
Metabolomics and Metabolic Diseases: Where do we stand?

Christopher B. Newgard*

Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, 
Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, 
Durham, NC 27701

Abstract

Metabolomics, or the comprehensive profiling of small molecule metabolites in cells, tissues, or 

whole organisms, has undergone a rapid technological evolution in the past two decades. These 

advances have led to application of metabolomics for defining predictive biomarkers for incident 

cardiometabolic diseases, and increasingly, as a blueprint for understanding their pathophysiologic 

mechanisms. Progress in this area and challenges for the future are reviewed here.

Introduction

The term “metabolomics” emerged at the dawn of the third millennium to describe attempts 

to measure all of the small molecule metabolites in a biological system, or at least a large 

number of metabolites at one time. In reality, metabolomics is nothing more than analytical 

chemistry, which of course has a much longer history. The advent of metabolomics has been 

fueled by major improvements in instrument technology, most notably in the sensitivity and 

mass range of mass spectrometers, and associated gas and liquid chromatography 

techniques. Today, the most advanced systems deployed in a non-targeted mode (sometimes 

referred to as “shotgun” metabolomics), are able to detect up to 10,000 independent spectral 

features in a single biological specimen (Zamboni et al., 2015; Patti et al., 2012; Jin et al., 

2016). However, in the best of such studies, only about one-third of the detected peaks can 

be linked to a specific chemical structure in an unambigious fashion, and only after many 

weeks of work. Non-targeted metabolomics is typically used to compare two biological 

conditions, e.g. drug-treated or genetically engineered cells compared to control cells. As 

such, non-targeted metabolomics is best suited as a discovery tool for identifying 

metabolites that change in response to manipulation of a biological system (relative 

concentration) rather than providing the exact concentration of a known metabolite (real 

concentration). Targeted metabolomics, which focuses on measurement of known 

metabolites in clusters with similar chemical structures (e.g. amino acids, acylcarnitines, 

organic acids, etc) is a more quantitative tool, as it often involves the use of stable isotope-
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labeled metabolites (usually 2H- or 13C-labeled) as internal standards to allow the quantity 

of a targeted analyte to be deduced by the ratio of its peak area to that of the labeled standard 

added at a known concentration (referred to as isotope dilution mass spectrometry) 

(Newgard et al., 2009; Ferrara et al., 2008; Bain et al., 2009). The evolution of targeted and 

non-targeted methods for static profiling of metabolites (referring to measurement of 

metabolite levels at one specific time point) has been complemented by advances in 

metabolic flux analysis, in which heavy atoms from stable isotope-labeled substrates are 

detected as they label downstream metabolic products, in experiments involving multiple 

time points (Zamboni et al., 2015; Buescher et al., 2015; Fan et al., 2014; Alves et al., 2015). 

When used together, these assembled tools provide a deep and dynamic view of metabolic 

functions of cells, tissues/organs, and even whole animals and humans.

But the purpose of this article is not to review metabolomics technologies. Several reviews 

describing key technological advances in this domain have appeared recently and should be 

considered by interested readers (Zamboni et al., 2015; Patti et al., 2012; Bain et al., 2009; 

Buescher et al., 2015; Alves et al, 2015). Instead, this piece attempts to review the 

application of metabolomics to prominent metabolic diseases and conditions, particularly 

obesity, diabetes, and cardiovascular diseases, from the perspective of the physiologist/

physician/biologist, rather than from that of the analytical biochemist/technologist. In that 

context, the piece seeks to answer a specific question—In the past 15 years, what has 
metabolomics contributed to our understanding of complex cardiometabolic diseases, 
either in terms of our ability to detect and diagnose these conditions, or via new insights 
into disease mechanisms?

Understanding Metabolic Diseases--Why Metabolomics?

Modern human society is encumbered with a pandemic of chronic diseases and conditions in 

which metabolic dysregulation plays a key role in pathogenesis and progression, including 

obesity, diabetes, and cardiovascular disease. Increasingly, dysregulated metabolism is also 

being recognized as a major contributor to diseases not traditionally considered as 

“metabolic” in origin, such as cancer, cognitive disorders, and respiratory pathologies. The 

successful sequencing of the human genome seemed to herald a new age of personalized 

medicine, in which genomic variation would be used to predict the impact of specific 

therapeutic interventions, leading to optimal management of disease in a given individual. 

However, many of our most prevalent chronic diseases are polygenic, including diabetes and 

cardiovascular diseases, and approaches such as genome-wide association studies (GWAS) 

have thus far explained only a small fraction of these diseases and made modest 

contributions to mechanism-based intervention strategies (O’Rahilly, 2009; Newgard and 

Attie, 2010). Moreover, better methods must be developed to probe the interaction of 

genetics with environmental factors such as diet, the gut microbiome, and physical activity.

Comprehensive metabolite profiling, or “metabolomics” defines the chemical phenotype of 

human subjects and animal models, and as such has unique potential for defining biomarkers 

that predict disease incidence, severity, and progression, and for casting new light on 

underlying mechanistic abnormalities. Advantages of metabolomics relative to other 

“omics” technologies include: 1) Humans have been estimated to contain about 6500 
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discrete small molecule metabolites (Wishart et al., 2013), although new and more sensitive 

measurement technologies are gradually revealing a larger number of chemical species over 

time (Zamboni et al., 2015). Nevertheless the number of metabolites is likely to remain 

smaller than the estimated 25,000 genes, 100,000 transcripts, and 1,000,000 proteins found 

in humans; 2) Metabolomics measures chemical phenotypes that are downstream from 

genomic, transcriptomic, and proteomic variability, thus providing a highly integrated profile 

of biological status; 3) Metabolomics also serves as a precise and non-invasive tool to 

discern mechanisms of action and possible toxicological effects of drug therapies, and to 

separate contributions of genetics, microbiome activity, and nutrition on overall metabolic 

phenotypes.

Metabolomics reveals associations of metabolites with cardiometabolic 

diseases and predicts disease and intervention outcomes

Metabolomics applied to type 2 diabetes

The association between cardiometabolic diseases and certain lipid metabolites commonly 

measured in clinical chemistry laboratories, including triglycerides, cholesterol, and total 

non-esterified fatty acids (NEFA), has long been recognized, leading some to conclude that 

cardiometabolic diseases are driven by perturbed lipid homeostasis. Application of 

metabolomics has led to a broader appreciation of metabolites that associate with these 

maladies, and in some cases that predict intervention outcomes and/or future disease 

development.

As one example, targeted metabolomics has identified a signature of dysregulated 

metabolism of branched-chain amino acids (BCAA) in subjects with various forms of 

cardiometabolic disease. The finding first emerged in a study of obese, insulin resistant 

compared to lean, insulin sensitive subjects (Newgard et al., 2009). Principal components 

analysis (PCA) performed on data sets comprised of plasma and urine amino acids, 

acylcarnitines, organic acids, and fatty acids identified a cluster of metabolites comprised of 

BCAA, aromatic amino acids (Phe, Tyr), Glu/Gln, Met, and C3 and C5 acylcarnitines that 

strongly associated with insulin resistance as measured by the HOMA-IR score. In one 

sense, this finding was simply a re-discovery, given that association of BCAA and aromatic 

amino acids with obesity and insulin resistance was reported 40 years earlier by Felig, 

Marliss and Cahill (Felig et al., 1969). However, the broader spectrum of analytes measured 

with metabolomics afforded two new insights: 1) The association of the BCAA-related 

metabolite cluster with insulin resistance was stronger than observed for several lipid-related 

clusters, including one principal component comprised of fatty acids and ketones, and 

another comprised of medium-chain acylcarnitines derived from fatty acid oxidation 

(Newgard et al., 2009); 2) The clustering of glutamate/glutamine, C3 and C5 acylcarnitines 

with BCAA defined a signature comprising metabolites generated during BCAA catabolism, 

suggesting fundamental alteration of BCAA metabolism in insulin resistant states. 

Glutamate is produced in the first step of BCAA catabolism, the transamination reaction 

catalyzed by branched chain aminotransferase (BCAT), whereas C3 and C5 acylcarnitines 

are derived from three carbon and five carbon acyl CoA intermediates produced by 

mitochondrial metabolism of the carbon skeletons of BCAA (Figure 1). In addition to the 
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positive association between BCAA, aromatic amino acids, and insulin resistance, glycine 

was found to have a strong negative association with insulin resistance when measured as 

HOMA score (Newgard et al., 2009), or by hyperinsulinemic/euglycemic clamp (Thalacker-

Mercer et al., 2014).

The strong association of the BCAA-related metabolite cluster with insulin resistance was 

confirmed in multiple studies, including a cross-sectional study of subjects with metabolic 

syndrome and varying BMI (Huffman et al., 2009), a study in Chinese and Asian-Indian 

subjects residing in Singapore in which BMI was controlled (average BMI of 24) (Tai et al., 

2010), a study on subjects at extremes of insulin sensitivity in the Insulin Resistance 

Atherosclerosis Study (IRAS) (Palmer et al., 2015), and in studies of the effects of combined 

aerobic and resistance training in insulin resistant subjects (Glynn et al., 2015). In all of 

these studies, the BCAA-related factor was more correlated with insulin resistance than any 

lipid-related factor. Also, IRAS cohort subjects that converted from prediabetes to diabetes 

during follow-up experienced an increase in BCAA and a drop in glycine across this 

transition (Palmer et al., 2015). Importantly, these findings have been confirmed via 

application of metabolomics to large cross-sectional cohorts. Thus, in 7098 young Finns 

(mean age 31 years), nuclear magnetic resonance (NMR) spectroscopy was used to profile 

39 circulating metabolites and lipids, with the findings of highly significant correlations 

between BCAA, aromatic amino acids, ketones, and fatty acid composition and saturation 

with insulin resistance measured by HOMA-IR (p < 0.0005 for 20 metabolites) (Wurtz et al., 

2012). Similarly, metabolomics profiling of 447 metabolites in 2204 female subjects in the 

TwinsUK cohort found a strong association of BCAA and their metabolites with type 2 

diabetes and impaired fasting glucose levels (Menni et al., 2013). Several groups have also 

shown that BCAA and related metabolites are associated with coronary artery disease 

(CAD), even when controlled for diabetes (Shah, et al., 2010; Magnusson et al., 2013; 

Bhattacharya et al., 2014).

Targeted and non-targeted metabolomics studies have also revealed that BCAA and their 

metabolites are prognostic for incident type 2 diabetes and obesity interventions outcomes. 

Thus, elevated plasma levels of Leu, Ile, Val, Phe and Tyr were associated with up to a 5-

fold risk for future development of type 2 diabetes in the Framingham Heart and Malmo 

Diet and Cancer study cohorts (Wang et al., 2011). Analysis in the Framingham cohort 

compared 189 subjects that developed type 2 diabetes over the course of follow-up versus 

189 matched controls that were diabetes free. Furthermore, targeted metabolomics was 

performed on baseline blood samples taken from 500 subjects in the weight loss 

maintenance (WLM) trial prior to a six-month behavioral/dietary (DASH diet) intervention. 

At baseline, the factor score for a BCAA-related principal component very similar to that 

associated with insulin resistance strongly predicted improved insulin sensitivity, whereas 

lipid-related factors or the amount of weight lost had little or no predictive association (Shah 

et al., 2012). Thereafter, NMR profiling of 1680 subjects from the Cardiovascular Risk in 

Young Finns study identified a strong association of the three BCAA, Tyr and Phe with 

development of insulin resistance over a 6-year follow up period (Wurtz et al., 2013). This 

association was most pronounced in men. Finally, a recent study confirms a strong 

association between BCAA, Tyr and Phe with insulin resistance in 429 Chinese subjects, 
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and a close association with these metabolites with future development of diabetes (Chen et 

al., 2016).

Another means of aligning metabolomics markers with disease is to study their pattern of 

response to efficacious disease interventions. As an example, obese subjects with type 2 

diabetes undergoing gastric bypass (GBP) surgery have a much more dramatic decline in 

circulating BCAA, C3 and C5 acylcarnitines, Phe, and Tyr than found in response to dietary 

intervention, despite equal weight loss (Laferrère et al., 2011). In another study, a similar 

large drop in BCAA and related metabolites was observed in gastric bypass and gastric 

sleeve forms of surgical intervention (Magkos et al., 2013). These findings are significant 

because the surgical methods induce more dramatic improvements in glucose homeostasis 

than life style interventions (Laferrère et al., 2011; Clifton, 2010). In aggregate, work from 
recent years has established that BCAA and related metabolites are associated with 
insulin resistance, diabetes, and CAD, that they are predictive of diabetes development, 
that they are predictive of intervention outcomes, and that they are highly and uniquely 
responsive to therapeutic interventions.

Interestingly, these findings may not extend to all medical therapies. Thus, treatment of 30 

insulin sensitive and 30 insulin resistant subjects with a single dose of the sulfonylurea drug, 

glibizide, which lowers blood glucose by stimulating insulin secretion, effectively lowered 

BCAA and aromatic amino acid levels in insulin sensitive, but not insulin resistant subjects 

(Walford et al., 2013). In contrast, upon treatment of the same subjects with the insulin 

sensitizing drug metformin (two days of twice-daily injections), lowering of glucose and 

insulin and an increase in the levels of BCAA and aromatic amino acids occurred only in 

insulin resistant subjects. Further studies of longer duration will be required to fully 

understand the impact of various diabetes therapies on metabolomics profiles.

More recently, application of non-targeted metabolomics has expanded the range of 

metabolites that predict risk of future diabetes to include other amino acids, their 

metabolites, and lipids. For example, comprehensive lipidomic profiling of the same 189 

diabetic and 189 non-diabetic subjects from the Framingham cohort previously subjected to 

LC-MS/MS-based metabolomics profiling revealed that higher diabetes risk is associated 

with triacylglyerols (TG) that contain fatty acids of lower carbon number and double bond 

content, whereas subjects with TG containing fatty acids with higher carbon number and 

double bonds had lower diabetes risk (Rhee et al., 2011). In addition, application of more 

comprehensive LC-MS/MS profiling to these subjects identified 2-aminoadipic acid (2-

AAA) as a metabolite strongly correlated with incident T2D, with subjects in the top quartile 

for this metabolite having a >4-fold increase in risk of disease (Wang et al., 2013). 2-AAA is 

thought to be derived from lysine catabolism, but surprisingly, 2-AAA levels were not 

associated with BCAA or aromatic amino acids in this study, suggesting that this marker 

reports on an independent disease risk mechanism. Finally, application of a combined 

GC/MS and LC-MS/MS nontargeted metabolomics approach to plasma samples from 399 

subjects from the Relationship of Insulin Sensitivity to Cardiovascular Risk (RISC) study 

confirmed that BCAA were among the positively associated and glycine among the 

negatively associated metabolites with insulin resistance measured by hyperinsulinemic 

clamp (Gall et al., 2010). However, other metabolites, most notably α– hydroxybutyrate, 
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linoleoyl-glycerophosphocholine, and oleic acid, were more strongly associated with the 

insulin resistant state compared to BCAA or glycine, and furthermore were selectively 

correlated with impaired glucose tolerance across multiple cohorts (Gall et al., 2010; Cobb 

et al., 2016).

Metabolomics applied to Gestational Diabetes and Offspring Outcomes

All of the studies discussed above were performed in adult humans, but metabolomics has 

also recently been applied to pediatric populations to search for markers of early stage 

insulin resistance and prediction of future diabetes, and also to pregnant women in search of 

biomarkers that assess risk of conversion from gestational diabetes to type 2 diabetes, and 

that may predict outcomes in offspring. Findings in pediatric cohorts have been inconsistent 

(Frohnert and Rewers, 2016). Thus, two studies showed a positive correlation between 

BCAA, BMI and HOMA-IR (Newbern et al., 2014; Perng et al., 2014), and another an 

association with obesity (McCormack et al., 2013), but still others found no significant 

differences in BCAA levels in normal weight compared to obese adolescents (Wahl et al., 

2012), and even a positive correlation between BCAA/BCAA metabolites and insulin 

sensitivity (Si) (Michaliszyn, et al., 2012). However, in a group of 17 pre- or early-pubertal 

children (age 8–13 years), baseline BCAA levels were found to be associated with HOMA-

IR measured 18 months later, suggesting that, as in adults, BCAA levels may be predictive 

of future disease risk in adolescent subjects (McCormack et al., 2013). More work with 

larger cohorts of adolescent subjects is needed, and it remains possible that biomarkers other 

than BCAA and related metabolites will have stronger associations with pediatric insulin 

resistance and type 2 diabetes.

Studies linking maternal metabolic status to offspring outcomes are just beginning to 

emerge. One study found positive associations of maternal triglycerides, leucine/isoleucine, 

ketone and lactate levels and negative association of glycine levels with various measures of 

offspring body weight, although these were attenuated when corrected for glycemic status of 

the mothers (Scholtens et al., 2013). In another study, children of obese mothers were shown 

to have higher BCAA levels than those of lean mothers (Perng et al., 2014). Importantly, 

maternal metabolomics profiling provided an improved ability to predict newborn size 

outcomes beyond traditional risk factors, including maternal glucose (Scholtens et al., 2016). 

Future studies conducted over longer periods of follow up should shed further light on the 

relationship of maternal metabolic status to that of their offspring.

The use of metabolomics to predict the transition from gestational diabetes (GDM) to full-

blown type 2 diabetes (which occurs in approximately 30% of GDM cases) is more 

immediately promising. A recent study used a plate assay technology to measure 163 

metabolites, and complemented this with direct amino acid analysis by LC-MS/MS and fatty 

acid analysis by GC/MS. These methods were used to compare 122 incident cases of type 2 

diabetes with 122 non-cases of incident T2D matched by age, BMI and race/ethnicity from a 

cohort of 1035 pregnant women with GDM. Remarkably, metabolites significantly elevated 

in women with incident T2D included all three BCAA, Tyr, and 2-AAA, whereas glycine 

was negatively associated with diabetes risk (Allalou et al., 2016). Interestingly, multiple 

fatty acids were decreased in the subjects destined for incident diabetes as well. In contrast, 
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metabolomic profiling of 96 women with GDM versus 96 women matched by age, BMI and 

gravidity with normal glucose tolerance found 6 metabolites to be different between the 

groups, anthranilic acid, alanine, glutamate, creatinine, allantoin and serine, but no 

differences in BCAA, aromatic amino acids, or glycine (Bentley-Lewis et al., 2015). 

Similarly, few metabolites associated with fasting plasma glucose levels in 400 pregnant 

women of European descent from the Hyperglycemia and Adverse Pregnancy Outcome 

(HAPO) cohort (Scholtens et al., 2013). However, many more metabolites were associated 

with glucose levels at the one-hour time point of an oral glucose tolerance test in these 

subjects, including positive associations with leucine/isoleucine, glutamate/glutamine, 

phenylalanine, α-hydroxybutryate, and multiple acylcarnitines and fatty acids. Finally, a 

recent study comparing a cohort of GDM and normoglycemic mothers using a combined 

LC-MS and GC-MS approach revealed a striking (7-fold) increase in a furan fatty acid 

metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in the GDM 

subjects (Prentice et al., 2014; Retnakaran et al., 2016). Furthermore, CMPF levels were 

even higher in a subset of GDM subjects that progressed to type 2 diabetes, and were 

elevated in separate analysis of subjects with type 2 diabetes compared to non-diabetic 

subjects (Prentice et al., 2014). Evidence for the involvement of CMPF in diabetes 

pathogenesis is discussed later in this article.

Metabolomics Applied to Prediction of Cardiovascular Events

Metabolomics has also been applied to predict incident cardiovascular events (Shah et al., 

2012a). A principal component factor comprised of short to medium chain dicarboxylated 

acylcarnitines (DC-AC, including C4-DC, C5-DC, and C6-DC) predicted incident death/MI 

within 2 years in patients referred for diagnostic catheterization in the CATHGEN study, a 

finding confirmed in a validation cohort (Shah et al., 2010). These findings were expanded 

via a cross-sectional survey of 2023 subjects from the CATHGEN biorepository, 

demonstrating association of death/MI with a DC-AC factor (p = 0.005) essentially identical 

to the predictive signature from the case-control study (Shah et al., 2012b). In addition, 

studies of 478 CATHGEN subjects who underwent coronary artery bypass grafting (CABG) 

revealed that the same short-chain DC-AC principal component was associated with adverse 

outcome in univariate analysis (P=0.002), and remained independently predictive of adverse 

outcomes in multivariable time-to-event analysis (P<0.001) (Shah et al., 2012c). In a follow-

up study, integrated omics analysis including metabolomics, GWAS, transcriptomics and 

epigenetics in the CATHGEN cohort found that the DC-AC diagnostic signature maps with 

high significance to several SNPs associated with genes involved in ER stress and the 

protein unfolding response (Kraus et al., 2015). Those SNPs in turn are independently 

associated with CVD events in time-to-event analysis. Transcriptomic and epigenetic 

profiling in the same subjects also identified associations between ER stress genes and the 

DC-AC cluster (Kraus et al., 2015).

Metabolomics has also been used to reveal a link between the diet, the gut microbiome, host 

metabolism, and biomarkers of incident CVD events (Wang et al., 2011). Using a non-

targeted LC-MS approach, 18 analytes were found to be associated with cardiovascular 

events, including 3 involved in choline metabolism--choline, betaine, and trimethylamine N-

oxide (TMAO). Nutrients such as phosphatidylcholine, carnitine, and choline are 
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metabolized by gut bacteria to generate trimethylamine (TMA). TMA is absorbed and 

carried by the portal circulation to the liver, where it is metabolized to TMAO by hepatic 

flavin monooxygenases. Several large studies have confirmed a link between TMAO and 

cardiovascular events, and cause and effect relationships between TMAO and cardiovascular 

diseases is emerging, as discussed below.

Metabolomics applied to fatty liver and NASH

Overstorage of fat in the liver leads to the clinical syndrome of non-alcoholic fatty liver 

disease (NAFLD), which if left untreated develops an inflammatory component and evolves 

to non-alcoholic steatohepatitis (NASH). This in turn can progress to more advanced forms 

of liver disease, including cirrhosis and hepatocellular carcinoma (Lallukka and Yki-

Jarvinen, 2016). In the United States, approximately 30% of adults have NAFLD, and 

approximately 4% have NASH, but this varies across ethnic groups. The incidence of 

NAFLD is highest among Mexican-Americans (estimated at 45%), intermediate in 

European-Americans, and lowest in African-Americans (24%) (Sherif et al., 2016). 

Important insight into this imbalance in incidence across ethnic groups emerged with the 

identification of a variant allele (I148M) of the gene encoding patatin-like phospholipase A3 

(PNPLA3) strongly associated with liver fat and highly prevalent in Hispanic individuals 

within a multi-ethnic cohort of subjects in the Dallas Heart Study (Romeo et al., 2008). The 

exact biological function of PNPLA3 remains unknown, but the recombinant I148M 

PNPLA3 variant protein has hydrolytic activity against various esterified lipids (Huang et 

al., 2011), and exhibits enhanced propensity for association with lipid droplets (Smagris et 

al., 2015). Remarkably, recent evidence suggests that subjects with NAFLD induced by the 

PNPLA3 mutation are relatively protected against insulin resistance and type 2 diabetes 

whereas NAFLD that develops independent of PNPLA3 mutations (“metabolic NAFLD”) is 

strongly predictive of future diabetes risk (Lallukka and Yki-Jarvinen, 2016; Luukkonen et 

al., 2016). To investigate this further, comprehensive lipidomics analysis was performed on 

subjects with NAFLD with and without the PNPLA3 mutation (Luukkonen et al., 2016). 

The severity of steatosis was associated with insulin resistance as measured by HOMA-IR in 

subjects with the “normal” PNPLA3 allele, but no such relationship was found in subjects 

with the I148M PNPLA3 mutation. Remarkably, metabolic NAFLD with insulin resistance 

was associated with preferential storage of saturated fats and ceramides in liver, whereas the 

PNPLA3 NAFLD group had lower levels of these lipids and increased levels of 

polyunsaturated fats (Luukkonen et al., 2016). Obviously, there is huge opportunity 

imbedded in understanding how lipid composition of excess liver fat influences systemic 

glucose homeostasis and insulin action (and vice-versa), and this is likely to be an intensive 

area of investigation in the coming years.

New metabolic regulatory and pathophysiologic mechanisms emerging 

from metabolomics studies

New insights into mechanisms of insulin resistance

Whereas the potential utility of metabolomics in the realm of disease prediction should be 

apparent from the foregoing summary, perhaps the most exciting windfall that has emerged 
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from application of this technology is the blueprint that it provides for defining new 

physiologic and pathophysiologic mechanisms. As an early example, targeted metabolomics 

was used to show increases in a broad array of fatty acid-derived acylcarnitines, and a 

concurrent decrease in TCA cycle intermediates in skeletal muscle of obese rodents (An et 

al., 2004; Koves et al., 2005; Koves et al., 2008). Genetic obesity or high fat feeding results 

in upregulation of enzymes of fatty acid beta-oxidation, but in sedentary animals, this occurs 

absent a concurrent increase in enzymes of the TCA cycle and electron transport chain. This 

“disconnect” between the β-oxidation pathway and the terminal oxidative machinery results 

in incomplete fatty acid oxidation, leading to accumulation of mitochondrial-derived acyl 

CoA and acylcarnitine metabolites. The potential pathophysiologic relevance of this finding 

was demonstrated in two studies in mice lacking expression of malonyl CoA decarboxylase 

or carnitine acetyltransferase (CrAT). In the former case, increases in levels of malonyl CoA, 

an allosteric inhibitor of carnitine palmitoyltransferase-1 (CPT-1), resulted in reduced flux of 

fatty acids through the β-oxidative pathway and a decrease in muscle acylcarnitine levels in 

diet-induced obesity, accompanied by improved glucose tolerance (Koves et al., 2008). In 

the latter case, knockout of CrAT, which catalyzes conversion of short chain acyl CoAs to 

membrane permeant acylcarnitines, resulted in accumulation of incompletely oxidized acyl 

CoA metabolites, exacerbating glucose intolerance and insulin resistance (Muoio et al., 

2012).

Significant effort has also been applied to investigation of the strong association of BCAA 

and related metabolites with metabolic diseases, and evidence for a role of BCAA in disease 

pathogenesis has started to emerge. Thus, rats fed a high-fat (HF) diet supplemented with 

BCAA develop insulin resistance despite eating less food and gaining less weight than rats 

fed HF diet alone (Newgard et al., 2009). In contrast, rats pair-fed on HF diet to match the 

caloric intake of the HF/BCAA group do not become insulin resistant. Targeted 

metabolomics revealed that the HF/BCAA group exhibited accumulation of a broad 

spectrum of acylcarnitines, to the same extent as observed in heavier HF-fed animals 

(Newgard et al., 2009). These findings are consistent with a model in which excess BCAA 

contribute to impaired efficiency of fatty acid oxidation, resulting in accumulation of 

incompletely oxidized lipid species (Newgard, 2012).

Conversely, feeding obese rodents with a BCAA restricted diet improves insulin sensitivity 

(White et al., 2016; Fontana et al., 2016), and possible mechanisms to explain this finding 

are emerging. In studies comparing Zucker obese rats fed a standard chow diet or an 

isonitrogenous diet in which BCAA content was lowered by 45%, feeding of the BCAA 

restricted diet resulted in improved whole-animal insulin sensitivity as measured by 

hyperinsulinemic/euglycemic clamp, as well as enhanced muscle glucose uptake and 

glycogen synthesis (White et al., 2016). This improvement in glucose metabolism was 

accompanied by normalization of multiple short and medium-chain acyl CoA species in 

skeletal muscle. In addition, muscle glycine levels are dramatically reduced in Zucker-obese 

compared to Zucker-lean rats, but are completely normalized in Zucker-obese rats by 

feeding of the BCAA-restricted diet, providing the first evidence of a direct connection 

between BCAA supply and glycine levels, helping to explain the consistent observation of 

high BCAA levels and low glycine levels in epidemiological studies. The restoration of the 

muscle glycine pool is accompanied by increased excretion of acetylglycine in the urine, 
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suggesting that formation of acylglycine adducts may constitute a means by which BCAA 

restriction lowers muscle acyl CoA levels and restores muscle insulin sensitivity. Consistent 

with this, BCAA restriction lowers the respiratory exchange ratio in Zucker-obese rats, 

indicative of enhanced efficiency of fatty acid oxidation. These findings are aligned with a 

model wherein elevated circulating BCAA contribute to development of obesity-related 

insulin resistance by interfering with lipid oxidation in skeletal muscle (Figure 1). BCAA-

dependent depletion of the skeletal muscle glycine pool may contribute to this effect by 

slowing acyl-glycine export to the urine (White et al., 2016). Interestingly, protein restricted 

diets have recently been shown to increase circulating levels of FGF21, a hormone that 

increases lipid oxidation and improves glucose homeostasis (Laeger et al., 2014). However, 

induction of FGF21 does not seem to mediate the salutory effects of BCAA restriction on 

metabolic state, as FGF21 levels increase in response to generalized protein restriction, but 

not in response to specific restriction of BCAA (Fontana et al., 2016).

Two new amino acid-related mechanisms for regulation of metabolic homeostasis have 

recently emerged via application of metabolomics to rodent models of transgenic 

overexpression of the transcriptional co-regulator PGC-1α. PGC-1α overexpression in 

skeletal muscle mimics the effects of exercise by inducing browning of white adipose tissue. 

Profiling of media from cultured muscle cells by LC-MS identified 4 metabolites that were 

significantly increased by forced overexpression of PGC-1α, including β-aminoisobutyric 

acid (BAIBA), which is derived from valine metabolism (Roberts et al., 2014). BAIBA 

increases expression of PPARα in white adipose and liver, induces thermogenic genes in 

adipose tissue, and activates fatty acid oxidation in hepatocytes. Administration of BAIBA to 

mice limits weight gain, enhances glucose tolerance, and induces browning of white fat. 

Exercise increases circulating BAIBA concentrations in rodents and humans, and it is 

proposed that BAIBA represents an endocrine factor that modifies liver and adipose 

metabolism in response to physical activity (Roberts et al., 2014). More recently, a different 

valine metabolite, 3-hydroxyisobutryate (3-HIB), was reported to be induced by PGC-1α 
overexpression and shown to function as an activator of trans-endothelial fatty acid transport 

(Jang et al., 2016). Like the BCAA, 3-HIB levels were found to be elevated in db/db mice 

and in humans with type 2 diabetes, and administration of 3-HIB to rodents resulted in lipid 

accumulation in muscle and development of insulin resistance. Adding complexity, 

sedentary mice with muscle specific overexpression of PGC-1α fed on a high fat diet 

actually have impaired glucose tolerance relative to non-transgenic littermates (Choi et al., 

2008), and mice of the two genotypes exhibit similar improvements in body weights and 

glucose control in response to a combined caloric restriction/exercise intervention (Wong et 

al., 2015). Targeted metabolomic profiling of muscles and plasma from these latter animals 

identified a principal component comprised of increased levels of ceramides, medium-chain 

acylcarnitines, and Val, Met, His, and ornithine, and decreased levels of the TCA cycle 

intermediates malate, fumarate and succinate that correlated with changes in energy balance, 

muscle insulin sensitivity and glucose tolerance. BAIBA or 3-HIB were not measured in 

these studies.

How to reconcile these seemingly disparate findings? One unifying model requires that the 

regulatory significance of BAIBA or 3-HIB is different dependent on nutritional status (see 
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Figure 1). Thus, in lean animals or humans, 3-HIB may act as a paracrine factor to increase 

fatty acid uptake by muscle during exercise, and BAIBA may function to mobilize and 

oxidize lipids as needed to support the increase in physical activity. By inducing valine 

catabolism, exercise increases the concentration of both mediators to engage these healthful 

effects. In contrast, whereas BAIBA levels are negatively correlated with fasting glucose, 

HOMA-IR, and circulating triglycerides and cholesterol in the Framingham cohort (Roberts 

et al., 2014), 3-HIB levels are positively correlated with blood glucose in a cohort of diabetic 

and normal subjects (Jang et al., 2016). Does this suggest that elevated BCAA in sedentary 

and metabolically unhealthy subjects are preferentially metabolized to yield 3-HIB rather 

than BAIBA, and that the consequence of this in a mileu of elevated lipids is to promote 

lipid overstorage and impair insulin action in muscle? Further studies will be required to 

investigate this issue and others related to these fascinating new mechanisms.

Serving as an important framework for these findings are recent discoveries relating to the 

mechanisms that cause BCAA and related metabolites to increase in the obese condition. 

BCAA catabolism is regulated at several early steps, including transport of BCAA into cells 

through the large neutral amino acid transporter LAT-1, transamination catalyzed by 

branched-chain aminotransferase (BCAT), and conversion of branched chain keto acids to 

acyl CoAs by the branched chain ketoacid dehydrogenase (BCKDH) complex. BCKDH is a 

multi-subunit enzyme complex of a design and subunit composition similar to that of the 

pyruvate dehydrogenase (PDH) complex. Like PDH, BCKDH activity is regulated by 

phosphorylation and dephosphorylation catalyzed by specific kinase (branched-chain 

ketoacid dehydrogenase kinase, BDK) and phosphatase (PPM1K) enzymes. Obesity has 

complex effects on regulation of BCAA catabolism that vary across key metabolic tissues 

and organs. In adipose tissue, obesity causes concerted suppression of all of the enzymes in 

the catabolic pathway at the transcriptional level (She et al., 2007; Herman et al., 2010; 

Hsaio et al., 2011). This mechanism does not seem to be active in liver, where instead 

hepatic BCAA catabolism is suppressed by increased inhibitory phosphorylation of 

BCKDH, secondary to increased expression of BDK and decreased expression of PPM1K 

(She et al., 2007). Remarkably, neither of these mechanisms appear to be operative in 

skeletal muscle (She et al., 2007) and BCKDH activity is actually increased in muscle of 

Zucker-obese compared to Zucker-lean rats (White et al., 2016). This differential regulation 

may contribute to mitochondrial substrate overload in skeletal muscle in obese animals by 

several mechanisms, including elevations in circulating BCAA due to reduced utilization by 

liver and adipose tissue, generation of anaplerotic substrates from BCAA catabolism in 

muscle that “fill up” the TCA cycle and make it more difficult for fatty acids to be 

completely oxidized (Newgard, 2012; White et al., 2016) and 3-HIB-stimulated trans-

endothelial lipid transport (Jang et al., 2016). Interestingly, 2-AAA, a lysine-derived 

metabolite strongly associated with risk of type 2 diabetes discussed earlier (Wang et al., 

2013), is also metabolized by an enzyme complex that resembles PDH and BCKDH known 

as α-ketoadipate dehydrogenase. Little is known about the regulation of this enzyme 

complex, but its similarity to PDH and BCKDH suggests that it may be downregulated in 

obesity, thereby contributing to the accumulation of its substrate, 2-AAA.

Another factor that may contribute to accumulation of BCAA in obesity is the gut 

microbiome. BCAA are “essential” amino acids, in the sense that humans are unable to 
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synthesize them de novo, and it had been assumed that they are primarily obtained from the 

diet, particularly meat and dairy products in which they are enriched. However, some gut 

bacteria are able to synthesize BCAA from the simple organic acid precursors pyruvate and 

ketobutyrate. Transcriptomic analysis of microbiota from human twins discordant for 

obesity revealed induction of the entire de novo pathway for BCAA synthesis in the 

microbiota of obese compared to lean twins (Ridaura et al., 2013). Induction of this pathway 

correlated with increased production of BCAA by the microbiota of obese subjects, and their 

transplantation into germ free mice caused a significant increase in circulating levels of 

BCAA and related metabolites in host animals. Remarkably, just two weeks after transplant, 

mice colonized with microbiota from obese subjects were glucose intolerant and exhibited a 

marked increase in levels of a broad spectrum of short chain, medium chain, and long chain 

acylcarnitines in skeletal muscle compared to animals that received microbiota from lean 

twins (Ridaura et al., 2013). More recently, another group has extended these observations 

by performing metabolomics and microbiome profiling in 277 non-diabetic subjects, and 

inclusion of 75 subjects with type 2 diabetes for comparative analysis (Pedersen et al., 

2016). A strong correlation between BCAA levels and insulin resistance was confirmed in 

this study, and the specific bacterial species P. copri and B. vulgatus were identified as those 

primarily responsible for driving BCAA biosynthesis in insulin resistant subjects. Indeed, 

transplantation of P. copri into germ free mice raised circulating levels of BCAA and caused 

insulin resistance and glucose intolerance. Taken together, these studies suggest that in 

addition to regulation of energy balance and adiposity, the gut microbiome can have a 

substantive impact on metabolic homeostasis that contributes to disease pathogenesis. 

Further studies will be required to delineate the relative contributions of genetics, diet, gut 

microbiome, and selective suppression of BCAA catabolism in host tissues to the observed 

increases in BCAA and related metabolites in obese and insulin resistant subjects.

Metabolomics Applied to Pancreatic Islet Biology

Metabolomics has also been used to study pancreatic islet biology, including mechanisms 

leading to development of β-cell dysfunction in diabetes. In one set of studies involving rat 

insulinoma (INS-1) derived cell lines with different capacities for glucose-stimulated insulin 

secretion (GSIS), application of NMR-based mass isotopomer analysis was used to calculate 

relative flux rates of pyruvate through the oxidative enzyme PDH and the anaplerotic 

enzyme pyruvate carboxylase (PC). The studies showed that variable GSIS across the panel 

of INS-1-derived cell lines and in islets is tightly correlated to pyruvate anaplerosis and 

cycling activity rather than pyruvate oxidation (Lu et al., 2002; Alves et al., 2015). The 

significance of this finding is that anaplerotic metabolism of pyruvate through PC can 

produce excess TCA cycle intermediates that exit the mitochondria to engage with cytosolic 

enzymes. Indeed, surprisingly, flux through PC-catalyzed anaplerosis is more active in 

glucose-stimulated primary islet cells than flux through the oxidative enzyme PDH (Schuit 

et al., 1997). Systematic study of several possible “pyruvate cycling” pathways implicated 

the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc or IDH1) as a key extra-

mitochondrial step, based on studies in which knockdown of the citrate/isocitrate carrier 

(responsible for export of citrate and isocitrate from the mitochondria) or IDH1 resulted in 

significant impairment of GSIS (Jensen et al., 2008; Joseph et al., 2006; Ronnebaum et al., 

2006). The IDH1 reaction appears to play two key roles in mediating insulin release by 
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producing NADPH needed for the glutathione reductase reaction (Ferdaoussi et al., 2015; 

Ivarsson, et al., 2005), and generating α-ketoglutarate that can be transaminated to 

glutamate, a building block of glutathione (Figure 2). These pathways help maintain a robust 

pool of reduced glutathione (GSH), that in turn drives reduction of the desumoylation 

enzyme SENP1, thereby triggering insulin granule exocytosis via desumoylation of 

secretory granule proteins (Ferdaoussi et al., 2015). Intermediates in this pathway, including 

isocitrate, NADPH and GSH (but not NADH or α-ketoglutarate) induce exocytosis in patch 

clamped rodent and human β-cells (Ferdaoussi et al., 2015; Ivarsson et al., 2005), an effect 

that is lost in mouse islets lacking expression of SENP1 or in human islets with shRNA-

mediated suppression of SENP1 expression (Ferdaoussi et al., 2015). Importantly, isocitrate 

and NAPDH rescue exocytosis in glucose unresponsive β-cells from humans with type 2 

diabetes (Ferdaoussi et al., 2015).

Metabolomics was also used to demonstrate glucose-induced changes in an array of purine 

and nucleotide pathway intermediates in islet cells, although the functional relevance of 

these findings was not initially defined (Huang and Joseph, 2014; Lorenz et al., 2013; Spegel 

et al., 2013; El-Azzouny et al., 2014). To investigate this further, a targeted, quantitative LC-

MS/MS method was developed and used to demonstrate a robust decrease in inosine 

monophosphate (IMP), and an equally striking increase in adenylosuccinate (SAMP) in 

glucose-stimulated 832/13 cells (Gooding et al., 2015). IMP is converted to S-AMP by 

adenylosuccinate synthase (ADSS), suggesting that this enzyme could play a regulatory role 

in β-cell glucose sensing (Figure 2). Indeed, pharmacologic or molecular suppression of 

ADSS caused impairment of GSIS with an attendant decrease in S-AMP, effects that could 

be overcome by addition of adenine. Moreover, siRNA-mediated suppression of ADSL, a 

more proximal enzyme in the S-AMP biosynthetic pathway, impaired GSIS and lowered S-

AMP levels, independent of decreases in other adenine nucleotides or GTP. Infusion of S-

AMP into patch-clamped β-cells from non-diabetic humans revealed that it is equipotent to 

glucose for stimulation of exocytosis. Moreover, similar to intermediates in the 

isocitrate/GSH pathway, S-AMP rescued exocytosis in glucose-unresponsive β-cells from 

humans with type 2 diabetes. Finally, the stimulatory effect of S-AMP on exocytosis in 

patch-clamped human β-cells is impaired by shRNA-mediated suppression of SENP1 

(Gooding et al., 2015).

The new pyruvate/isocitrate/GHS and S-AMP pathways of GSIS are viewed as 

complementary to the classical initiating pathway, involving inhibition of ATP-sensitive K 

channels (KATP channels), membrane depolarization and activation of voltage-gated Ca2+ 

channels (Henquin et al., 2003) (Figure 2). It remains to be determined if the newly 

described pathways are additive or synergistic with each other and/or with the KATP 

channel-dependent pathway in control of GSIS. The source of NADPH for reducing GSH 

also remains to be defined. Suggesting a role for the pentose monophosphate shunt, it has 

been reported that inhibition of the first enzyme in the pathway, glucose-6-phosphate 

dehydrogenase (G6PDH) by dehydroepiandrosterone (DHEA) (Spegel et al., 2013), or the 

second enzyme in the pathway, 6-phosphogluconate dehydrogenase (6PGDH) by siRNA or 

the chemical inhibitor 6-AN (Goehring et al., 2011), results in impaired GSIS. The effects of 

6PGDH inhibition were ascribed to accumulation of early PPP intermediates and activation 

of p-ERK (Goehring et al., 2011), whereas DHEA treatment caused a decrease in GSH 

Newgard Page 13

Cell Metab. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



levels, although effects on NADPH were not reported (Spegel et al., 2013). These findings 

are not consistent with other work showing that shRNA-mediated suppression of IDH1 is 

sufficient to ablate the glucose-induced increment in GSH and GSH:GSSG ratio in islet cells 

(Ferdaoussi et al., 2015). In addition, the finding that S-AMP has a direct effect to activate 

exocytosis in normal islets, and is able to rescue dysfunctional exocytosis in human T2D 

islets seems more aligned with the concept that S-AMP is the key regulator of GSIS 

produced in the pentose shunt (Gooding et al., 2015). Elegant metabolic flux methods have 

recently been reported for calculating the relative contributions of various pathways to total 

NADPH production (Fan et al., 2014). For example, absolute pentose pathway flux is 

measured by the classical method of the difference between 14CO2 production from [1-14C] 

and [6-14C] glucose. The contribution of the pentose shunt to NADPH synthesis is then 

measured by fractional enrichment (FE) of the NADPH and G6P pools in cells incubated 

with [3-D]glucose (Fan et al., 2014). Using these methods, a surprisingly large contribution 

of folate metabolism to total NAPDH production was recently reported in HEK293T cells 

(Fan et al., 2014). Application of similar methods to pancreatic islet cells should allow the 

fractional contributions of various NADPH producing pathways to be quantified. 

Performance of such flux experiments in the presence and absence of strategic suppression 

of contributory enzymes such as G6PDH and IDH1 will help to define key operative 

pathways for control of GSIS.

Two metabolites that were discussed earlier in the context of their utility for prediction of 

diabetes, 2-AAA and CMPF, may contribute to diabetes pathogenesis by altering β-cell 

function. Paradoxically, administration of 2-AAA to mice actually lowers rather than raises 

circulating glucose levels, which seems to be mediated by an effect of 2-AAA to stimulate 

insulin secretion, even at low glucose levels (Wang et al., 2013). This raises the possibility 

that the link between elevated levels of 2-AAA and diabetes risk in humans could be 

development of insulin resistance secondary to chronic hyperinsulinemia. This hypothesis 

requires further investigation. In contrast, CMPF seems to have a direct effect to induce β-

cell dysfunction (Liu et al., 2016). Thus, treatment of diet-induced obese (DIO) or ob/ob 

mice with CMPF caused a decrease in glucose-stimulated insulin secretion and a worsening 

of glucose intolerance in these models. The decrease in β-cell function in CMPF-treated 

mice was associated with a decrease in glucose metabolism and an increase in fatty acid 

oxidation, accompanied by an increase in generation of reactive oxygen species. CMPF also 

caused an impairment in insulin granule maturation that led to a higher insulin content and 

an increase in proinsulin:insulin ratio. The precise molecular target(s) of CMPF in mediating 

these effects remain to be defined. Interestingly, a clear increment in CMPF levels was 

observed in pre-diabetic subjects that progressed to overt diabetes, whereas those from this 

cohort that remained in the prediabetic state had stable CMPF levels (Liu et al., 2016). This 

finding implicates CMPF as a “tipping factor” that may help to explain why some 

individuals can remain in the prediabetic state for many years before suddenly progressing 

to type 2 diabetes.

Metabolomics Applied to Transgenic Mouse Models

As described earlier, new mechanisms linking BCAA metabolism and metabolic 

homeostasis were unveiled in studies of mice with muscle-specific overexpression of the 
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transcriptional co-regulator PGC-1α (Roberts et al., 2014; Jang et al., 2016; Choi et al., 

2008; Wong et al., 2015). Metabolomics has also helped to identify metabolic pathways 

regulated by other transcription factors and co-regulators in transgenic mouse models. Such 

studies can delineate the specific pathways affected, the tissues and organs in which 

regulation occurs, and in some cases, novel metabolites that mediate biological effects. For 

example, a series of studies have been conducted on transgenic mice with global knockout of 

the transcriptional co-activators SRC-1, SRC-2, and SRC-3. Metabolic profiling contributed 

to our understanding that SRC2 regulates glucose-6-phosphatase expression in liver (Chopra 

et al., 2008), SRC1 integrates hepatic fatty acid and amino acid metabolism in liver and 

other tissues (Louet et al., 2010), whereas SRC3 knockout has focused metabolic effects in 

muscle, and a particular signature to cause accumulation of very-long chain acylcarnitines 

(York et al., 2012). This latter finding led to the discovery that SRC3 controls expression of 

the mitochondrial carnitine-acylcarnitine translocase (CACT), which mediates entry of long-

chain acylcarnitines into the mitochondrial matrix during fatty acid oxidation. Mutations in 

the gene encoding this protein underlie human CACT metabolic myopathy.

Another novel mechanism has emerged from studies in mice with genetic manipulation of 

GLUT-4 expression in adipose tissue. Thus, mice with adipose-specific GLUT-4 knockout 

develop insulin resistance in liver and muscle (Abel, et al., 2001), whereas transgenic 

overexpression of GLUT-4 causes improvement in glucose tolerance, despite an increase in 

lipogenesis and circulating fatty acids (Shepherd et al., 1993). Surprisingly, the effect of 

GLUT-4 overexpression to improve glucose disposal depends on lipogenic activity in 

adipose tissue, as the effect on glucose homeostasis is eliminated in mice with dual knockout 

of the key lipogenic transcription factor ChREBP and GLUT-4 (Herman et al., 2012). This 

led to the hypothesis that specific lipids may mediate the glucoregulatory effects of GLUT4 

manipulation in adipose tissue. To test this idea, comprehensive, nontargeted lipidomic 

analysis was performed on adipose tissue and plasma from GLUT-4 overexpressing and 

control mice (Yore et al., 2014). Among 5 lipids found to be enriched in the samples from 

GLUT-4 transgenic mice, four were identified as fatty acid-hydroxy fatty acid esters, 

comprised of a typical long chain fatty acid (palmitate (PA), oleate (OA), stearate (SA), or 

palmitoleate (PA)) esterified to hydroxylated versions of one of the same four fatty acids. 

Among the 16 possible fatty acid-hydroxy fatty acid (FAHFA) dimeric species, 6 were 

increased in serum of GLUT-4 transgenic compared to wild-type mice, and the most clearly 

upregulated form, PA-hydroxy SA (PAHSA), was studied in more detail. Serum and adipose 

tissue PAHSA levels were positively correlated with insulin sensitivity in humans. A single 

oral bolus of PAHSA given to mice 30 minutes prior to a glucose tolerance test enhanced 

glucose clearance, and an effect of PAHSA to enhance insulin-stimulated GLUT4 

translocation was demonstrated in cultured adipocytes. Remarkably, PAHSA also caused 

increases in circulating insulin and GLP-1, and suppressed inflammation, suggesting 

multiple sites of action (Yore et al., 2014).

Fatty acid-hydroxy fatty acid esters are not the first lipids to be implicated as therapeutic 

agents in metabolic disease. The monomeric fatty acid, palmitoleate (cis-16:1n7) was 

reported to decrease hepatic fat and enhance skeletal muscle insulin sensitivity in mice (Cao 

et al., 2008). However, palmitoleate does not have the same strong associations with 

metabolic control in humans as suggested for PAHSA. Omega-3-fatty acids (polyunsaturated 
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fats found in fish oils) are also reported to be protective against metabolic diseases (Oh et al., 

2010). Interestingly, both PAHSA and omega-3-fatty acids are ligands for the G-protein 

coupled receptor, GPR120, possibly explaining their common effects to suppress 

inflammation and promote GLUT-4 translocation (Yore et al., 2014; Oh et al., 2010). This 

work has highlighted the power of untargeted metabolomics for discovery of new 

mechanisms, but several important issues remain to be addressed, including the enzymatic 

pathways responsible for synthesis of FAHFA and their modes of regulation, the levels of 

FAHFA that might be present in different foods and supplements, and the effect of 

administration of PAHSA in human subjects with metabolic diseases.

Metabolomics Applied to Cardiovascular Disease Mechanisms

Recent studies have demonstrated surprising efficacy of “diabetes drugs” such as 

empagliflozin, an inhibitor of renal glucose reuptake by the sodium-glucose co-transporter 

SGLT2, and liraglutide, a GLP-1 analogue, for reducing risk of cardiovascular events in 

diabetic subjects (Zinman et al., 2015; Marso et al., 2016). These findings highlight the 

strong metabolic interconnections between obesity, diabetes, and cardiovascular diseases, 

and suggest that metabolic signatures that predict incident cardiovascular events, including 

the short-chain dicarboxylacylcarnitine (Shah et al., 2010; Shah et al., 2012b; Shah et al., 

2012c) and TMAO (Wang et al., 2011) signatures discussed earlier, may serve as biomarkers 

for engagement of diabetes drugs for mitigation of cardiovascular risk.

As discussed earlier, the gut microbiome may play an important role in production of 

metabolites such as BCAA that contribute to dysregulation of metabolic pathways and 

eventual development of type 2 diabetes. More recently, strong evidence for a key role of the 

microbiome in regulating biological functions relevant to cardiovascular diseases has also 

been accumulating. TMAO, produced via sequential metabolism of choline and carnitine by 

gut microbes and host enzymes, is a strong predictive biomarker of atherosclerotic burden 

and cardiovascular events. Consistent with a cause/effect relationship, supplementation of 

mouse diets with TMAO or choline results in an increase in atherosclerotic plaque size in 

apo E−/− mice that is proportional to the increase in circulating TMAO levels. Moreover, the 

effect of dietary choline to enhance plaque formation in apo E−/− mice is abrogated by 

generalized ablation of the microbiome with broad-spectrum antibiotics (Wang et al., 2011). 

More recently, TMAO has also been associated with risk of thrombotic events (MI or stroke) 

in a cohort of 4007 clinically referred subjects (Zhu et al., 2016). Extending these findings, 

TMAO enhances platelet function in response to several agonists, including ADP, thrombin, 

and collagen, and also increases the rate of thrombus formation in the FeCl3 mouse model of 

experimental thrombosis. Choline supplementation also enhances thrombosis in this model 

in a microbiome-dependent manner. Progress is occurring in identifying particular bacterial 

species that are strong producers of trimethylamines (TMA), the precursors of TMAO 

formation, suggesting potential therapeutic strategies. Indeed, inhibition of bacterial TMA 

lyases with a choline analogue, 3,3-dimethyl-1-butanol (DMB), was recently shown to 

reduce circulating TMAO and inhibit plaque formation in the apo e−/− mouse model (Wang 

et al., 2015). The effects of DMB on mitigating the thrombotic effects of TMAO remain to 

be demonstrated, and potential long-term side effects of the agent may emerge, but the 

approach has the potential to be one of the first broadly impactful examples of “drugging the 
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microbiome”. If this occurs, it should be remembered that the approach is based on an 

original discovery made with non-targeted metabolomics.

Integration of Metabolomics and Genetics for Understanding Cardiometabolic Diseases

Human genome-wide association studies have identified loci that map with cardiovascular 

risk and diabetes, but these explain only a small fraction of these diseases. This is likely due 

to the fact that both type 2 diabetes and cardiovascular diseases are driven by a mixture of 

genetic susceptibility, environmental factors, and as has been illustrated herein, the gut 

microbiome, conspiring to perturb metabolic homeostasis and health. With the emergence of 

metabolite clusters that predict incident cardiometabolic disease and intervention outcomes, 

we are provided with intermediate phenotypes that present fresh opportunity to define 

underlying genetic architecture. This is particularly true given evidence that metabolic 

profiles are heritable. Thus, metabolomic analysis of eight multiplex families with familial 

early-onset CVD identified specific amino acids, fatty acids, and acylcarnitines with high 

heritability scores, even after adjustment for variables such as diabetes, hypertension, and 

BMI (Shah et al., 2009). Other studies have combined metabolomics profiling and 

genotyping in general population cohorts such as KORA and TwinsUK (Illig et al., 2010; 

Suhre et al., 2011; Shin et al., 2014). The most recent of these studies performed GWAS 

analysis and measured 333 known metabolites by a combined GC/MS and LC-MS/MS 

approach across 7824 subjects in the two cohorts (Shin et al., 2014). Overall, 145 

independent SNP/metabolite associations with genome wide significance have emerged 

from these studies. New biological insights and disease detection strategies are implied by 

this work. For example, changes in carnitine levels were associated with SNP rs7094971 in 

the SLC16A9 gene, also known as MCT9, which has homology to monocarboxylic acid 

transporters (Suhre et al., 2011). Expression of this gene in Xenopus oocytes demonstrated 

that it encodes a carnitine transporter. In addition, SNPs in several genes involved in 

aromatic amino acid metabolism, including TDO2 (tryptophan 2,3-dioxygenase), IDO1 

(indoleamine 2,3-dioxygenase), TAT1 (T-type amino acid transporter1), and SLC7A5 (LAT1 

amino acid transporter) were associated with multiple tryptophan metabolites, suggesting the 

potential for new blood-borne markers of altered tryptophan metabolism linked to mood 

disorders (Shin et al., 2014). Similarly, other recent studies have integrated GWAS or exome 

array analysis and metabolomics profiling in 2076 Framingham Heart subjects and 1528 

validation cohort subjects from the Atherosclerosis Risk in Communities study to define 

novel coding variants that influence levels of metabolites such as histidine, phenylalanine, 

and ureidopropionate, and cholesterol ester and triglyceride metabolites (Rhee et al., 2013). 

Finally, as discussed earlier, a metabolite cluster (prinicipal component) consisting of several 

short-chain dicarboxylated acylcarnitines that predict future cardiovascular events maps to 

genes associated with the protein unfolding response and ER stress pathways (Rhee et al., 

2016). Further efforts to integrate metabolomics with genomics and other “omics” data sets 

could yield new information about genetic pathways that control intermediate phenotypes 

contributing to polygenic metabolic diseases.
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Summary and Conclusions

As the newest member of the stable of “omics” methodologies for comprehensive molecular 

profiling, metabolomics has undergone a rapid technological evolution, and is now 

increasingly applied to human epidemiology and fundamental mechanistic research in 

almost equal measure. Consistent with its theoretical advantage of measuring the chemistry 

of biological systems, and therefore being distal to genomic, transcriptomic and proteomic 

variation, metabolomics has proven its utility for identifying new biomarkers of 

cardiometabolic diseases, and even more impressively, for detecting future disease events 

and intervention outcomes. As new and unanticipated associations emerge between 

cardiometabolic diseases and specific metabolites, this has led in multiple cases to 

demonstration of their role in disease pathogenesis, and to new insights into biological 

pathways that contribute to complex human diseases and disorders. Because a significant 

portion of metabolomics-based research to date has been descriptive, the full potential of 

metabolomics for defining new detection strategies and pathogenic mechanisms of 

cardiometabolic diseases remains to be realized. It is hoped that this perspective will 

encourage increased application of metabolomics to metabolic disease research, and more 

specifically, the use of disease-associated metabolomics signatures as a blueprint for 

defining novel disease mechanisms and targets.
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Figure 1. Emergent mechanisms of branched-chain amino acid (BCAA) metabolism in 
cardiometabolic disease pathogenesis unveiled with metabolomics
Several mechanisms contribute to accumulation of BCAA in plasma of obese, insulin 

resistant humans, including increased de novo production of BCAA by the gut microbiome 

and reduced utilization of BCAA in liver and adipose tissue. BCAA utilization does not 

appear to be suppressed in skeletal muscle, and under obese conditions, elevated BCAA 

induce a decrease in skeletal muscle glycine levels, removing a potential escape valve for 

excess acyl CoAs, Combined substrate pressure from elevated BCAA and lipids in obesity 

contribute to accumulation of incompletely oxidized fatty acids in mitochondria 

(“mitochondrial overload”) and reduced efficiency of glucose disposal. In addition, valine 

catabolism yields two new BCAA-derived factors that contribute to energy balance and 

metabolic homeostasis--β-aminoisobutyric acid (BAIBA), which stimulates thermogenesis 

and browning of white fat, and 3-hydroxyisobutryate (3-HIB), which stimulates trans-

endothelial and muscle uptake of fatty acids. See text for details and discussion.
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Figure 2. Emergent mechanisms of glucose-stimulated insulin secretion (GSIS) from 
metabolomics studies
Application of metabolomics methods to the pancreatic islet has resulted in identification of 

mechanisms that may complement the classical KATP-channel-dependent pathway for GSIS. 

This includes a pathway initiated by anaplerotic metabolism of glucose-derived pyruvate 

through pyruvate carboxylase (PC), egress of citrate, isocitrate, and a-ketoglutarate from the 

mitochondria to the cytosol via the citrate/isocitrate carrier (CIC), engagement of isocitrate 

with the cytosolic, NADP-dependent isoform of isocitrate dehydrogenase (IDH1) and 

reduction of glutathione to GSH by glutathione reductase. A second pathway involving 

metabolism of glucose through the pentose monophosphate shunt, including the first two 

NAPDH producing steps glucose-6-phosphate dehydrogenase (G6PDH) and 6-

phosphogluconate dehydrogenase (6PGDH), results in a sharp increase in adenylosuccinate 

(S-AMP) produced from IMP via the adenylosuccinate synthase (ADSS) reaction. 

Importantly, intermediates generated by either the isocitrate/GSH (isocitrate, NADPH, GSH) 

or S-AMP (S-AMP) pathways stimulate exocytosis in permeabilized human β-cells and 

rescue loss of glucose regulation in β-cells from humans with type 2 diabetes. Also for both 

pathways, the effects on exocytosis require expression of the insulin granule desumoylating 

enzyme SENP1. Also shown, metabolomics has identified two metabolites associated with 

risk of type 2 diabetes that modulate β-cell function, 2-aminoadipic acid (2-AAA), which 

enhances insulin secretion at basal glucose levels, and the fatty acid furan metabolite, 3-

carboxy-4-methyl-5-propyl-2- furanpropanoic acid (CMPF), which impairs glucose 

metabolism and insulin secretion. See text for details and discussion.
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