of 0.1 – 1.0 µs for 

raster scanning, and 10 – 50 µs for sampling each neuron (a single neuron may be sampled 

by a single pixel or over multiple pixels that are averaged together during data 

analysis)59,109.

In practice, the achievable SNR is determined by the total number of photons that can be 

collected from each region of interest. It depends on the concentration, brightness, and 

photostability of the indicator, as well as the excitation and collection efficiencies of the 

imaging system. Simply increasing the excitation power may produce initial gain in SNR, 

but photobleaching of the indicator and the photodamage of the brain tissue may make such 

increase in SNR unsustainable. For large volume imaging, the excitation and collection 

efficiencies are typically in the same range as they are for small volume imaging, though the 

latter can be improved using supplementary collection strategies110,111. Sampling strategy 

should be optimized for each experiment with the required and achievable SNR in mind.

To compare approaches, we can define a neuronal sample rate U in units of neuron-

samples·s−1. That is, either U neurons can be sampled at 1 Hz, or U/2 neurons can be 

sampled at 2 Hz, or U/500 neurons can be sampled at 500 Hz, and so forth. This quantity 

depends on the dwell time required to obtain sufficient signals, which is a function of the 

indicator properties, staining intensity, and the efficiencies of excitation and collection. 

Therefore, we will refer to actual realized performance in experiments, rather than 

theoretical values for specific approaches.

Raster scanning is the most commonly used strategy, but it is also among the least optimal 

because so many of the samples (i.e., pixels) are of structures that are not of interest, 

including blood vessels and neuropil. Still, unidirectional and bidirectional raster scanning 

(Fig. 4a) remains the preferred scan mode in practice for several reasons. First, raster 

scanning data can be registered post hoc to compensate for movement, which is often 

necessary in data from awake, behaving animals112. Second, resonant scan mirrors can 

provide frame rates that are sufficient to reveal neuronal activity dynamics on the time scale 

of behavior (10s to 100s of ms). Raster scanning with a resonant scanning axis yields about 

100 cells at 30 Hz (U = 3,000 neuron-samples·s−1)113,114. Third, raster scanning provides 

several samples per neuron that can be averaged together to increase SNR.

A potentially more optimal strategy is arbitrary line scanning (Fig. 4b). This involves a non-

raster scan path that can be either optimized to sample a large volume sparsely or targeted to 

specific neurons whose locations are identified with a prior raster volume scan. High 2D 

imaging speed were achieved by using 2D vector scan and constraining the laser scan path to 

user-defined structures of interest and minimizing the “dead time” in between (e.g., vector-

mode scanning115, targeted path scanning116,117, multiple line scanning method118, and 
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heuristically optimal path scanning119). In a brain slice preparation, Sadovsky and 

colleagues achieved a U of 8,500 (1,000 neurons at 8.5 Hz)119. Gobel et al. used an 

untargeted arbitrary 3D scan path to sample in vivo 458 neurons at 10 Hz (U = 4,580)68. 

AODs are well-suited for random access sampling. Using a 3D AOD setup, Katona et al. 

obtained a random-access sample rate U of 23,800 to 54,30047. Cotton et al. used AODs to 

realize a U of 50,000 neuron-samples·s−1 (e.g., 500 cells at 100 Hz, or 250 cells at 50 

Hz)109. One problem with arbitrary line scans for in vivo preparations is that movement 

artifacts cannot be corrected for post hoc. Online adjustments of arbitrary line scan paths has 

yet to be demonstrated (though raster scans have been corrected online120), but fast plane 

scans of high contrast objects have been used to detect movement and discard data that is 

corrupted by large movements109.

As described in the previous section, temporal multiplexing40,45,71,96 can multiply U by a 

factor equal to the number of foci (e.g., a factor of 4 in Cheng et al.96) (Fig. 4c). Finally, in 

the case of relatively sparse labeling or activity, analytical unmixing of signal generated by 

multiple foci simultaneously is a possibility99,102. This approach can multiply U by a factor 

equal to the number of foci.

Other considerations

Via the combination of hardware development and shrewd sampling strategy, we now have a 

variety of two-photon fluorescence microscopy methods at our disposal for rapid imaging of 

brain volumes. However, several factors, both practical and fundamental, restrict the 

usability of these methods in mammalian brains.

Brain-induced deterioration of image quality due to aberration and scattering places a 

constraint on volume imaging, especially along its z extent. Even if the imaging module 

itself operates in an aberration-free manner, the optical inhomogeneities of the mammalian 

brain distort and scatter the excitation light, which reduces its focal intensity and degrades 

image resolution at depth38 (Fig. 5). The brain’s distortion effects on the excitation 

wavefront can be counteracted by adaptive optics, where active shaping of the wavefront is 

used to cancel out brain-induced aberrations121–127 (Fig. 5a,b). With adaptive optics, 

diffraction-limited imaging with two-photon fluorescence microscopy can now be achieved 

deep inside mouse cortex and has been proven to be essential for the accurate 

characterization of tuning properties of thalamic boutons in the mouse primary visual cortex 

in vivo128. Combining adaptive optics with the volume imaging methods described above 

becomes increasingly important as imaging volumes grow in size.

The reduction of focal intensity and detection efficiency by tissue scattering and absorption 

is more difficult to combat, and limits the maximal imaging depth to 5 – 6 attenuation 

lengths39. Currently, the most practical solutions for reducing scattering are through using 

longer-wavelength excitation light or red-shifted fluorescent dyes, due to the substantially 

lower attenuation by scattering at longer wavelength (Fig. 5c–e)129. For example, for 

neocortex labeled with red dyes in vivo, the characteristic attenuation lengths were found to 

be 131 µm at 775 nm, 285 µm at 1,280 nm, and 365 µm at 1,675 nm, respectively39,130. 

Using a red-emitting calcium indicator Cal-590 and 1,050 nm excitation, Tischbirek et al. 

recorded action potential-dependent calcium transients in all six layers of mouse cortex up to 
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900 µm below the pia surface in vivo131. Recently developed red genetically encoded 

calcium indicators also allowed orientation tuning properties of L6 neurons at 850 µm under 

pia in mouse visual cortex to be characterized in vivo98. Using Alexa680-Dextran and 1,280-

nm excitation, Kobat et al. demonstrated in vivo two-photon imaging of brain vasculature 

down to 1.6-mm depth in mouse cortex132. Using 1,700 nm for three-photon excitation of 

RFP, subcortical neurons at over 1mm depth have been imaged through intact cortex in 
vivo39. Conveniently, most of the volumetric imaging methods (with the exception of AOD-

based methods, which are usually optimized to work in a narrower wavelength range, due to 

their strong dispersion) can be used at longer wavelength without any modification.

A final factor that constrains the speed of volume imaging is the heating and damage of the 

brain by the excitation light. Because of the limited brightness of the probe, with the 

increase of image speed, the amount of power deposited into the brain also increases, which 

would eventually affect the physiological events under investigation. Although scattering 

decreases with wavelengths, increasing water absorption above 1.1 µm may lead to tissue 

heating129. Ongoing work has been carried out to study how the brain is affected at different 

power regimes133. Care needs to be always taken to ensure that the physiology of the system 

is not sacrificed in the pursuit of speed.

Data analysis

Large volumetric imaging presents enormous opportunities for characterizing the neural 

code, but also several computational challenges.

The most immediate challenge might appear to be the size of the data. A typical dataset of 

two-photon laser scanning microscopy in the mouse cortex generates around 50GB an hour 

(512×512 pixels of 4 planes at 8 Hz), and these numbers are likely to grow with new 

techniques. To give some perspective, however, this is far smaller than even the high-speed 

video used to capture mouse behavior (500 GB an hour). Such video data are processed 

immediately with well-vetted algorithms, and the raw data are discarded or highly 

compressed134.

The unique challenge of functional imaging data is not the sheer size, but the complexity, 

diversity, and continual evolution of analysis approaches. There is a semi-standard sequence 

of processing steps that most labs perform. (1) Image registration, which can include global 

cross-correlation, non-local alignment, or model-based approaches, (2) neuron identification 

or segmentation, and correction for neuropil contamination, which can be performed using 

morphological methods or matrix factorization, and (3) spike detection, which can use 

deconvolution or inverse modeling (See review on “Data quality” in this issue for more 

details on how to perform these steps). The fluorescence time course or spike train for every 

neuron can then be used to fit models that relate neuronal responses to stimuli, behavioral 

parameters, or the responses of other neurons10,25,64,135. There are myriad ways to perform 

each of these steps, and most methods must be tailored to experiment-specific acquisition 

properties, indicators, cell types, and spatial or temporal resolutions. The output of each step 

informs the others – an artifact due to neuropil contamination may only become clear when 

Ji et al. Page 12

Nat Neurosci. Author manuscript; available in PMC 2017 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computing cross-neuron correlations – so most steps must be performed repeatedly, with 

different parameters, and with substantial manual inspection and intervention.

When repeating multiple steps in a complex pipeline, the time required for each step 

becomes a severe bottleneck, and for datasets of even 10 s or 100 s of GBs total processing 

time can grow to hours or days. One strategy for speeding up computation is parallelization, 

which can be achieved through multi-core processing on a single CPU, distributing 

computation across multiple machines in a compute cluster, or GPU computing. Several 

open source libraries well-suited to distributed array computation are available across a 

variety of languages, though only a subset are currently actively used for processing 

volumetric imaging data (e.g., Spark136, cluster computing in Python and Scala). In most 

cases, cluster computing is better suited to flexible workflows that require extensive 

customization and modification, or require repeated passes over an entire dataset136, 

whereas GPUs are well-suited to a subset of well-defined operations like image filtering or 

convolution, or operations that require minimal reading or writing of data137.

Regardless of the platform, different operations demand different strategies for 

parallelization. For raw data processing, many operations must be performed locally in space 

but can be distributed across time (e.g. image filtering or registration), whereas others must 

be performed locally in time but can be distributed across space (e.g. baseline removal or 

pixel-wise regression), and others require a combination (e.g. space-time matrix 

factorization, which is a common step in cell segmentation algorithms100,102). This kind of 

re-representation might be trivial on a single machine, but it can incur substantial costs when 

data are distributed across a cluster, and efficient processing requires structuring data on disk 

and in memory to support particular workflows.

After segmentation and time series extraction, data are often much smaller in size, typically 

less than a couple GBs, but parallelization remains important, in new ways. Fitting neural 

encoding models25,64, which capture the statistical relationship between stimulus or 

behavioral parameters and neural responses, often requires nonlinear optimization and 

calculating appropriate non-parametric statistics (e.g. permutation tests, monte carlo 

simulations). Fitting these models to hundreds or thousands of neurons at once, or fitting 

highly complex models, can benefit enormously from parallelization, as has been 

demonstrated both on CPUs52 and GPUs138. Faster computation can enable new forms of 

experimentation – such as fitting models online during an experiment and using the fits to 

present stimuli that test targeted, model-driven hypotheses139,140. When fitting models that 

examine pair-wise interactions, the number of parameters grows quadratically with the 

number of neurons, which requires regularization to avoid overfitting141, as well as 

strategies to avoid explicitly representing neuron-by-neuron matrices, which become 

unwieldy even on a large compute cluster.

Future prospects

There are fundamental limits to consider when evaluating the future prospects of large 

volume imaging142. Two key limiting factors are the fluorescent reporters that influence the 

SNR, and the difficulty of imaging with multiply scattered light. Firstly, brighter and larger 
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signal (ΔF/F) calcium dyes and genetically encoded calcium indicators could aid large 

volume brain imaging. These improvements would increase the SNR, and thus permit 

smaller dwell times and faster sampling. Red-shifted indicators can also provide for deeper 

imaging by causing less scattering for both excitation and emission light on their way to and 

from the focal point, and less signal loss due to absorption by hemoglobin129. Calcium 

imaging is an indirect reporter of neuronal activity, and thus there are opportunities for more 

direct reporters of activity, e.g., reporters of voltage changes or neurotransmitter 

release143–145. Secondly, new methods to image with multiply scattered light would aid 

large volume brain imaging. This is particularly true when imaging mammalian cortex. 

Recent research has revealed that it is possible to focus light into highly scattering tissue146, 

although it is challenging to account for the fast spatial and temporal variations in the 

scattering profile of live tissue in real time. Technical progress in indicator and hardware 

performance can provide potential for these approaches to enhance the imaging of neuronal 

activity within large volumes.

Thus, ultimately there is ample technological headroom to explore for imaging neural 

activity dynamics over larger tissue volumes with individual neuron resolution. This 

headroom can be explored using iterative engineering (e.g., larger imaging optics, faster 

scanning) and novel approaches (e.g., constrained non-negative matrix factorization for 

unmixing). It can be helpful to design new technology with a specific experimental question 

in mind. Such guidance can ensure that the technology can be used right away to advance 

neuroscience, and moreover, the experimental demands of a specific experiment may 

actually relax some requirements and allow for a different set of engineering compromises. 

For example, high axial resolution may be key for some experiments, but low axial 

resolution can also enable high throughput in sparsely labeled samples. New technology for 

imaging in larger volumes should be guided by pressing neurobiological questions, and 

evaluated on the basis of its fitness for its intended use.
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Fig. 1. 
Optical access and basic optical layout of a 2PLSM. (a) Obtaining optical access to large 

brain volumes entails expanding the field of view (FOV) and extending the imaging depth. 

(b) A 2PLSM is comprised of a scan engine and an objective. In the scan engine, rapidly 

movable mirrors (galvanometer beam scanners, xy Galvos) reflect the excitation laser beam 

across a range of angles that are relayed using a scan lens and tube lens to the objective.
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Fig. 2. 
Scan engine and objective determine imaging FOV. (a) Scan engines expand the excitation 

beam and rapidly vary the incidence angle on the back aperture of the objective (Obj) to 

create a scan pattern. A conventional approach involves beam scanners followed by a scan 

lens (SL) and a tube lens (TL). (b) The SL is placed at a distance equal to its focal length 

(FL) from the beam scanner (SLFL). The TL is placed at a distance equal to its FL from the 

Obj (TLFL). The beam diameter is expanded by a factor of TLFL/SLFL and the beam scanner 

scan angle (Ω1) is reduced by the reciprocal factor (SLFL/TLFL) to a smaller angle (Ω2). To 
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use the full resolution of the Obj, the beam must be expanded to overfill the back aperture, 

and this expansion reduces the scan angle at the objective and can reduce the FOV. (c) Half 

of the width of the FOV (FOV1/2) is equal to Obj focal length (ObjFL, which is commonly 

expressed as a magnification factor, rather than a FL, by commercial vendors) multiplied by 

tan(Ω2). (d) FOV increases more rapidly with Obj back aperture diameter for lower NA 

optics. This relationship is illustrated using the parfocal approximation, and performance of 

real world systems can vary from the traces illustrated here, but the general relationship still 

applies.
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Fig. 3. 
2D and 3D scanning strategies. (a) Focus is scanned in the xy plane by varying the direction 

of the excitation laser at the back pupil of the objective. (b) Focus is moved along z axis by 

moving the objective relative to the sample. (c) With a stationary imaging objective, focal 

shift in z can be achieved by changing the divergence of the laser beam. (d) With two 

objectives and a movable mirror, z position of the focus can be varied without incurring 

optical aberrations. (e) Multiple foci can be generated by manipulating the laser wavefront, 

which allows speed increase via multiplexing. (f) Volume can be imaged with an elongated 

focus with extended depth of field.

Ji et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2017 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Sampling strategies. (a) Raster scanning evenly samples a single plane of a volume. The 

scanning can be unidirectional or bidirectional, the latter offers higher speed, but may 

require additional image processing to reduce artifacts. Volumes can be imaged using 

multiple raster scanned planes. (b) Arbitrary line scanning can more optimally sample a 

volume. A geometric approach can be used with no prior knowledge of the anatomy, to 

sparsely sample a volume. Targeted scanning can use a previously acquired, raster-scanned, 

multiplane volume, as in a to target an arbitrary line scan to sample specific neurons. (c) 
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Temporal multiplexing involves multiple beams scanning the volume with slight temporal 

delays between their laser pulses. Fluorescence events are attributed to specific beam if they 

occur in a small time window after excitation by that beam’s laser pulse, to ensure minimal 

crosstalk between multiplexed beams. Multi-foci scanning involves splitting laser power of 

each pulse between multiple foci. There is complete crosstalk between signals from the two 

pathways, but given sufficient sparsity, it is possible to demix signals from different neurons 

with high fidelity.
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Fig. 5. 
Aberration and scattering limit imaging depth. (a) Brain distorts the wavefront of the 

excitation light and leads to an aberrated focus (formed by orange rays), lowering image 

resolution and brightness. (b) Shaping the wavefront with adaptive optics cancels out brain-

induced aberrations and recovers an ideal, diffraction-limited focus (formed by red rays). 

Green rays illustrate ideal imaging condition where the brain does not change ray directions. 

(c) The wavelength dependence of the effective attenuation coefficient (1/mm) (modified 

from reference 129) indicates that optimal excitation wavelength windows are near 1,300 
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and 1,700 nm. (d) and (e) Longer wavelength excitation light penetrates scattering brains 

more effectively than shorter wavelength ones.
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