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Abstract

Alongside its immediate implications for pregnancy complications, increasing evidence implicates
maternal obesity as a major determinant of health in the offspring during childhood and later adult
life. Observational studies provide evidence for effects of maternal obesity on the offspring’s risks
of obesity, coronary heart disease, stroke, type 2 diabetes and asthma. Maternal obesity may also
lead to poorer cognitive performance in the offspring and an increased risk of neurodevelopmental
disorders including cerebral palsy. Preliminary evidence suggests potential implications for
immune and infectious disease related outcomes. Insights from experimental studies support
causal effects of maternal obesity on offspring outcomes, mediated at least in part through changes
in epigenetic processes including alternations in DNA methylation, and perhaps through
alterations in the gut microbiome. Although the offspring of obese women who lose weight prior
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to pregnancy have a reduced risk of obesity, to date few controlled intervention studies have
reversed maternal obesity and examined the consequences for the offspring. The long term effects
of maternal obesity may have profound public health implications and indicate the urgency of
studies on causality, underlying mechanisms and effective interventions to reverse the epidemic of
obesity in women of child-bearing age and to mitigate its consequences for the offspring.

Introduction

Maternal obesity is widely recognised for its immediate implications in terms of pregnancy
complications, including gestational diabetes, pre-eclampsia and delivery of large-for-
gestational infants.1 More recently the recognition that developmental influences can have
long term consequences on offspring health and wellbeing has focused attention on the
potential for maternal obesity to be one of the influences contributing to the “developmental
origins of health and disease”.2 The high prevalence of maternal obesity associated with the
global obesity epidemic dictates that determination of any such long-term effects is now an
urgent priority.3

While control for potentially confounding variables remains a challenge in human
observational studies, an extensive experimental literature in rodents and non-human
primates has demonstrated that maternal obesity induced by dietary intervention leads to
obesity, diabetes, raised blood pressure, fatty liver and behaviour changes in the offspring.4
Maternal obesity has been shown to permanently alter a variety of metabolic control
processes in the fetus, including the hypothalamic response to leptin and subsequent
regulation of appetite and pancreatic beta cell physiology.4 Mechanisms are likely
multifactorial but potentially include maternal metabolic changes such as changes in glucose
and fatty acids,5 altered maternal hypothalamic-pituitary-adrenal axis activity6 and changes
in placental function and inflammation.7

In this Series paper, we review the evidence linking maternal obesity with long-term
offspring consequences, focusing on body composition, cardiometabolic, allergic, immune/
infectious and neuro-behavioural outcomes and discuss altered epigenetic processes as a
likely major mechanism underlying long-term effects of maternal obesity on the offspring.

Body composition and cardiometabolic outcomes

An accumulating body of evidence suggests that maternal pre-pregnancy obesity and
excessive gestational weight gain are associated with an increased risk of obesity in the
offspring during childhood.8-11 While the initial focus was on extreme categories of
maternal obesity, several recent studies suggest that higher maternal pre-pregnancy body
mass index (BMI) across the full spectrum is associated with greater childhood adiposity
and an adverse body fat distribution.12—-15 Higher gestational weight gain is also associated
with a higher childhood BMI and greater fat mass estimated by dual-energy X-ray
absorptiometry.15-20 Whilst both maternal pre-pregnancy obesity and excessive gestational
weight gain seem to be associated with a higher blood pressure, adverse lipid profile, and
insulin resistance in childhood,12,16,20,21 there is some evidence that these associations are
largely mediated by childhood BMI.12,16
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Alongside studies focused on outcomes in children, multiple studies have suggested that a
higher maternal pre-pregnancy BMI and greater gestational weight gain are associated with
a higher BMI in adolescents and adults.22—29 A study of 2,432 Australians found that
greater maternal gestational weight gain was associated with a higher BMI (on average 0.3
kg/m?2 (95% CI 0.1-0.4 kg/m?) higher for each 0.1 kg/week greater gestational weight gain)
in the offspring at the age 21 years.29 These associations were independent of maternal pre-
pregnancy BMI. Similarly, a study among 1400 mother-offspring pairs in Jerusalem showed
that higher maternal pre-pregnancy BMI was associated with higher offspring BMI at age 30
years (an increase of 1.8kg/m? in offspring BMI per increase of one standard deviation in
maternal pre-pregnancy BMI).23 In this study the associations of maternal pre-pregnancy
BMI with cardiovascular risk were fully explained by adult BMI.23 Findings from the
Helsinki Birth Cohort Study (HBCS) suggest that maternal BMI is positively associated with
offspring BMI at age 60 years.30,31 A higher maternal BMI was also associated with a less
favourable body fat distribution in female offspring at a mean age of 62 years.31 Similarly to
the studies in children, no consistent associations of maternal BMI with other cardiovascular
risk factors were present among adults. Inconsistencies may be due to study design and
availability of measurements and confounding factors.

Findings from registration/register-based and retrospective cohort studies in Helsinki
implicate maternal obesity in pregnancy as an important determinant of the risk of
cardiovascular morbidity and mortality in the offspring. A further study using birth records
from 37,709 individuals in the UK showed that a higher maternal BMI was associated with
an increased risk of premature all-cause mortality (hazard ratio HR 1.35, 95% CI 1.17-1.55)
and hospital admissions for cardiovascular events in adult offspring (HR 1.29, 95% CI
1.06-1.57).32 These associations were independent of socioeconomic status and current age.
In line with these findings, similar findings have been reported in the Helsinki Birth Cohort
Study participants born 1934-44 and followed up between the years 1971 to 2010.33
Cardiovascular disease, coronary heart disease, type 2 diabetes and stroke were all more
common among offspring of obese mothers. For cardiovascular disease, findings were
similar for males and females, while for type 2 diabetes the association was stronger in
women. The association of maternal BMI with offspring coronary heart disease was
statistically significant among males only (trend per kg/m2 HR 1.031, 95% CI 1.009-1.054),
whereas the association of maternal BMI with stroke was significant among females only
(trend per kg/m2 HR 1.059, 95% CI 1.019-1.101).33

Several studies have aimed to identify critical periods of maternal weight during pregnancy
for childhood outcomes. A study performed among 5,000 UK mother-offspring pairs
showed that gestational weight gain in the first 14 weeks of pregnancy was positively
associated with offspring adiposity at 9 years of age.17 Likewise a study among 6,000 Dutch
mother-offspring dyads showed that early-pregnancy weight gain was associated with an
adverse cardio-metabolic profile (OR 1.20 95% CI 1.07- 1.35) in childhood16 and that this
finding was independent of maternal weight gain before pregnancy and of weight gain in
later pregnancy. These studies suggest that maternal weight gain in early pregnancy, when
maternal fat accumulation forms a relatively large component of gestational weight gain,34
may be a critical period for an adverse childhood cardiovascular risk profile.
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Thus, maternal pre-pregnancy obesity and gestational weight gain, especially in early
pregnancy, may influence the risks of adiposity and adverse cardiovascular risk from
childhood to adulthood.

Allergic and atopic outcomes

The global rise in maternal obesity has been implicated in the parallel rising burden of
asthma, allergic disease and other early immune diseases, with speculation that this may be
part of the multisystem consequences of obesity-related inflammation for the offspring.
Indeed, a recent meta-analysis that included 14 studies and 108,321 mother-child pairs found
that maternal overweight or obesity in pregnancy were associated with increased risks of
childhood asthma or wheeze ever (OR 1.31, 95%CI 1.16-1.49) and current asthma or
wheeze (OR 1.21; 95%Cl, 1.07-1.37), independent of offspring BM1.35 Higher maternal
gestational weight gain was also associated with higher offspring odds of current asthma or
wheeze (OR 1.015 per 1 kg increase, 95% CI1 1.01-1.02) but not associated with asthma or
wheeze ever (OR = 1.04 per kg, 95% CI 0.97-1.11). Follow up of the Danish National Birth
Cohort found that the impact of maternal obesity was largely limited to asthma and
wheezing, and did not increase the risk of eczema, sensitisation (largely assessed to
aeroallergens) or hay fever,36 suggesting tissue specific effects. This is consistent with
evidence that allergic diseases result from both systemic immune dysregulation and tissue-
specific effects during critical stages of development.

Whilst pathways linking maternal obesity to offspring allergic and atopic outcomes are
multifactorial, the contribution of reduced microbial diversity, and in particular intestinal
dyshiosis, has emerged as a central risk factor. Changing microbial exposure has been long
implicated in the dramatic increase in early-onset inflammatory non-communicable disease
such as allergy and asthma, but the importance of these complex microbiological ecosystems
is becoming increasingly apparent in the physiological, immunological, and metabolic
dysregulation seen in obesity.37 Emerging evidence suggests the multisystem influences of
declining microbial diversity also begin in utero, including through epigenetic influences.38

Thus, an aberrant gut microbiome, known to be associated with maternal obesity, provides
an additional mechanism for both the immune and metabolic consequences on the
developing fetus.39 There is preliminary evidence in humans that dietary manipulation of
the maternal microbiome in pregnancy with prebiotic fibre has beneficial effects for both
offspring immune function and metabolism (reviewed in [40]). In animal models this can
prevent the development of an allergic asthma phenotype in the offspring — an effect directly
mediated by the short chain fatty acid (SCFA) metabolites produced by microbial
fermentation of dietary fibre.41 In addition to their effects on metabolism, glucose
homeostasis and appetite regulation, SCFA also have powerful anti-inflammatory effects —
both in local tissues and systemically through regulatory T cell induction.40,41 Notably, this
includes tissue-specific effects in the lung. Moreover, there is preliminary evidence in
humans that high SCFA (acetate) levels in pregnancy correlates with fewer doctor visits for
cough and wheeze in their offspring.41 This provides a novel perspective on how a Western-
style fast food diet associated with obesity might increase asthma risk, whereas a
Mediterranean diet (high in fish, fruits, nuts and vegetables) might be protective against
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wheeze and asthma in childhood42; such an effect could be mediated, at least in part,
through the microbiome and its metabolic effects on immune responses and tissue function.

Collectively these observations underscore the complex interplay between evolving
metabolic and immune responses and how these may be modified by maternal nutrition,
adiposity and microbial diversity to alter susceptibility to inflammatory diseases across the
lifecourse.43

Other immune and infectious disease related outcomes

Whether maternal obesity increases offspring susceptibility to other immune and infectious
disease related outcomes has been less well studied, but is important to consider given the
rising increases in obesity in low- and middle-income countries44 where the burden of
infection during pregnancy and in childhood is high. With dampened maternal immunity to
tolerate the semi-allogenic offspring, pregnancy represents a period of increased
susceptibility to infection, and maternal obesity further increases this risk.45 Studies in
rodent models of maternal obesity demonstrate worse offspring outcomes in response to
bacterial infection and experimentally induced autoimmunity.46,47

In humans, maternal obesity also impacts the maturation and development of the newborn
immune system, with adverse influences on the frequency and function of key innate and
adaptive immune cells measured in umbilical cord blood.48 Infants born in developed
countries also have different proportions of circulating immune cells and innate immune
responses compared to those born in developing countries, but at present little is known
about the contributions of maternal nutritional state vs. other exposures (e.g. infections) to
these differences.49 The difference may, however, have important effects on susceptibility to
pathogens, responses to vaccines, and development of immunopathological disorders such as
asthma and allergy.50 Obesity is a recently recognised risk factor for severe viral infections,
51 and in obese mothers prenatal exposure to a range of infections (such as influenza,
Toxoplasma gondii, rubella, cytomegalovirus and herpes simplex virus) could have
consequences for the offspring, including cardiometabolic and neurobehavioural diseases. It
is not known if maternal obesity further increases susceptibility to vertical transmission of
pathogens, though it is plausible that this may occur indirectly through exacerbation of the
already altered maternal endocrine, immune, metabolic milieu and inflammatory status
associated with maternal adiposity.52,53

A further important consideration is whether therapies used to treat maternal infection can
also have adverse impacts on the offspring’s risk of later disease, through increasing
maternal adiposity. Notably protease inhibitors, antiretrovirals (ARVSs) used to prevent
mother-to-child transmission of HIV, are associated with adverse maternal metabolic side
effects. These include changes in maternal body composition including increased central
adiposity, together with associated dyslipidaemia, insulin resistance, type 2 diabetes and
mitochondrial toxicity which may have long term effects on ARV-exposed infants.54
Detailed studies will be required to establish the long term effects, and to determine optimal
regimens to reduce any adverse outcomes.
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Offspring neurocognitive and behavioural outcomes

Despite the potential public health importance, relatively few cohort studies have examined
associations between maternal obesity and detailed neuro-developmental outcomes in
offspring (Table 1). For cognitive outcomes, human data showed that higher pre-pregnancy
weight is associated with poorer cognitive outcomes, while higher (but not excessive) weight
gain auring pregnancy has been associated with better offspring cognitive outcomes.55,56
However, published data do not allow definitive conclusions of potential effects of pre-
pregnancy adiposity on offspring cognitive development. Most studies found modest inverse
associations with both early and later cognitive standardized assessments or reading and
math scores,57 while a recent study found indications for a possible temporary increase in
cognitive outcomes on a standardized assessment at 6 months.58 However, associations with
maternal reports of cognitive performance were inconsistent in other large cohort studies.59

Maternal obesity has also been associated with offspring behavioural and emotional
problems.57,60 A recent meta-analysis and longitudinal study found an increased risk for
Autism Spectrum Disorders in children of mothers with obesity before/during pregnancy or
excessive gestational weight gain,60,61 with other approaches suggesting a particularly
robust association for excessive gestational weight gain .62 In 3 large European cohort
studies the association between pre-pregnant obesity and Attention Deficit Hyperactivity
Disorder was inconsistent, and lost when adjusted in full sibling comparisons.59,63 Fewer
studies have investigated the association with affective disorders and no recent studies have
investigated the link with anxiety, psychotic or eating disorders. Only one qualitative review
has been published on pre-pregnancy obesity and schizophrenia, which suggested an
association, although maternal schizophrenia was not taken into account.64 Although past
studies reported contradictory results relating maternal obesity to offspring cerebral palsy,65
large studies over the last 5 years have found positive associations, even after multiple
adjustments.57

One major limitation of the above-mentioned studies is the difficulty in differentiating
intrauterine effects from residual confounding. One way to explore this is to compare effect
sizes of maternal obesity versus paternal obesity. However, even with maternal effect sizes, it
is clear that other influences are also associated with both obesity and neurodevelopment,
such as maternal intelligence, socio-economic status, breastfeeding, maternal mental health,
maternal diet and other postnatal lifestyle influences. Other reasons for contradictory
findings are differences in methodology, sampling biases, different ages of measuring
outcomes and differences in defining obesity and outcomes. Some studies used retrospective
self-reports of pre-pregnancy weight or maternal reports of offspring outcomes, which may
be less reliable.55,59

In human studies it is difficult to confirm causation or to identify mechanisms linking
maternal obesity with offspring neurodevelopment. However, studies in rodents and non-
human primates have indicated 3 potential pathways: 1) high levels of nutrients, including
fatty acids and glucose; 2) high levels of hormones like leptin and insulin; 3) inflammatory
mediators, including interleukins and tumor necrosis factor.57,66 These factors cross the
placenta and can influence fetal neuroendocrine development, neuronal proliferation and
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brain development.57,66 Many dynamic factors play a role, with complex interactions
between maternal environment, placental patho-physiology and fetal epigenetic changes.
Indeed, animal studies showed that obesity during pregnancy can change brain homeostasis
and offspring behaviour through epigenetic mechanisms, including in the serotonin and
dopamine pathways, lipid peroxidation and corticosteroid receptor expression.67,68 Even
parental lifestyle factors prior to and at conception may have transgenerational effects by
epigenetic reprogramming at fertilization.69

Maternal obesity has many pathophysiological features in common with gestational
diabetes, a condition increasingly associated with evidence of mild cognitive impairment in
the offspring.58 For maternal obesity the paucity of current evidence indicates a need for
large-scale studies with more detailed cognitive and behavioural phenotyping in populations
of different cultures and ethnicities. Future studies should examine if maternal diet or
obesity itself is more important for programming of neurodevelopmental outcomes, and
include comprehensive assessments of diet and direct measurements of adiposity. Moreover,
underlying mechanisms should be studied in humans with biomarkers including genetic and
epigenetic modifications.

Epigenetic modifications: a potential underlying mechanism

Epigenetic processes are emerging as an important mechanism through which the “memory”
of developmental exposures is held, with pathophysiological consequences for a variety of
organs and systems. Epigenetic modifications have been proposed as a key causal
mechanism linking maternal adiposity and offspring outcome.70 Moreover, there is now
emerging evidence that epigenetic processes can act over several generations, including
three or more generations and through the paternal line.71 Epigenetic modifications result in
alterations in gene function in the absence of changes in the DNA sequence. The epigenetic
marks which mediate this include DNA methylation, post-translational modification of
histones and non-coding RNAs. DNA methylation occurring predominantly at cytosines in
cytosine-guanine (CpG) dinucleotides is the most widely studied. Table 2 summarises the
existing evidence linking maternal obesity in humans with offspring DNA methylation.

As shown in Table 2, a number of studies have used global methylation techniques to
explore associations between maternal obesity and offspring DNA methylation. Though the
findings are not consistent, three cohort studies found associations between maternal BMI
and offspring DNA methylation at birth72,73 and at 3 years.74 Notably, in the largest and
methodologically most robust study73 the methylation differences were only observed with
comparisons of extreme groups of BMI (i.e. obese vs normal-weight) and not when the over-
weight group was compared with normal-weight group. Reasons are unknown but this
observation may partly explain the negative findings in other studies where analyses have
been conducted across a range of maternal BMI measurements.75,76 The observation of
differentially methylated CpG sites in the peripheral blood of 2-25 year old siblings born to
obese mothers before and after bariatric surgery with associated weight loss77 is also
consistent with the hypothesis that maternal obesity impacts on offspring DNA methylation.
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Where a candidate gene approach has been adopted, associations between maternal
adiposity and DNA methylation at imprinted genes78-80 or in a number of genes known to
be involved in metabolism78-82 have been reported. Of particular interest is the observation
that aryl-hydrocarbon receptor repressor (AHRR) DNA methylation is 2.1% higher in
offspring of obese vs. normal weight mothers81; robust links are now established between
maternal smoking and offspring AHRR methylation and there is much evidence that
maternal smoking is associated with long term effects on offspring adiposity.15 The
observations raise the possibility that AHRR DNA methylation may be involved in the link
between maternal obesity and offspring adiposity. There is also evidence that maternal
glycaemia is involved in causal pathways influencing offspring leptin epigenetic regulation.
83

Methodological considerations

Fixed genetic variants shared by mother and offspring are important confounders of
proposed links between metabolic factors linked to maternal obesity and offspring outcomes,
as are shared postnatal influences on diet/lifestyle behaviours84 and microbiome-related
mechanisms.85 However, abdominal fat depots already differ at birth between groups with
different risks of later metabolic disease86 and it seems likely that at least some of the
effects of maternal obesity are mediated through prenatal environmental mechanisms.
Further delineation of maternal effect modifiers will aid the development of interventions to
improve offspring health, as will understanding of the underlying mechanisms and related
biomarker signatures of these processes. Alongside giving insights into the fundamental
processes and additional risk factors, such signatures will provide immediate outcome/
adherence measures for interventions, and enable identification of postnatal effect modifiers
and stratification of infants for targeting of postnatal interventions.

Whilst the available data is consistent with the hypothesis that maternal obesity impacts on
offspring DNA methylation changes at birth, whether these changes impact on development
of later adverse outcomes in the offspring remains unclear. The observation that the
methylation changes found at birth were also present at 3 year follow-up,74 provides some
evidence that the methylation changes may persist over time. This, together with the
observation of persistence of epigenetic marks associated with obesity across childhood and
adolescence,87 raises the possibility that epigenetic analysis may provide useful biomarkers
of disease risk across the lifespan. The findings do need to be interpreted with caution. Few
studies have included attempts to replicate or validate findings through using a replication
cohort,76 validation in comparison with published data73 or sex specificity. It is well
established that many DNA methylation patterns are tissue- and cell- specific,88 so the
relevance of findings from DNA extracted from cord or peripheral blood leukocytes remains
unclear. However, there is also evidence that, for a number of non-imprinted genes, DNA
methylation levels measured in blood are equivalent in buccal cells despite the fact that these
cell types arise from different germ layers (mesoderm and ectoderm respectively).89

Whilst the majority of studies have utilised DNA extracted from blood leukocytes as a
window on processes occurring in the fetus,72-76,78-81 the heterogeneity in sample
population, study size, and the inconsistency between methodological approaches, makes
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comparison of studies challenging. Further, methodological considerations, particularly if
complex tissues are used such as the placenta which contains mixed cell types, each with a
distinct methylation pattern, may present problems with data interpretation.

We do not know whether the reported associations between maternal obesity and epigenetic
processes are causal in relation to later outcomes, or whether they are merely a response to
the maternal obesogenic environment, or are secondary to the changes in growth that occur
in a fetus exposed to maternal obesity in utero. Obesity is also associated with changes in
intestinal microbiota and epigenetic changes can also be induced by gut microbiome
metabolites such as short chain fatty acids. Obesity associated changes in intestinal
microbiota have implications for infant microbiome development with consequences for
later child outcomes.90 Postnatal colonization of the microbiome in offspring has been
linked to changes of the hypothalamic-pituitary-adrenal axis linking brain function and
intestinal bacteria.91 Studies indeed showed associations between changes in the
microbiome and neurodevelopment disorders in which inflammation is implicated, such as
autism-spectrum disorders and attention-deficit hypersensitivity disorder.92

Studies to test causality for effects of maternal obesity on offspring epigenetics in humans
are hard to conduct; however, utilising associations with paternal obesity as a ‘negative
control’, the demonstration that epigenetic modifications are more strongly associated with
maternal than paternal obesity73 provides some support for the thesis that the associations of
maternal obesity with offspring methylation are due to an intrauterine mechanism. The
experimental demonstration that paternal diet prior to conception can have lasting effects on
offspring outcomes through epigenetic processes does, however, add further complexity to
an already complex situation.69 Further, many of the techniques used to investigate global
DNA methylation changes are limited in coverage of the human epigenome. For example,
the Infinium HumanMethylation450 BeadChip array used in many recent studies73,77 only
covers around 1.7% of all CpG sites in the genome and to date there has been little
consideration of non-CpG methylation or 5-hydroxymethylation.93 More studies are needed
that consider interaction of epigenetic changes with changes in the genome — recent studies
suggest that around a quarter of the variation in neonatal methylomes arises from fixed
genetic variants, with the remainder from gene-environment interactions.94

Conclusion

Although initial research linking developmental influences with major non-communicable
disorders in later life focused on the effects of fetal undernutrition, increasing evidence
indicates that exposure to maternal obesity also leads to an increased risk of disease in the
offspring. Observational studies have provided strong evidence for associations between
maternal obesity and an increase in the offspring’s risk of obesity, coronary heart disease,
stroke, type 2 diabetes and asthma. Emerging evidence suggests that maternal obesity may
be associated with poorer cognition in the offspring and an increased risk of
neurodevelopmental disorders including cerebral palsy. With the exception of recent small
studies of obese women who had bariatric surgery between pregnancies, there is a paucity of
controlled intervention studies that have reversed maternal obesity and examined the
consequences for the offspring. However, the offspring of obese women who lose weight
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prior to pregnancy have reduced risk of obesity95, and insights from experimental studies
support a causal effect of maternal obesity on offspring outcomes in later life. Mechanistic
insights also support causal effects on maternal obesity on the offspring, mediated through
changes in epigenetic processes, and perhaps through alterations in the gut microbiome of
the offspring. Table 4 lists key points for further research.

Greater insight is needed into the mechanisms acting in the mother, through which maternal
obesity and excess nutrient supply impart increased risk for future metabolic disease. Pre-
pregnancy obesity predisposes the mother to gestational diabetes, hypertension and pre-
eclampsia which may affect placental function and fetal energy metabolism. In addition,
obesity in pregnancy is associated with complex neuroendocrine, metabolic and immune/
inflammatory changes which likely impact on fetal hormonal exposure and nutrient supply.
6,96

The observations linking maternal obesity with lifelong consequences for the offspring have
profound public health implications. The prevalence of overweight/obesity in women of
childbearing age is increasing worldwide (with over 60% of women either overweight or
obese at conception in the United States97), which will increase population of children
exposed to an “obese intrauterine environment” and thus perpetuate cycle of increasing
obesity and chronic disease burden. Public health measures that will rapidly reverse the
current epidemic of maternal obesity appear implausible at present; in their absence,
breaking the cycle of maternal and offspring obesity requires from a new generation of
intervention studies, based on more detailed analysis of observational studies and designed
with a better understanding of the underpinning mechanisms acting in the mother and
offspring.

Search strategy

In this section we systematically reviewed studies with MEDLINE (1980-2015, EMBASE
(1980-2015) and Cochrane library (1980-2015) with the search terms “maternal obesity”,
“pre-conception”, “pregnancy”, “intergenerational”, “offspring” or “infant” or “child” in
combination with the terms “fetal programming”, “epigenetic”, “methylation”, “disease”,

“immunity”, “cardiovascular”, “type 2 diabetes”, “infection”, “HIV”, “malaria”,
“proinflammatory”, “cognition”, “school performance”, “psychopathology”, “mental
health”, “ADHD”, “autism”, “affective disorders”, “anxiety disorders”, “eating disorders”,
“psychotic disorders” and “cerebral palsy”. We selected large cohort and case-control
studies that were judged relevant, with a focus on studies conducted over the last 10 years in
humans, but not excluding commonly referenced and highly regarded older publications. We
also included references of articles identified by our search strategy and included those that
were found relevant.
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Table 4
Key points for future research

. Molecular mechanisms. Comprehensive experimental research is required into the epigenetic and
other mechanisms linking maternal obesity to long term outcomes in the offspring. This will enable
development of novel biomarkers and assist design of new intervention studies.

. Lifestyle, nutritional and metabolic drivers: Detailed information is needed on the specific maternal
lifestyle (e.g. physical activity, smoking, other environmental stressors), nutritional and metabolic
exposures that underpin effects of maternal obesity on offspring outcomes. This needs to be
combined with information on whether there are critical periods during development when such
exposures have their effects and whether any outcomes are sex-specific.

. Causality. Alongside mechanistic research, sophisticated observational studies are needed to obtain
further insight into the (multiple) causalities of the observed associations. Such study designs
include parent-offspring longitudinal cohorts, sib-pair analyses and the use of genetic variants and
haplotypes as instrumental variables.

. The need for new intervention studies. There is a paucity of intervention studies focused on
remediation of maternal obesity before and during pregnancy, or on moderation of the effects of
maternal obesity on the offspring. With a deeper understanding of the underlying mechanisms, new
interventions need to be designed and tested, with long-term follow-up of the offspring.
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