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Abstract

Tumor genetics guides patient selection for many new therapies, and cell culture studies have 

demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue 

context defines cancer dependence on specific metabolic pathways is unknown. Kras activation 

and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) 

or non-small cell lung carcinoma (NSCLC) respectively, but despite the same initiating events, 

these tumors utilize branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate 

free BCAAs into tissue protein and use BCAAs as a nitrogen source while PDAC tumors have 

decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic 

enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA 
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utilization, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor 

formation, arguing that tissue-of-origin is an important determinant of how cancers satisfy their 

metabolic requirements.

Main Text

The development of new cancer therapeutics relies on underlying genetic features to identify 

sensitive patients (1). Mutations in both KRAS and TP53 are common genetic events found 

in tumors arising from many tissues and cancers with these mutations are often difficult to 

treat (2, 3). These genetic events, as well as others associated with cancer, contribute to the 

metabolic changes that support biomass accumulation and cancer cell proliferation (4). 

Oncogenic RAS signaling increases glucose and glutamine consumption to support anabolic 

processes including nucleotide, lipid and non-essential amino acid biosynthesis and can also 

drive extracellular protein and lipid scavenging (5). TP53 mutations increase glucose 

consumption and glycolytic flux, while inactivation of TP53 renders cancer cells more 

dependent on serine uptake and metabolism (6).

KRAS and TP53 mutations are found in most human pancreatic tumors (7) and are also 

common in lung adenocarcinoma (8). How mutant KRAS or disruption of TP53 affect 

cancer metabolism is based on cell culture studies in defined medium, although in vivo 
nutrient availability varies widely between tissues and vasculature changes can limit nutrient 

access within tumors (9, 10). The inability to model these differences in culture has therefore 

limited understanding of how tissue-of-origin influences tumor metabolism (11). 

Furthermore, environment can influence metabolic phenotypes in vitro (12–14), and 

metabolic dependencies in vivo can differ from those found in vitro (15). Metabolic 

differences between tumor types may also result from cell-autonomous effects, and tumor 

metabolic gene expression more closely resembles that of its tissue-of-origin than that of 

other tumors (16). The same oncogenic driver can also cause different metabolic phenotypes 

in lung and liver tumors (17). This raises the possibility that tumor type is a major 

determinant of some tumor metabolic dependencies in vivo.

Elevated plasma BCAA levels are found in early PDAC, but not in NSCLC, even when the 

tumors are initiated by the same genetic events (18). To confirm that tumor tissue-of-origin 

influences whole-body BCAA metabolism, we utilized LSL–KrasG12D/+; Trp53flox/flox (KP) 

mice. We crossed KP mice to mice harboring a Cre-recombinase allele driven by a Pdx-1 
promoter (KP−/−C model) (19) or delivered viral Cre to the lungs of these mice (20) to 

generate models of PDAC and NSCLC respectively. Consistent with prior reports (18), mice 

with early PDAC have increased levels of plasma BCAAs while mice with early NSCLC 

exhibit decreased plasma BCAA levels (figs. S1, A–D). When cells derived from these 

tumors are implanted subcutaneously into syngeneic hosts, tumors derived from PDAC cells 

did not affect plasma BCAA levels (fig. S1E) (18), while tumors derived from NSCLC cells 

led to decreased plasma BCAAs (fig. S1F). These results suggest that tumor formation from 

NSCLC cells can cause depletion of circulating BCAAs.

To trace tissue-specific differences in BCAA metabolism in animals with pancreatic or lung 

tumors, mice were fed an amino acid defined diet in which 20% of leucine and valine 
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were 13C-labeled. All groups of mice exhibited similar levels of plasma 13C-BCAA 

enrichment after one-week exposure to labeled diets (figs. S2, A and B). While PDAC 

tumors contained slightly decreased free BCAAs relative to normal pancreas, NSCLC 

tumors displayed a significant increase in labeled free BCAAs compared to normal lung 

(Fig. 1A and figs. S2, C and D). Importantly, these differences are not a reflection of 

different amino acid compositions of normal or tumor tissue in either the PDAC or NSCLC 

models (fig. S3). Because BCAAs are essential amino acids that animals cannot synthesize 

de novo (21), these results suggest that unlike PDAC tumors, NSCLC tumors display 

enhanced BCAA uptake.

BCAAs have several potential metabolic fates in tissues (Fig. 1B). They can be directly 

incorporated into protein or reversibly transaminated by branched-chain amino acid 

transaminase (Bcat) to produce branched-chain α-ketoacids (BCKAs) and glutamate. 

BCKAs can regenerate BCAAs, be secreted, or be oxidatively decarboxylated by the 

branched-chain keto-acid dehydrogenase (Bckdh) complex to allow further oxidation of the 

carbon skeleton (21). In agreement with increased BCAA uptake in NSCLC tumors, lung 

tumors displayed increased labeled BCAA incorporation into protein compared to normal 

lung, while PDAC tumors incorporated less labeled BCAAs relative to normal pancreas 

(Fig. 1C and figs. S2, E and F). Analysis of metabolites derived from BCAA catabolism 

revealed that NSCLC tumors also had more labeled α-ketoisocaproate (KIC), the leucine-

derived BCKA, while no change was observed in levels of this labeled metabolite in PDAC 

tumors (Fig. 1D and fig. S2G). No other differences in labeled BCAA catabolite levels were 

observed in NSCLC compared to normal tissues, but PDAC tumors showed decreased 

labeling of the tricarboxylic acid (TCA) cycle intermediate citrate relative to normal 

pancreas from labeled BCAAs (Fig. 1E and figs. S2, G–I). This is consistent with recent 

work demonstrating minimal catabolism of BCAAs to TCA intermediates in proliferating 

cells (22). We then explored whether excess KIC may be excreted by NSCLC tumors for 

further metabolism by other tissues such as liver, which has limited Bcat, but high Bckdh 

activity (21, 23). Consistent with this hypothesis, we observe increased labeling of 

downstream leucine metabolites in the livers of mice with lung tumors (fig. S4). Taken 

together, these data suggest that BCAA uptake and transamination, but not their subsequent 

catabolism, may provide a benefit to NSCLC tumors, potentially by acting as a source of 

nitrogen.

To examine whether NSCLC tumors, but not PDAC tumors, use BCAAs as a source of 

nitrogen, we fed mice a modified amino acid diet where 50% of leucine was labeled 

with 15N, allowing the fate of leucine-derived nitrogen to be traced (Fig. 2A). In agreement 

with 13C-tracing, mice with PDAC demonstrated no differences in free 15N-labeled leucine 

in tumors compared to control pancreas (fig. S5A), and had less 15N incorporation into other 

amino acids (fig. S5B). In contrast, increased levels of 15N-leucine were found in NSCLC 

tumors compared to normal lung (fig. S5C) with decreased plasma enrichment of 15N-

leucine in mice with NSCLC tumors (Fig. 2B and fig. S5D). A relative increase in 15N-

labeling of non-essential amino acids, as well as valine and isoleucine, was observed in both 

the free and tissue-protein amino acid pools of NSCLC compared to control lung (Fig. 2C 

and figs. S5, C and E). Given the reduced plasma enrichment transamination mediated by 

Bcat isoforms is active in NSCLC tumor tissue. Evidence for increased BCAA 
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transamination in NSCLC compared to PDAC cells is also evident in vitro across a range of 

glutamine concentrations, however tissue culture does not recapitulate the same phenotypes 

observed in tumors (fig. S6). Downstream of non-essential amino acid biosynthesis, this 

nitrogen can also be used to generate nucleotides, primarily if aspartate is synthesized de 
novo in these tumors. Consistent with this possibility, we find increased incorporation 

of 15N-label in both aspartate and nucleotides (Figs. 2, C and D and fig. S5E). In some 

contexts, aspartate production is limiting for nucleotide biosynthesis and proliferation (24, 

25), indicating that BCAA metabolism may be important for tumor growth.

To test whether gene expression differences might contribute to differential BCAA 

metabolism, we used quantitative RT-PCR to analyze mRNA levels in NSCLC and PDAC 

tumors compared to their respective normal tissues. Consistent with increased BCAA uptake 

and KIC generation in NSCLC tumors, these tumors displayed increased expression of the 

primary BCAA transporter Slc7a5 (also called the neutral amino acid transporter Lat1) and 

increased levels of Bcat2 and Bckdh (Figs. 3, A, C and D). In contrast, PDAC exhibited 

decreased expression of these genes relative to normal pancreas (Figs. 3, B–D). Importantly, 

we also observed increased inhibitory phosphorylation of the Bckdh complex in lung tumors 

(Figs. 3, C and D). Bcat expression enables utilization of BCAAs as a source of nitrogen by 

lung tumors, and inhibition of Bckdh prevents further catabolism of these amino acids.

The expression changes observed in PDAC are not unique to this model, as the related KPC 

mouse model (26), which is initiated by a point mutation in Trp53, showed similar changes 

in gene expression (fig. S7A). Furthermore, these decreases in gene expression do not 

appear to be a consequence of the relative decrease in cancer cellularity of PDAC tumors 

(7), as sorted pancreatic cancer cells showed similar expression of genes involved in 

proximal BCAA catabolism relative to whole tumor extracts (fig. S7B). In further agreement 

with neither lung nor pancreatic cancers showing evidence of downstream BCAA-carbon 

oxidation, the expression of enzymes from this pathway was not markedly different in either 

of these cancers (figs. S7, C and D). In contrast, glycolytic gene expression was increased in 

both tumor types (figs. S7, E and F), which is consistent with known increases in glycolysis 

in each tumor type (27–29). Finally, to relate these data to tissue-of-origin, we performed 

principal component and clustering analyses, which demonstrated segregation of each tumor 

with the normal tissue from which it arose (figs. S7, G and H).

To ascertain whether similar changes in gene expression were also found in human cancers, 

we examined expression of BCAA catabolic enzymes in NSCLC and PDAC relative to their 

respective normal tissues in publically available data sets (30). Consistent with our 

observations in mice, human NSCLC had increased expression of SLC7A5, BCAT, and 

BCKDH, while expression of BCAA catabolism pathway enzymes was decreased in human 

PDAC (P < 0.0001 for the pathway) (Fig. 3E and tables S1 and S2). The distinct expression 

patterns for each tumor type were highly correlated across multiple data sets (fig. S7I and 

tables S3–6). Interestingly, the similarity between human NSCLC and the mouse model of 

NSCLC was observed despite KRAS and TP53 mutations occurring in less than 50% of 

human tumors (8) and similar expression patterns were also seen in squamous cell lung 

cancer (fig. S7I and table S6), further supporting the notion that tissue-of-origin can dictate 

metabolic phenotype.
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The increased contribution of plasma BCAAs to biomass in NSCLC tumors suggests that 

these tumors may rely on BCAA metabolism for growth. To test this possibility, we used 

CRISPR-Cas9 mediated genome editing to disrupt exon sequences present in both the Bcat1 
(cytosolic) and the Bcat2 (mitochondrial) isoforms (fig. S8A) in cancer cell lines derived 

from KP mice with NSCLC (Bcat null Clones A and B) or PDAC (Bcat null) (fig. S8B). 

Expression analysis and 15N-leucine tracing studies confirmed functional deletion of Bcat in 

both the NSCLC and PDAC cancer cells (figs. S8, C–F). Despite loss of both Bcat isoforms, 

these cells proliferate at a rate that is similar to the parental and vector control infected cell 

lines in vitro (Figs. 4, A and B). When Bcat null NSCLC cells were implanted 

subcutaneously in vivo, however, the ability of these cells to form tumors was significantly 

impaired, and one clone failed to produce tumors (Fig. 4C and fig. S8G). In contrast, Bcat 
null PDAC cells implanted subcutaneously generated tumors (Fig. 4D and fig. S8H). 

Additionally, orthotopic transplantation of NSCLC Bcat null cells failed to form lung tumors 

(Fig. 4E), while PDAC Bcat null cells formed tumors in the pancreas (Fig. 4F). Unlike 

subcutaneously implanted PDAC Bcat knockout cells, these cells formed smaller tumors in 

the pancreas than control cells (fig. S8I). Taken together, these data suggest that while KP 

lung tumors require Bcat activity for growth, this enzyme activity is dispensable for KP 

pancreas tumor formation, although PDAC tumor growth may be aided by Bcat activity in 

some tissue environments.

Proliferating cells need to acquire amino acids, both to make protein and as source of 

nitrogen for nucleotide and non-essential amino acid synthesis. Prior work has shown that 

macropinocytosis plays a role in filling this requirement in mutant RAS-driven PDAC 

tumors and cells (12, 14, 31). The data presented here argue that this process might be less 

active in mutant Ras transformed NSCLC tumors that acquire nitrogen in part from free 

BCAAs. Indeed, we observed less macropinocytosis in cells derived from mouse NSCLC 

relative to mouse PDAC cells (fig. S9). The decreased reliance of PDAC on free BCAAs 

however, does not necessarily imply that uptake of these amino acids would be toxic for this 

cancer. Overexpressing Slc7a5 in PDAC cells is sufficient to increase leucine uptake (figs. 

S10, A and B), but has minimal effects on proliferation in vitro (fig. S10C) or tumor growth 

in vivo (figs. S10, D and E).

A role for free BCAAs in supplying nitrogen to lung cancers is intriguing in light of recent 

studies in glioblastoma and NSCLC indicating that glutamine, which is the most abundant 

plasma amino acid and serves as the major free amino acid substrate for nitrogen and carbon 

in culture (32), contributes less to tumor metabolism in vivo (33, 34). Indeed, glucose-

tracing studies in humans and mice demonstrate that glutamine is net synthesized from 

glucose (15, 33–37), and alternative sources of nitrogen are required to support glutamine 

production. Thus, in these contexts, extraction of nitrogen from BCAAs for de novo amino 

acid and nucleotide biosynthesis in vivo may explain how lung tumors satisfy their nitrogen 

requirements. Consistent with this possibility, BCAT1 expression is known to be important 

for glioblastoma growth (38), suggesting that tumors arising in tissues other than the lung 

may also utilize BCAAs as a source of nitrogen. Multiple factors including local 

environment, tumor cell-of-origin, and genetic mutations can lead to convergent metabolic 

adaptations in disparate tumor types.
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Elevations in plasma BCAA levels are associated with early PDAC and result from increased 

tissue protein breakdown (18). The finding that PDAC tumors have decreased utilization of 

circulating BCAAs contributes to this phenotype as well. In contrast, NSCLC tumors 

actively utilize BCAAs leading to plasma BCAA depletions, particularly since the liver does 

not regulate levels of these amino acids (23). Many patients with PDAC and NSCLC tumors 

develop cachexia with end-stage disease (39). Our findings suggest that differential use of 

amino acids by tumors and the resulting impact on whole body metabolism might play a role 

in the initiation and natural history of cachexia. In addition, as personalized medicine plays a 

larger role in the clinical management of cancer, it will be critical to understand how cell-of-

origin and tissue environment interact with genetic events to influence metabolic 

dependencies of tumors and select the right treatment approaches for patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Mice with NSCLC display increased BCAA uptake and metabolism
(A and C–E) Mice were fed 13C-BCAA containing diet for seven days. (A) Relative ion 

counts by LC-MS analysis of fully-labeled, free BCAAs in tumors from PDAC and NSCLC 

mice and normal tissues from their respective control mice. Data are presented as mean ± 

SEM. N = 4 control and N = 4 PDAC; N = 4 control and N = 4 NSCLC. (B) Diagram of the 

leucine catabolic pathway. Red labels indicate metabolites measured by mass spectrometry. 

Blue circles indicate 13C-labeled carbons. KIC = α-ketoisocaproate. (C) Relative ion counts 

by GC-MS analysis of fully-labeled BCAAs from protein acid hydrolysates of tumors from 

PDAC and NSCLC mice and normal tissues from their respective control mice. Data are 

presented as mean ± SEM. N = 4 control and N = 4 PDAC; N = 4 control and N = 4 

NSCLC. (D) Relative ion counts by LC-MS analysis of fully-labeled KIC in tumors from 

PDAC and NSCLC mice and normal tissues from their respective control mice. Data are 

presented as mean ± SEM. N = 4 control and N = 4 PDAC; N = 4 control and N = 4 

NSCLC. (E) Citrate M+2 labeling (%) from [U-13C]-leucine by GC-MS analysis in tumors 

from PDAC and NSCLC mice and normal tissues from their respective control mice. Data 
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are presented as mean ± SEM. N = 4 control and N = 4 PDAC; N = 4 control and N = 4 

NSCLC. Two-tailed t test was used for all comparisons between two groups. * P<0.05, ** 

P<0.01, *** P<0.001
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Fig. 2. BCAA-Derived Nitrogen Supports Non-Essential Amino Acid and DNA Synthesis in 
NSCLC tumors
(A) Diagram of leucine transamination by Branched-chain amino acid transferase (Bcat) and 

nitrogen (green circles) fate after transamination. (B–D) NSCLC mice were fed 15N-leucine 

containing diet for six days. (B) Relative ion counts by GC-MS analysis of M+1 labeled 

amino acids in plasma of control and NSCLC mice. Data are presented as mean ± SEM. N = 

5 control and N = 6 NSCLC. (C) Relative ion counts by GC-MS analysis of M+1 labeled 

amino acids from protein acid hydrolysates of control mouse lung tissue and NSCLC mouse 

tumors. Data are presented as mean ± SEM. N = 6 control and N = 6 NSCLC. (D) M+1 

labeling (%) from 15N-leucine of deoxynucleic acids from nucleic acid digest of control 

mouse lung tissue and NSCLC mouse tumors. Data are presented as mean ± SEM. N = 6 

control and N = 6 NSCLC. Two-tailed t test was used for all comparisons between two 

groups. * P<0.05, ** P<0.01, *** P<0.001

Mayers et al. Page 11

Science. Author manuscript; available in PMC 2017 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Gene expression in both mouse and human tumors reflects tumor tissue-specific BCAA 
metabolism
(A) Relative Expression of BCAA metabolic pathway genes in normal lung and NSCLC 

tumors from KP mice. Data are presented as mean ± SEM. N = 6 control and N = 6 NSCLC. 

(B) Relative expression of BCAA metabolic pathway genes in normal pancreas and PDAC 

tumors from KP mice. Data are presented as mean ± SEM. N = 7 control and N = 5 PDAC. 

(C) Immunoblots of proteins involved in BCAA metabolism in representative normal lung 

and NSCLC tumors (left) and representative normal pancreas and PDAC tumors (right) from 

KP mice. (D) Quantification of (C). Data are presented as mean ± SEM. N = 6 control and N 
= 6 NSCLC; N = 4 control and N = 4 PDAC. (E) Comparison of BCAA metabolic pathway 

gene expression in human NSCLC and PDAC tumors relative to their adjacent paired normal 

tissues. Overall expression of BCAA metabolism genes is significantly decreased in PDAC 

(P<0.0001). Two-tailed t test was used for all comparisons between two groups unless 

otherwise stated. * P<0.05, ** P<0.01, *** P<0.001
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Fig. 4. Branched-chain amino acid transaminase (Bcat) activity is required for NSCLC tumor 
growth
(A) Doubling time of parental, control CRISPR-Cas9 vector infected (pLenti), and NSCLC 

Bcat null cell lines in vitro. Data are presented as mean ± SEM. N = 3 per group. 

Representative experiment from ≥ 2 repeats. (B) Doubling time of parental, control 

CRISPR-Cas9 vector infected and PDAC Bcat null cell lines in vitro. Data are presented as 

mean ± SEM. N = 3 per group. Representative experiment from ≥ 2 repeats. (C) Estimated 

tumor volume (mm3) of subcutaneous allograft of control infected and Bcat null syngenic 

NSCLC cell lines into C57BL/6J mice. Data are presented as mean ± SEM. N = 6 per group. 

Two-way repeated measures ANOVA used for comparison between groups. (D) Estimated 

tumor volume (mm3) of subcutaneous allograft of control infected and Bcat null syngenic 

PDAC cell lines into C57BL/6J mice. Data are presented as mean ± SEM. N = 5 pLenti 

control and N = 6 Bcat null. Two-way repeated measures ANOVA used for comparison 
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between groups. (E) Lung orthotopic allograft of control infected and Bcat null syngenic 

NSCLC cell lines into C57BL/6J mice. N = 23 vector control and N = 13 Bcat null Clone A. 

(F) Pancreatic orthotopic allograft of control infected and Bcat null syngenic PDAC cell 

lines into C57BL/6J mice. N = 8 per group. * P<0.05, ** P<0.01, *** P<0.001.
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