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Summary

The ability to reliably and reproducibly measure any protein of the human proteome in any tissue 

or cell-type would be transformative for understanding systems-level properties as well as specific 

pathways in physiology and disease. Here we describe the generation and verification of a 

compendium of highly specific assays that enable quantification of 99.7% of the 20,277 annotated 

human proteins by the widely accessible, sensitive and robust targeted mass spectrometric method 

selected reaction monitoring, SRM. This human SRMAtlas provides definitive coordinates that 

conclusively identify the respective peptide in biological samples. We report data on 166,174 

proteotypic peptides providing multiple, independent assays to quantify any human protein and 

numerous spliced variants, non-synonymous mutations and post-translational modifications. The 

data is freely accessible as a resource at www.srmatlas.org, and we demonstrate its utility by 

examining the network response to inhibition of cholesterol synthesis in liver cells and to 

docetaxel in prostate cancer lines.
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Introduction

The ability to accurately and reproducibly detect and quantify any protein of the human 

proteome is a main objective in the life sciences. Achieving it would significantly contribute 

towards understanding the biochemical base of living cells (Edwards, 2011). In contrast to 

the human genome which has been determined in its entirety, the composition of the human 

proteome is still poorly defined. The prevalence of alternative splicing and post-translational 

modifications increase the complexity to an as yet unknown number of different 

proteoforms, and the annotation of protein-coding regions and experimental evidence for 

their validity are still being refined. Therefore, a well-defined protein sequence database 

with annotated functional information and the identification and quantification of at least 

one protein from every protein-coding gene offer a pragmatic and useful definition of a 

complete proteome (Mann et al., 2013).

The detection of proteins can be accomplished through mass spectrometric and affinity 

reagent based methods. The Human Protein Atlas, a systematic exploration of the human 

proteome using antibody-based reagents, is a unique effort attempting to characterize all 

human protein-coding genes (Uhlen et al., 2005). Since the initial release in 2005, the 

Protein Atlas evolved into a knowledge base that includes a diverse collection of 25,039 

monoclonal and polyclonal antibodies, collectively targeting 17,005 proteins corresponding 

to ~84% of the predicted proteome (version 15).

For the mass spectrometric exploration of the proteome, a range of techniques have been 

developed and they can be broadly grouped into data dependent acquisition (DDA, also 

known as shotgun or discovery proteomics) and targeted mass spectrometry (MS) methods. 

Common to both methods is that the sample proteins are first converted into peptides by 

enzymatic digestion. They differ in the manner in which the mass spectrometer (MS) is used 

to analyze the resulting peptide mixtures. The majority of proteomic studies rely on the 

DDA strategy that selects peptide precursor ions for collision-induced dissociation (CID) 

from signals detected in a survey scan. The resulting fragment ion spectra are assigned to a 

peptide sequence by peptide spectrum matching (PSM), and proteins are inferred from 

confidently identified peptides. This workflow allows the identification of thousands of 

proteins in a sample and provides quantification via the presence of stable isotope labeled 

reference peptides or through label-free methods (Bantscheff et al., 2007). However, the 

biased precursor selection of the most abundant peptide ions in complex samples by DDA 

limits the reproducibility of data generated in repeat analyses. Also, to reach high proteome 

coverage, enormous numbers of peptides need to be sampled which, in turn, causes 

significant technical and computational challenges at the level of PSM and protein 

interference (Deutsch et al., 2015b). Therefore, DDA MS is well suited to discover the 

components of a sample but less so for the generation of reproducible quantitative data 

across many samples.

Selected Reaction Monitoring (SRM, also named multiple reaction monitoring, MRM) 

instead is a targeted, quantitative technique that is characterized by a lower limit of 

detection, a wider dynamic range and increased reproducibility. SRM is primarily performed 

on triple quadrupole (QQQ) MS instruments where the first quadrupole (Q1) filters the 
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precursor ions of a peptide, the second quadrupole (Q2) provides CID and the third 

quadrupole (Q3) isolates predetermined fragment ions. This process results in a quantifiable 

signal represented as a chromatographic trace. SRM is referred to as targeted approach as 

only predetermined ions are measured. The two-level mass selection and the non-scanning 

mode translate into increased specificity and sensitivity and, in presence of stable isotope 

labeled standards, in precise quantification. The pair of mass to charge (m/z) values that is 

isolated in Q1 and Q3 is referred to as a transition, and a set of transitions that determine a 

peptide signature is, in combination with the peptide’s elution time, termed SRM assay. 

SRM has the unique capability of rapidly quantifying targeted proteins, their variants and 

modifications through the detection of suitable proteotypic surrogates as a multiplexed and 

cost-efficient alternative to antibody-based assays. In addition, peptide affinity reagents can 

be used to specifically capture analytes and enhance sensitivity (Anderson et al., 2004). 

SRM has been applied for decades in the pharmaceutical industry to quantify small 

molecules (Baty, 1977) and evolved recently into an established technique in the field of 

proteomics, due to advanced technology and reproducibility across instrument platforms and 

laboratories (Addona et al., 2009).

However, SRM requires defining a priori a set of target proteins, optimal peptides and assay 

parameters. This is not a trivial task as not every peptide is suitable for SRM, and assays 

need to be experimentally determined from selected peptides. The major challenge of SRM 

is the initial effort to develop high-quality SRM assays, which is, despite all progress, still a 

time-intensive process. Once an assay is developed, it can be applied perpetually in a variety 

of studies.

Recently, we developed SRM assays for Saccharomyces cerevisiae (Picotti et al., 2009; 

Picotti et al., 2013), Streptococcus pyogenes (Karlsson et al., 2012) and Mycobacterium 
tuberculosis (Schubert et al., 2013) proteomes and successfully applied these assays to a 

wide range of protein studies in the respective species (Ebhardt et al., 2015; Picotti and 

Aebersold, 2012). We and several other laboratories have also developed SRM assays for 

human proteins, typically for a small number of proteins in the context of a specific 

biological study. The targeted approach has progressively been applied towards the 

quantification of low abundant proteins in complex matrices, the verification of biomarker 

candidates, and has proven to be successful in clinical settings (Craciun et al., 2015; Gillette 

and Carr, 2013; Hüttenhain et al., 2012; Kennedy et al., 2014; Surinova et al., 2015). 

However, for the human species no proteome-wide assay resource has been available and 

experimental protein research has therefore remained substantially limited in scope.

As a consequence of these factors the majority of protein research is still focused on the 

same relatively small subset of proteins for which assays are readily available. Strikingly, the 

population of proteins most frequently reported in the scientific literature has not changed 

significantly since the publication of the human genome and thus the definition, in principle, 

of the proteome (Edwards, 2011). This indicates that the realization of the benefits of 

genomic knowledge for experimental protein research critically depends on the availability 

of assays supporting the quantification of any human protein.
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In the present study we developed a complete proteome-centric database for the targeted 

identification and quantification of any human protein of interest via SRM. We present a 

unique compendium of SRM assays for essentially the entire human proteome consisting of 

verified high-resolution, high mass-accuracy MS fragment ions of each proteotypic peptide, 

the chromatographic behavior of each peptide as an SRM trace and the relative quantitative 

response, all of which constitute an SRM assay. We have compiled the data into a freely 

available web-accessible database providing multiple SRM assays for each protein, 

integrated with extensive bioinformatic knowledge bases to establish a resource of assays to 

unambiguously identify and quantify any protein of the human proteome. We expect that 

this resource will significantly advance protein based experimental biology because any 

human protein can now, in principle, be quantified in any sample. We also expect that the 

availability of reliable assays for the human proteome will significantly contribute to 

increase the reproducibility of research results on the human proteome.

Results

To generate SRM assays for the entire human proteome we followed the process 

schematically illustrated in Figure 1. It consists of defining the target proteome, selection of 

proteotypic peptides, development of SRM assays via synthetic peptides and compiling the 

data into a web-accessible resource. Here, we describe each step of the process.

Step 1: Defining the Target Proteome

We used the 20,277 human protein sequences described in the manually annotated and 

reviewed UniProtKB/Swiss-Prot database (www.uniprot.org, release 2010-05) (Boutet, 

2007) as reference to select peptides for each protein (see also Supplemental Information). 

We paid explicit attention to ensure that membrane bound proteins, large multi-domain 

proteins and protein activation events resulting in non-tryptic cleavage sites were equally 

represented. We extended this protein set to address known protein isoforms, peptides 

containing single nucleotide polymorphism (SNPs) and N-glycosylation sites. A database of 

20,277 proteins and 14,677 isoforms formed the basis for the SRMAtlas (Figure 1, step 

one).

Step 2: Selection of Proteotypic Peptides

The selection of peptides that unambiguously identify each human protein is a key step in 

the development of SRM assays. We aimed to select at least the five best peptides for every 

human protein-coding gene using several criteria. Primarily we chose proteotypic peptides 

(PTPs) (Kuster et al., 2005) due to their high likelihood of being detected in subsequent 

measurements. We considered physiochemical properties including length, hydrophobicity 

and charge state, limitations in chemical synthesis, reactive amino acid residues susceptible 

to oxidation, pyroglutamate formation and deamidation and sequences that are likely 

modified by post-translational modifications or contain commonly occurring SNPs. These 

criteria are important and often overlooked in selecting PTPs, as SRM assay development 

and quantification generally depend on chemically synthesized peptides. To select the 

optimal set of PTPs that constitute the SRMAtlas we preferably relied on empirical data. For 
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those proteins for which no empirical data was available we computationally predicted the 

optimal set of peptides.

Selection of peptides from empirical data—PeptideAtlas (www.peptideatlas.org) 

(Desiere et al., 2004) is a major MS repository that accepts raw MS data acquired from 

biological samples generated by the scientific community and reanalyzes all MS data in a 

consistent process, including statistical validation of the results, using the Trans-Proteomic 

Pipeline (TPP) (Deutsch et al., 2015a). This database provides evidence of the most 

consistently detected peptides per protein and their confident detection at very low false-

discovery rates (FDR, usually ~0.0002 at the PSM level corresponding to a 1% protein 

FDR). At the time we specified the peptide set underlying this study, the human 

PeptideAtlas (build 2010-05 internal) contained 106,184 distinct peptides identified in over 

300 different experiments encompassing 59,142 MS runs of human cell lines, tissues and 

fluids.

In a first step we investigated how many of the 20,277 UniProtKB/Swiss-Prot proteins were 

represented by one to five distinct MS observed peptides in the human PeptideAtlas. 9,946 

proteins were observed by at least one peptide while only 5,319 proteins (26% of the 

proteome) were identified by five or more distinct peptides. Taken together this 

demonstrated that observed peptides alone did not achieve full coverage of the predicted 

human proteome and that 51% of the human proteome had not yet been detected in MS 

approaches (Figure 2 blue bars, Table S1). Next, we screened the human PeptideAtlas for 

the best PTPs and annotated each PeptideAtlas observed peptide with an empirical 

suitability score (ESS). The ESS takes into account the peptide probability, the number of 

repeat identifications of the respective peptide and the selection criteria specified above 

(Figure 1, step two). The higher the ESS, the more suitable the peptide was deemed for 

assay development.

Selection of predicted peptides—For proteins that had no empirical evidence of being 

detected by MS or less than five PTPs in PeptideAtlas we used published and in-house 

algorithms to predict the best candidate peptides for assay development (Figure 1, step two). 

All algorithms provide a score based on the sequence and physicochemical properties of a 

peptide. Although each algorithm performed reasonably well, the set of peptides with the 

highest scores determined by each predictor overlapped less than expected. Therefore, we 

developed a predictive suitability score (PSS) that allowed us to computationally calculate 

MS suitable sequences for the entire human proteome (Sun et al., in preparation). Briefly, 

we retrained PeptideSieve (Mallick et al., 2007) and devised a composite scoring scheme 

considering the results of the individual algorithms to complement the observed peptides for 

assay development.

Subsequently, we applied the PeptideAtlas best SRM transition (PABST) algorithm 

(Deutsch et al., in preparation) to calculate an adjusted suitability score for both observed 

and predicted peptides by penalizing unfavorable sequence characteristics described above 

using a multiplicative weight scoring system. Finally, PABST ranked the adjusted scores of 

empirical observed and computational predicted peptides, and unique sequences with the 

highest scores were selected for SRM assay development (Figure 1, step two, Table S2).
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This process was used to select at least five peptides per protein if allowed by sequence 

constraints. For higher molecular weight proteins (>50 kDa), we expanded the selection by 

dividing each protein sequence into 10 kDa segments and selected suitable peptides to 

provide assays for protein domains. For a small number of peptides we allowed less strict 

criteria with regard to length, hydrophobicity and charge state, to be able to select several 

peptides per protein and ensure as many proteins as possible are considered for SRM assay 

development. While we penalized sequences with unfavorable motifs and reactive amino 

acids, these were not entirely excluded, as otherwise assays could not have been developed 

for several proteins.

Step 3: Extension of Peptide Selection for Protein Isoforms, SNPs, and N-glycosylated 
proteins

To augment the assay development beyond a representative product of the 20,277 

UniProtKB/Swiss-Prot proteins, we selected peptides identifying splice and sequence 

variants and N-glycosylation sites (Figure 1, step three). We attempted to select at least one 

peptide to specifically identify splice variants described in UniProtKB/Swiss-Prot Varsplic. 

Protein isoforms originating from differentially spliced versions of a particular mRNA are 

usually not characterized by several unique peptides, but with our selection approach we 

chose 11,309 peptides that allow the identification and quantification of unique splice forms. 

Further, we selected all suitable C-terminal peptides resulting in 6,820 additional peptides 

for the 20,277 proteins and 1,937 peptides for spliced variants. To account for sequence 

polymorphisms we extended the selection to include major SNPs resulting in non-

synonymous mutations. We chose 3,662 peptides considering SNPs with a population 

frequency greater than 30% (=1831 SNPs) using NCBI dbSNP (build 131) and selected 

3094 peptides (=1,547 SNPs) that fulfill the peptide selection criteria. To identify peptides 

representing N-glycosylated proteins, 5199 membrane proteins (Fagerberg et al., 2010), 

1,748 secreted proteins (da Cunha et al., 2009) and 784 membrane proteins from 47 tissue 

types were used to select 10,938 peptides spanning N-glycosites located in the extracellular 

protein domain. Finally, for selecting peptides representing protein/peptide hormones, we 

targeted both the standard UniProt sequence as well as the mature form of these proteins 

considering their respective proteolytic cleavage sites to provide SRM assays for both the 

pre/pro-hormone and the activated form. We selected 142 peptides (124 distinct sequences) 

representing 129 proteins.

Overall, with this iterative and comprehensive selection process we determined 166,174 

peptide sequences representing 20,255 proteins which constitute 99.9% of the predicted 

human proteome as defined in UniProtKB/Swiss-Prot. For 18,010 proteins (88.8% of the 

human proteome) we selected the best ≥ 5 PTPs, for 19,505 proteins (96.2%) we selected 

the best ≥ 3 PTPs and for 19,985 proteins (98.6% of the human proteome) the best ≥ 2 PTPs 

(Figure 2 red bars). Only 22 proteins remained inaccessible by tryptic peptides that pass the 

selection criteria and synthesis requirements, thus assays could not be developed for these 

proteins (Figure 2, Table S3).

Kusebauch et al. Page 6

Cell. Author manuscript; available in PMC 2017 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Step 4: Development of SRM Assays and a Complete Human Peptide Library

To generate SRM assays, the peptides selected above were chemically synthesized and used 

to generate fragment ion spectra that were processed into consensus spectra and ultimately 

SRM assays.

Generation of fragment ion spectra—The 166,174 selected peptide sequences were 

individually chemically synthesized and used to generate high-resolution, high-mass 

accuracy reference fragment ion spectra. To process the large number of peptides we 

established an assay development pipeline including a robotics platform and multiple 

commonly used MS instruments duplicated at two geographical sites. Pools of 96 peptides 

each were analyzed on a quadrupole-time of flight MS (Agilent 6530 Q-TOF) in a data-

directed approach using exclusive lists based on the expected charge state of a peptide as 

guidance for precursor selection. To increase the robustness of the fragment ion spectra we 

implemented a data acquisition strategy in which each precursor was fragmented exclusively 

at five different collision energies (CE) and at least five MS/MS spectra per CE were 

recorded (Figure 1, step four). The simultaneous acquisition of multiple CEs obviates the 

need for subsequent CE optimization, a time consuming aspect in the process of developing 

SRM assays. A set of peptides was used for strict retention time (RT) standardization across 

multiple MS instruments and to provide a catalogue with observed RTs and iRT values to 

enable multiplexed SRM analysis (Figure 1, Figure S1).

Generation of SRM assays—To convert the fragment ion spectra into SRM assays we 

subsequently generated consensus spectra. 3,250,015 spectra from the 6530 Q-TOF (base 

CE only) were confidently assigned to 149,265 peptide sequences out of the 166,174 

synthesized peptides (89.8%). The five CE events for each peptide and their high-quality 

PSMs provided 14,970,896 spectra for use in monitoring differential fragmentation at 

multiple low and high CE values. We then generated consensus spectral libraries from each 

CE event to provide plots for every peptide and charge state that visualize optimal CE values 

for each individual fragment ion. The base CE, i.e. the CE value calculated from the default 

CE vs. precursor ion mass function, provided the highest abundance signal for the majority 

of fragment ions. However, for some fragments the selection of a lower or higher CE than 

the calculated base CE resulted in increased fragment ion signal intensities.

Next, we extracted from the 6530 Q-TOF base CE spectral library for each peptide and 

charge state SRM assay coordinates to acquire the peptides’ chromatographic traces on a 

triple quadrupole MS (Agilent 6460 QQQ). Fragment ions with the highest signal intensities 

and above the precursor m/z were preferably selected to obtain assays with optimal 

sensitivity and selectivity. SRM chromatographic traces were successfully acquired for 

126,712 peptides corresponding to a success rate of 84.9% based on the 6530 Q-TOF 

verified peptides which served as input to generate these SRM assays.

In addition, we determined the SRM signatures for all peptides on a quadrupole-linear ion 

trap MS (Sciex QTrap 5500) instrument by acquiring SRM traces and full MS/MS spectra 

upon the detection of a transition (Figure 1, step four). We generated a QTrap 5500 spectral 
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library from 1,789,651 high-quality PSMs that were assigned to 149,961 peptide sequences 

(90.2% of the human proteome).

SRM assay success—Whereas excellent peptide recoveries were achieved with each 

quadrupole type instrument, the combined recovery exceeded the results from each 

instrument type. In total, the recovery yielded 158,015 peptides with verified fragment ion 

spectra and SRM assay coordinates corresponding to 95.1% of all selected peptides (Figure 

3A). Peptides of 7–20 amino acids length constitute 91.4% of the Human SRMAtlas and 

were identified with a 96% success rate, while peptides with 21–30 amino acids resulted in 

an 83% success rate in qualifying fragmentation spectra. Peptides with an expected 

precursor charge state (z) of 2 (61.3%), 3 (28.5%) and 4 (6.3%) were preferably selected and 

performed generally better compared to a small number of peptides which fragmented with z 
= 1 (C-terminal peptides) or z ≥ 5 (long peptides with several basic residues). Further, we 

found that peptides with an SSRCalc value of 7–46 performed best and that cysteine 

containing peptides showed a decreased success rate compared to all other peptide 

sequences (Figure 3B–G, Figure S2).

Next, we reassessed the protein coverage achieved by the 158,015 successfully developed 

SRM assays, taking into account that some peptides failed to result in the correct synthesis 

product or to fragment with sufficient quality. The generated assays covered 99.7% of the 

predicted human proteome with at least one SRM assay per protein and provide a minimum 

of three assays for 19,337 (95.4%) of all UniProtKB/Swiss-Prot annotated human proteins 

(Figure 4). We were able to develop a minimum of four assays for 91.5% and at least five 

assays for 85.3% of the proteome, respectively. Taken together, on average, each protein of 

the human proteome is represented by eight SRM assays per protein and some by more than 

25 peptides. The assessment of the SRM assay chromatographic performance utilizing the 

6460 QQQs was as successful. For 98.9% of the predicted human proteome we were able to 

acquire high-quality SRM traces with at least one peptide per protein while 90.3% of the 

proteome is represented by three SRM assays.

During the course of the project, updated versions of the UniProtKB/Swiss-Prot database 

were released. To account for new protein entries, we developed 443 additional SRM assays 

for 162 entries and included these assays in our database to provide SRM assays for updated 

human reference proteomes 2014 (20,193 proteins) and 2015 (20,203 proteins) (Figure S3, 

Table S4). Overall, we have successfully developed 158,015 mass spectrometric assays 

based on high-quality MS/MS spectra and subsequent QQQ deployment with the use of 

166,174 chemically synthesized peptides to reliably identify and quantify essentially any 

human protein. The database of SRM assays can be adapted to changes in genome 

annotation with modest effort.

Assessing the Peptide Selection Success in the Context of Recent Public Data

Recent technical advances in high-resolution MS and efforts to discover complete proteomes 

of mammalian cells and tissues have led to a substantial increase in discovery proteomics 

data. The state of the human proteome as viewed through PeptideAtlas in 2015 (Deutsch et 

al., 2015b), which incorporates data from large scale proteomic measurements, reports ~133 
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million high-quality PSMs, identifying more than 1 million distinct peptides which 

collectively represent 14,070 (70%) confidently identified human proteins, 5% ambiguous 

and 9% redundant detections, leaving 16% (3,166 proteins) undetected. Given a large 

number of peptides discovered since the peptide selection for the SRMAtlas was performed, 

we retrospectively investigated the success of selecting suitable peptides that were observed 

in the recent PeptideAtlas and were not available in the initial selection database. We found 

that 84% of the newly observed peptides, that fulfill the selection criteria described above, 

were selected for the comprehensive human peptide SRM assay development. Further, we 

ranked all observed peptides based on spectral count and determined that we selected 85% 

of the most abundant peptides by using our predictive algorithm, indicating the robustness of 

the computational peptide selection algorithms used.

Step 5: Data Access through the Human SRMAtlas Resource

With the intent to facilitate life science research, we developed SRMAtlas 

(www.srmatlas.org), a freely available resource providing unlimited access to this unique 

compendium of targeted assays (Figure 1, step five). A web-interface allows researchers to 

query assays for their targets of interest. The query returns verified assays including peptide 

sequence, precursor and fragment ions with their charge states, fragment ion rank order, 

collision energy for different MS instruments, retention time, hydrophobicity and peptide 

uniqueness within the annotated human proteome. All MS/MS spectra and SRM 

chromatograms are displayed together with collision energy plots for optimal CE selection. 

We provide various assay download options such as instrument specific transition lists for 

immediate import to the MS method and subsequent acquisition. Default query settings are 

provided for ease of use and all queries can be customized. For workflows including the 

quantification with labeled standards, we implemented queries for transitions of the light 

endogenous peptide and the heavy isotope labeled analogue. The result page in the human 

SRMAtlas not only reports verified assay coordinates but also integrates with external 

knowledge bases including neXtProt, PeptideAtlas, the Human Protein Atlas, Pathway 

Commons and SRMCollider offering comprehensive information on a protein of interest.

SRMAtlas Application

To demonstrate the utility of the SRMAtlas resource, we carried out two studies. In study I, 

we chose cellular cholesterol regulation as an example for a clinically relevant pathway that 

can be perturbed using drugs. The transcription factor SREBP2 induces expression of genes 

in the cholesterol biosynthesis pathway if the endogenous levels of cholesterol are depleted 

by inhibition with statins (Goldstein and Brown, 2015). A drug-induced gene module 

enriched for SREBP target genes was identified that also contained unknown targets of this 

pathway (Iskar et al., 2013). Hence, the objective of our test case was twofold: i) to perform, 

using the SRMAtlas as a resource, a systematic proteomic quantification of enzymes in the 

cholesterol synthesis pathway upon drug treatment and ii) to assess if the regulation of 

putative SREBP target genes identified in Iskar et al. translates to the protein level upon 

classical perturbation of the SREBP pathway with statin.

To test for differential drug-induced regulation of protein levels, we selected the two liver 

cell lines Huh7 and HepG2, treated them with lipoprotein-deficient serum (LPDS) and 
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atorvastatin, and subsequently quantified the relative abundance of target proteins using the 

assays obtained from the SRMAtlas. We targeted 64 proteins with the SRMAtlas assays and 

unequivocally quantified 1–3 proteotypic peptides for 33 proteins (74 peptides total) in 

unfractionated total cell lysate of Huh7 and HepG2 cells. After perturbation with LPDS and 

atorvastatin, 32 out of the 33 proteins showed regulation (Figure 5A, Table S5). This 

included detecting peptides for 18 out of the 22 enzymes in the cholesterol synthesis 

pathway (Figure 5B).

All enzymes of the cholesterol synthesis pathway, except of LBR, increased their abundance 

upon stimulation of SREBP2. HMGCR, FDFT1, and DHCR7 showed the strongest response 

with an up to 16-fold increase in abundance. The measured SRM chromatograms of peptide 

TQNLPNCQLISR and LFSASEFEDPLVGEDTER from protein FDTF1 show the 

difference in signal abundance between treated and untreated cells as representative 

examples (Figure 5C). The absence in regulation of LBR confirmed a previous report 

showing no increased LBR expression in HepG2 cells upon SREBP activation (Bennati et 

al., 2006) and LBR was also not present in the co-regulated module (Iskar et al., 2013). In 

addition to the proteins in the cholesterol synthesis pathway, additional 14 proteins that were 

part of the targeted gene module and present in other cellular pathways also changed 

substantially their expression. Most of these proteins are not established SREBP targets and 

this represents therefore an important confirmation of their regulation downstream of 

SREBP. Interestingly, the response in Huh7 and HepG2 cells differed for some proteins and 

thus the proteins could be divided into clusters based on their response to the drug treatment 

(Figure 5A). Cluster I consisted of proteins that were increased similarly in both cell lines 

and contained most of the enzymes in the cholesterol synthesis pathway. The proteins in 

cluster II were mostly regulated in HepG2 cells and contained proteins present in the 

mevalonate pathway, the first part of the cholesterol biosynthesis. Hence, using the 

SRMAtlas it was possible to efficiently profile the changes in protein abundance along a 

whole pathway, to confirm the co-regulation of novel putative SREBP target genes and to 

examine the relationship of protein regulation in different pathways.

In study II, we measured the effect of docetaxel treatment on three differentially responsive 

prostate cancer cell lines, LNCaP, DU145 and PC3. To select target proteins, we first 

determined a transcriptional time course response by microarray analysis. Prostate cancer is 

a leading cause of mortality in males. While many men present with localized and curable 

disease, a large number of deaths are driven by the development of metastatic prostate 

cancer and low curative options. Docetaxel is the first line drug treatment for metastatic 

castrate-resistant prostate cancer but ~50% of patients develop resistance (Antonarakis and 

Armstrong, 2011). Docetaxel acts mainly through the significant uptake in cells and the 

inhibition of microtubule function leading to mitotic arrest in the cell cycle and cell death. 

While the main action of taxanes like docetaxel is in overall cell cycle arrest, there are many 

unknown activities of the drug that contribute to its antitumor effects.

Performing microarray analysis of mRNA transcripts, we identified a dysregulated network 

of genes associated with docetaxel perturbation of the cell cycle and used SRMAtlas assays 

to target the corresponding protein products at four time points post-treatment (0–72h) and 

in untreated controls to investigate comparative proteome and mRNA transcript abundance 
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changes over time in each of these three cell lines. We targeted 36 proteins spanning nuclear 

proteins, cytosolic and membrane proteins with SRMAtlas assays and unambiguously 

quantified 33 proteins with 1–4 proteotypic peptides each (87 peptides total, HIST2H2AC 
through shared peptides) in unfractionated total cell lysates of these prostate cancer cell lines 

along the time course. Analysis of the combined mRNA and protein abundance data was 

overall in agreement with each other, showing larger abundance changes at 48 and 72h 

compared to 8 and 24h, but also highlighted the differences of the three cell lines and some 

discordance for mRNA and protein abundance involved in the cell-cycle response (Figure 6, 

Table S5). Cluster analysis also highlighted differences in mRNA and protein abundance 

especially for later time points (Figure S4). These include concordantly decreasing 

abundance in proteins involved in cell cycle, DNA repair and nucleotide base synthesis 

(RRM2, RFC3, TMYS and MCM’s and UBE2C). Discordance between mRNA and protein 

abundance was observed for scaffolding and structural stabilization proteins (KIF23 and 

NUSAP1). These results detail regulation within the cell to stabilize cells undergoing stress 

and the concordant reduction in proteins involved in normal cell cycle action. The difference 

in timescales shows the effect in transcript abundance occurring first, followed by reduction 

in protein abundance as would be expected in normal transcription/translation timescales. Of 

note, the discordance of the Kinesin KIF23 abundance at the protein level for DU145 and 

PC3 is in agreement with previous studies detailing kinesin overexpression and increased 

resistance to docetaxel in breast cancer (De et al., 2009) and glioma cells (Takahashi et al., 

2012). Kinesins are key components in spindle movements during the cell cycle and can 

presumably meliorate the action of docetaxel. Inhibition of the kinesin complex or key 

members may interfere with the resistance mechanism to docetaxel and highlight a possible 

avenue for therapeutic intervention. Additionally, with the deployment of SRM assays for 

KIF23, this assay could be developed further to provide a new prognostic and diagnostic 

marker of therapeutic resistance. This analysis demonstrates the ease of rapidly deploying 

targeted quantitative assays to study discrete sets of proteins without relying on the vagaries 

of antibodies which is both laborious and costly.

Discussion

We generated high-quality fragmentation spectra and verified SRM assays for all accessible 

proteins described in the UniProtKB/Swiss-Prot database, a selection of spliced variants, 

non-synonymous SNPs and N-glycosylated proteins. This should enable reliable and 

reproducible quantification of all annotated proteins in the human proteome.

From a systems perspective, biological processes constitute networks of interacting 

molecules and changes in network state are informative about the biochemical state of the 

cell. To determine the state of a network and to compare network states between samples, 

the parts of a network need to be consistently detected in sample cohorts and quantified, at 

least at the level of relative quantification. An incomplete parts list may not explain observed 

processes. The Human SRMAtlas assays provide the tools to reliably navigate predicted or 

experimentally derived protein networks, to rapidly probe promising interaction partners and 

to perform relative or, in the presence of isotope labeled reference peptides, absolute 

quantification and to thus provide new insight into complex biological mechanisms.
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The developed assays can be universally applied in different sample types to target any 

protein of interest and its abundance changes. The assays are beneficial in hypothesis-driven 

experiments focusing on a relatively small number of proteins, e.g. those that carry out a 

specific function or to probe a mechanism but also in large association studies to monitor 

protein panels across individuals. We demonstrated the utility of the resource in two studies 

and a multitude of different applications can be envisioned. Specific enzyme classes and 

signaling pathways can be studied. Proteins operating cooperatively in networks can be 

measured across many samples to define, for instance, their dynamic spatiotemporal changes 

in order to help identify the current health status or disease state. The assays can be used to 

investigate the response to system perturbations, enriched sub-proteomes, to confirm protein 

interaction partners or to analyze protein complexes to determine their stoichiometry. The 

SRM assays are particularly useful in a clinical setting where large volumes of genomic data 

suggest aberrations or dysregulation in biochemical pathways, thus providing functional 

hypotheses that are testable by the SRMAtlas resource. Current biomarker verification 

strategies rely primarily on the development of antibodies for western blots and ELISA tests, 

a time-intensive and expensive process which limits the verification of many candidate 

markers. Our assay resource can close this gap by allowing immediate assay implementation 

and subsequent high-throughput and cost-efficient verification of numerous markers in large 

cohorts of patient samples. We developed molecular assays with high specificity for the 

entire proteome as an emerging alternative and complement to conventional antibody 

screenings. While it can be challenging to verify the specificity of an antibody in 

discriminating antigenic variants, SRM provides high specificity by molecular determination 

through the proteotypicity of the selected peptides and several independent assays per 

protein.

N-glycosylated proteins are secreted or located on the cell surface and constitute a clinically 

interesting group of proteins that is investigated for biomarkers and drug targets. We 

developed assays to target N-glycosylated proteins by specifically selecting peptides that 

span the N-glycosylated sequence motif for use in studies involving N-glycosylation affinity 

approaches. SNPs have primarily been investigated in genome-wide association studies to 

classify different traits and gained interest as markers to diagnose diseases and predict drug 

response. To investigate SNPs resulting in non-synonymous sequence variants, we 

developed assays for the most frequent mutations which typically result in protein 

malfunction and may expose an altered phenotype.

Although the detection of target peptides by SRM is highly sensitive and specific, it can be 

challenging due to the complexity and large dynamic range in the human proteome, 

potentially resulting in interference of peptides with similar mass and chromatographic 

properties. Such interference can lead to a failure in detecting the target peptide. The SRM 

assays can be deployed in any sample but the occurrence of potentially interfering transitions 

needs to be assessed in each experiment to minimize false positives and imprecise 

quantification. Depending on the scope of a study, different levels of assay validation are 

recommended (Carr et al., 2014). While SRMAtlas assays are robust and powerful to assess 

the protein abundance in biological samples for research purposes, assays intended to 

support clinical decisions would require further clinical validation for robustness in large 

patient cohorts. Currently the technique cannot attain the entire range of proteins in higher 
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eukaryotes, therefore optimized protein extraction, enrichment and fractionation can further 

improve sensitivity.

While we present a truly comprehensive and highly characterized resource of assays for all 

human proteins, their variants and some post-translational modifications, the human 

proteome is complex and the coverage by empirical observed peptides is evolving and by no 

means complete. We provide very high coverage (>99%) at the protein level but the protein 

sequence coverage by peptides, in their native and post-translational modified form, will 

increase as more data become available. Our established pipeline will allow us to develop 

SRM assays for newly identified peptides and different post-translational modifications in 

future efforts with ease. The human SRMAtlas is based on the UniProtKB/Swiss-Prot 

database 2010 and 2015 but as the proteome continues to be refined, new assays can be 

added.

The human SRMAtlas not only facilitates the reliable identification of proteins, but also 

provides coordinates for the reproducible quantification of analytes. Absolute quantification 

of peptides can be accomplished by adding known amounts of stable isotope labeled 

standards. Label free quantification can also be performed by SRM but is only accurate for 

relative quantification given there is no standardization anchor point. Alternatively, absolute 

label-free quantification based on few anchor points can be pursued (Ludwig et al., 2012). 

Currently, the resource does not provide experimentally determined limits of detection 

(LOD) and limits of quantification (LOQ) for every SRM assay as these parameters strongly 

depend on the individual setting in which the assay is deployed (e.g., cell lysate versus 

plasma, type of sample preparation, chromatographic performance of LC system). In order 

to obtain the most accurate LOD/LOQ, these values need to be determined in the individual 

sample type in the context of each study. We introduced PASSEL (Farrah et al., 2012) as a 

repository for SRM data to share deployed assays and their performance in different 

matrices and similar databases followed (Sharma et al., 2014; Whiteaker et al., 2014). While 

SRM assays developed in different laboratories may be available as part of a publication or 

through these repositories, the information is scattered, time-consuming to gather, and 

currently limited to a small number of proteins (<1000). In contrast, the human SRMAtlas 

provides high-quality SRM assays including their spectral libraries for the entire predicted 

human proteome developed in a consistent manner. These assays are generic and are not 

based on any sample type or biological context but have proven to work in a number of 

settings (cell lines, plasma, urine protein digests, etc.).

The SRM assays presented here also provide a unique resource for efforts seeking to provide 

protein-level evidence of any human protein either previously observed or never observed to 

date to advance our knowledge in human biology and complex diseases. The high-

resolution, high-mass accuracy MS/MS spectra generated from synthetic peptides constitute 

a ‘gold-standard’ fragmentation database which can provide additional confidence by 

spectral comparison with MS/MS spectra derived from discovery proteomic studies. 

Recently, the concept of SWATH-MS was introduced (Gillet et al., 2012), a data-

independent MS technique which is less sensitive than SRM but capable of generating a 

digital map of a large fraction of a proteome. The analysis of SWATH data requires 
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information from high-quality fragment ion spectral libraries and assays such as the ones 

developed here to mine these complex fragment ion maps.

In conclusion, the human SRMAtlas provides verified MS assays based on SRM technology 

developed in a uniform and consistent process for essentially every protein of the human 

proteome. These assays can be rapidly deployed in systems biology and biomedical studies 

to identify and quantify any human protein with high sensitivity and high selectivity, and to 

navigate complete proteome maps to understand their biological functions.

Experimental Procedures

Peptide Selection

For every human protein in UniProtKB/Swiss-Prot release 2010-05 a set of PTPs was 

selected by mining PeptideAtlas (build 2010-05 internal) or by bioinformatic prediction. The 

selection of peptides for new protein entries in release 2014-11 and 2015-08 was based on 

PeptideAtlas build 2014-08. Each peptide obtained a suitability score using the PABST 

algorithm. Selection criteria include: fully tryptic, 7–30 amino acids, SSRCalc 10–46, 

expected z of 2 to 4 and unique within the human proteome. Peptide selection for spliced 

isoforms was based on UniProtKB/Swiss-Prot Varsplic (2010-06), for SNPs on the subset of 

NCBI dbSNP (build 131) entries annotated in the UniProt feature tables.

Peptide Synthesis

Peptides were synthesized via solid phase (Thermo-Fisher) or SPOT synthesis (JPT Peptide 

Technologies). 96 peptides were pooled and subjected to MS analysis.

MS Analysis

Peptides were analyzed on a G6530A nano HPLC Chip Cube Q-TOF LC-MS system 

(Agilent Technologies). Spectra were acquired in a data-directed approach using an 

exclusive precursor selection Auto MS/MS mode. Each m/z was fragmented over a wide 

range of CEs. Further, peptides were analyzed on a QTrap 5500 LC-MS with a Nano Spray 

Source III and Tempo nano MDLC (Sciex) in SRM mode, triggering the acquisition of a full 

MS/MS spectrum upon the detection of a transition.

Data Analysis

MS/MS spectra were searched with X!Tandem and Mascot against an artificial protein 

database consisting of the 166,174 selected peptides. The search results were validated with 

the TPP. Consensus spectral libraries were created with SpectraST. For each peptide 

precursor up to ten fragment ions from the 6530 Q-TOF consensus spectrum were extracted 

for transition verification.

SRM

Peptides were analyzed with the selected transitions on a G6460A nano HPLC Chip Cube 

QQQ LC-MS (Agilent Technologies). Data were acquired in dynamic MRM mode using the 

base CE.
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Resource

The human SRMAtlas is available at www.srmatlas.org, SRMAtlas build: ‘Complete Human 

SRMAtlas’.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Human SRMAtlas development
The scheme outlines the workflow steps to generate SRM assays for every human protein. 

Peptides were selected for 20,277 proteins in the UniProtKB/Swiss-Prot database as well as 

for spliced isoforms, SNPs and modifications. Selection of PTPs was an iterative process by 

mining MS observed peptides in PeptideAtlas and the use of prediction tools. The PABST 

algorithm evaluated sequence constraints and ranked observed and predicted peptides, the 

highest scoring peptides for each protein were selected for SRM assay development. 

Peptides were individually synthesized and pooled in sets of 96. Peptides were analyzed on 

an Agilent 6530 Q-TOF with five CEs to acquire high-resolution MS/MS spectra to create 
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spectral libraries and CE plots. SRM coordinates were extracted from the spectral library to 

acquire chromatographic traces on an Agilent 6460 QQQ. SRM assays were also developed 

on a Sciex QTrap 5500, upon the detection of a transition a full MS/MS spectrum was 

acquired to create a QTrap spectral library. SRM assay parameters including precursor and 

fragment ion type, charge state and rank order, elution time as well as chromatograms, 

MS/MS spectra and CE plots are provided in the human SRMAtlas resource. The human 

SRMAtlas is integrated with external knowledge bases providing comprehensive 

information on a protein of interest. See also Figure S1 and Table S2.
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Figure 2. Human proteome coverage
The graph details the number of peptides per protein by empirically observed peptides in the 

human PeptideAtlas (build 2010-05, blue) and by PTPs selected for the human SRMAtlas 

(red). ‘5+’ specifies five or more peptides. ‘any’ shows the number of proteins for which at 

least one peptide is available. 9946 proteins (49.1% of the predicted human proteome) were 

described by MS observed peptides in PeptideAtlas 2010. SRMAtlas provides with 99.9% 

proteome coverage for 20,255 proteins by synthetic peptides. See also Table S1 and Table 

S3.
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Figure 3. SRM assay success
(A) Number of developed SRM assays per instrument type in comparison to the number of 

synthesized peptides. The 6530 Q-TOF extracted coordinates served as input for the 6460 

QQQ derived SRM assays with a success of 84.9%. 6530 Q-TOF and QTrap 5500 combined 

result in 158,015 targeted assays constituting 95.1% of the selected peptides. (B–G) Selected 

peptides (red) and their assay success rate (blue) in percent are displayed by (B) peptide 

length, (C) expected charge state, (D) hydrophobicity as SSRCalc value, (E) amino acid, (F) 

N-terminal amino acid and (G) C-terminal amino acid. See also Figure S2.
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Figure 4. SRM assay coverage in the human SRMAtlas
Assay coverage by peptides per protein and instrument is displayed in green shades, selected 

peptides are shown in grey. 158,015 successfully developed assays represent 99.7% (20,225 

proteins) of the human proteome (dark green). 95.4% of the human proteome is presented by 

at least three assays. 22 proteins are inaccessible. See also Figure S3 and Table S4.
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Figure 5. Drug-induced inhibition of cholesterol synthesis
Systematic proteomic quantification of proteins from a reported gene module and enzymes 

in the cholesterol synthesis pathway upon drug treatment. (A) The heatmap shows the 

change in protein abundance following the treatment with lipoprotein deficient serum 

(LPDS) and atorvastatin compared to control conditions (untreated and 0.01% DMSO) of 

the same cell line. The signal represents the mean result from three independent biological 

experiments and three SRM analyses per sample. Proteins were hierarchically clustered 

according to the elicited response with the Ward2 algorithm and euclidean distance. Based 

on the clustering tree and the protein regulation we defined five different clusters of proteins 

showing similar response (I–V). Proteins marked with asterisks were included as 
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“housekeeping” proteins for normalization. (B) Shown are the measured proteins from the 

pathway synthesizing cholesterol from acetyl-CoA. The enzymes are sorted by their position 

in the pathway and the proteins are color-coded according to the cluster in (A) they belong 

to (I–IV). The proteins or metabolites in italics have not been measured and are included for 

completeness. The inhibition of HMGCR by atorvastatin and the negative feedback of 

SREBP2 are depicted. (C) SRM chromatograms of peptide TQNLPNC[160]QLISR and 

LFSASEFEDPLVGEDTER from protein FDTF1 showing the difference in signal 

abundance between untreated cells and cells treated with LDPS + 5 μM atorvastatin as 

representative examples. The lower signal in untreated cells is magnified in the inset. See 

also Table S5.

Kusebauch et al. Page 24

Cell. Author manuscript; available in PMC 2017 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Network of proteins associated with docetaxel perturbation of the cell cycle
SRM-based quantification of a protein network in three prostate cancer cell lines, DU145, 

LNCaP and PC-3, at four time points post-treatment with docetaxel and in untreated controls 

in comparison to mRNA abundance changes. The microarray-derived functional network 

was visualized with Ingenuity Pathway Analysis (IPA). The structure of the network is based 

on the IPA Core Analysis, STRING and Pathway Commons derived direct interactions and 

indirect relationships. Each heatmap visualizes the log2 abundance change of treated versus 

control cells for each time in each cell line at the transcript (mRNA) and protein (SRM) 

level. The signal represents the mean result from two technical replicates at the transcript 

level and three SRM analyses per sample. See also Figure S4 and Table S5.
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