
Model Formulation j

QIS: A Framework for Biomedical Database Federation

LUIS MARENCO, MD, TZUU-YI WANG, PHD, GORDON SHEPHERD, MD, DPHIL,
PERRY L. MILLER, MD, PHD, PRAKASH NADKARNI, MD

A b s t r a c t Query Integrator System (QIS) is a database mediator framework intended to address robust data
integration from continuously changing heterogeneous data sources in the biosciences. Currently in the advanced
prototype stage, it is being used on a production basis to integrate data from neuroscience databases developed for the
SenseLab project at Yale University with external neuroscience and genomics databases. The QIS framework uses
standard technologies and is intended to be deployable by administrators with a moderate level of technological
expertise: It comes with various tools, such as interfaces for the design of distributed queries. The QIS architecture is
based on a set of distributed network-based servers, data source servers, integration servers, and ontology servers, that
exchange metadata as well as mappings of both metadata and data elements to elements in an ontology. Metadata
version difference determination coupled with decomposition of stored queries is used as the basis for partial query
recovery when the schema of data sources alters.

j J Am Med Inform Assoc. 2004;11:523–534. DOI 10.1197/jamia.M1506.

A major long-term goal of the national Human Brain Project
(HBP),1 a loosely knit consortium of neuroscience researchers,
is interoperability between the ‘‘federation’’ of databases pro-
duced by its members. The challenge is to devise a robust
approach that, among other things, enhances the ability to
answer complex research questions. At the most basic level,
database interoperation means querying multiple databases
in a single logical operation to retrieve data of interest from
each.

This paper outlines barriers to interoperability of bioscience
databases, summarizes previous interoperation approaches,
and then describes Query Integrator System (QIS), a system
developed to allow multidatabase network-based queries in
the biosciences. QIS is based on a distributed architecture
and is designed to facilitate maintenance of query integrity
as the underlying database schemas evolve over time. QIS
has been developed in the context of SenseLab,2,3 an ongoing
neuroinformatics project at Yale University supported by the

HBP. We discuss its current status, plans for future work, and
lessons learned.

Background
Barriers to Federation of Bioscience Databases
Considerable technical expertise is required to set up an effec-
tive federated-query infrastructure. Bioscience database sche-
mas evolve significantly and rapidly because of scientific
progress, changing research goals, and system redesign as
better ways of representing data are discovered. For perfor-
mance and safety reasons, participating databases typically
do not support unrestricted Structured Query Language
(SQL) queries. Instead, predefined, parameterized queries
provide commonly requested results. Here, alterations in da-
tabase structure may cause predefined queries to ‘‘break.’’

In a database federation, especially one involving interna-
tional collaborations, different groups may use subtly or
overtly different names to refer to the same class of data (syn-
onymy). Conversely, different groups may use the same name
in subtly different ways (polysemy). These differences in
meaning, if not documented explicitly, complicate interopera-
tion. To address these issues, one needs shared controlled vo-
cabulary support. Specifically, both data and metadata (‘‘data
that describe other data’’) must be mapped to concepts in con-
trolled vocabularies. Such curator-intensive mapping efforts
yield only modest benefit if existing standard vocabularies
provide insufficient domain coverage or if the field progresses
faster than corresponding curatorial efforts at vocabulary en-
hancement. It therefore may be necessary to create federation-
specific (‘‘local’’) vocabularies and to devise mechanisms to facil-
itate the identification of candidates for new concepts within
individual databases at both the metadata and data level.

Individual participating schemas must also be accompanied
by detailed textual annotations. Such annotations must
be far more extensive and lucid than documentation devel-
oped for internal purposes because they must provide consid-
erable overview for researchers who are unfamiliar with
a particular group’s interests and experimental methodology.

Affiliations of the authors: Center for Medical Informatics (LM, PLM,
PN), Department of Anesthesiology (LM, PLM, PN), Department of
Molecular, Cellular, and Developmental Biology (PLM), Department
of Neurobiology (GS), Yale University, New Haven, CT; and
Turboworx, Inc., (T-YW) Shelton, CT.

Supported by NIH grants P01 DC04732, G08 LM05583, and U01
ES10867.

The authors thank David Tuck of the Yale Department of Pathology,
Kei Cheung of the Yale Center of Medical Informatics, and Mihail
Bota at the University of Southern California, part of the BAMS
group.

The existing QIS code base will be made freely available on request
to the first author.

Correspondence and reprints: Luis Marenco, MD, Center for Medical
Informatics, Yale University School of Medicine, PO Box 208009,
New Haven, CT 06520-8009; e-mail: <luis.marenco@yale.edu>.

Received for publication: 11/24/03; accepted for publication:
06/23/04.

523Journal of the American Medical Informatics Association Volume 11 Number 6 Nov / Dec 2004



Annotations must often exist at two levels: metadata and
data. Creating uniformly high-quality annotations is time-
consuming, and, even when they exist, they may not be
enough. Kans and Oullette4 state: ‘‘As good as annotations
can be, they will never surpass a published article in fully rep-
resenting large amounts of biology. It is therefore imperative
to ensure the proper link between a research publication and
the primary data it will cite.’’

In addition, federated search mechanisms must appropriately
exclude data that are still preliminary and not available for
public access beyond the research group creating an individ-
ual database. Some of the work required to establish feder-
ated search mechanisms (such as describing the semantics
of data carefully and defining which data/metadata are pub-
lic) is unavoidable no matter what approach is used. A robust
framework, however, can minimize other barriers to effective
retrieval from federated databases.

Existing Approaches for Database Federation
The first step in data interoperability involves data source ac-
cess. The simplest method is based on downloadable files,
which are impractical for large, volatile datasets. Remote (di-
rect) database access through vendor-independent standards
such as ODBC (Open Database Connectivity) carries implica-
tions such as increased resource administration, security
risks, and institutional firewall restrictions. For data sources
exposed only as Web pages, the limitation of HTML (inter-
leaving content with formatting) makes content extraction te-
dious, nonscalable, and fragile as data proliferate and Web
page cosmetics change without notice. Second-generation
Web sites, such as National Center for Biotechnology
Information’s Entrez and the current version of SenseLab, cir-
cumvent this problem by allowing users to get data as ex-
tended markup language (XML) (‘‘pure’’ content) using
programmable ad hoc query interfaces. The use of site-spe-
cific XML data alone, however, is not intended to address fed-
eration across multiple sites.

A mechanism to relate contents in federated databases uses
the global schema approach based on an agreed-on (and infre-
quently revised) standard definition of domain-specific data
types and classes and their interrelationships. Anyone who
uses this standard (or a subset) must not deviate from it.
Microsoft’s ‘‘BizTalk’’5 E-commerce specification exemplifies
this approach, which is appropriate in situations in which
the organization of domain knowledge does not change very
fast. Its broad applicability in rapidly evolving areas such as
bioscience seems doubtful.

In contrast to global schema-based systems, mediator systems
allow a single query to be translated into the language recog-
nized by heterogeneous databases, extracting their informa-
tion and integrating the results in a single dataset. One type
of mediator uses a single repository that stores both the
schema description (metadata) as well as data of every in-
cluded database. This approach, often used within a single
geographically dispersed organization, has the advantage
that queries against the integrated data run relatively fast be-
cause one does not attempt to do ‘‘joins’’ of geographically
separated tables over the Internet. However, it becomes enor-
mously more complicated in the presence of highly heteroge-
neous schemas that are maintained autonomously and may
change often; the extremely close coordination required be-

tween master and satellite sites may not be feasible in rela-
tively loose research federations.

Other mediators6–8 limit themselves to metadata exchange
and leave the data in their original databases and format.
Here, queries are described in a common language and are
translated into the specific data source syntax, and results
are converted into a common output format. Some of these
systems are commercially available, e.g., IBM’s Discov-
eryLink7 and Genetic Exchange’s discoveryHub6,9; they are
limited with respect to the ranges of data sources accessed.
Further, they do not expressly address the issue of schema
evolution. Although they are valuable for dealing with data
source connectivity in domains where the individual logical
schemas evolve very slowly, if at all, the applicability of these
systems to federations where continual schema evolution is
the rule is doubtful. We contend that, in the bioscience do-
main, one must address heterogeneous data mediation and
schema adaptation together to achieve robust evolvable data
integration.

Current Research in Schema Evolution and
Database Federation
From the vast literature, we focus only on papers dealing with
problems directly related to this paper’s theme. McBrien and
Poulovassilis10 treat a database schema as a graph structure,
defining changes in terms of operations (such as addition and
removal) on the graph’s nodes and edges. This paper does not
differentiate between nodes representing tables and nodes
representing a table’s columns; also, transformations such
as column datatype changes are not considered. The treat-
ments by Ram and Shankaranarayanan11 and Li and Tari12

are much more comprehensive. The former tries to automate
the transformation of one schema to another by storing the
atomic changes in computable form. The second associates
schema evolution with version management, identifying the
former as an application of the latter and defining ‘‘versioning
algebra’’ in terms of operations on schema elements.

Determination of differences between two schemas, or between
two versions of a schema, is the inverse of the schema-evolu-
tion problem. Kim and Seo13 devised a taxonomy of schema
differences at the class/table, attribute/column, and do-
main/data type levels. Sheth and Kashyap14 have modified
this taxonomy to emphasize semantic differences.

In a loose federation, however, individual schemas tend to
evolve in a far more unplanned and nonorderly fashion than
conceived in the above-mentioned papers. Specifically, indi-
vidual groups’ system architects may freely alter their sche-
mas as needed but may communicate details of such
changes to the federation much later. In such scenarios, it is
desirable to minimize and/or streamline communication ef-
forts by enabling discovery of schema version differences by
the federation mediator.

Structural differences between schema versions (addition or
removal of tables/columns, changes in column properties,
and changes in table relationships) can be discovered in
a fairly straightforward manner using existing database con-
nectivity technology. The database administrator must only
allow a mediator program read-only access to the database.
However, the meaning of the differences in terms of the do-
main, or evolving domain-specific needs, cannot generally
be inferred automatically, even if detailed annotations are

524 MARENCO ET AL., QIS: Biomedical Database Federation



provided because of the generally unstructured and narrative
nature of the latter.

Previous Efforts in Bioinformatics
The TAMBIS (Transparent Access to Multiple Bioinformatics
Information Sources)15,16 project creates a bioinformatics
domain ontology using the GRAIL Description Logic Lan-
guage17, mapping concepts to existing information sources.
Queries against that ontology access individual sources in
a user-transparent manner. Although this approach is novel,
scalability and expressivity are a concern. The TAMBIS team
uses custom function libraries for each information source,
which provide a function-based view of the source. Although
its underlying query language, Collection Programming Lan-
guage,18 supports issuing of SQL commands that are passed
untranslated to a database, it is well known that function-
based perspectives of data that are essentially tabular are
not appropriate when one wishes to execute the equivalent
of SQL statements that join several tables arbitrarily. Further,
the depth and quality of the TAMBIS ontology, or its over-
lap with existing bioinformatics ontologies such as Gene
Ontology (http://www.geneontology.org), are also difficult
to evaluate because the ontology contents are not contributed
currently to a source such as the Unified Medical Language
System.19

The PQL structured language (PQL) approach of Mork
et al.20,21 relies on metadata describing the entities and rela-
tionships (‘‘links’’) between entities in a federated schema
plus additional metadata on intended semantics or judgments
about database curation quality to discover multiple ways of
answering loosely defined queries, such as finding all proteins
‘‘closely related’’ to a disease. The PQL query language resem-
bles the XQuery language used to query XML documents. It
provides access to several data sources, including nonstruc-
tured textual data such as Online Mendelian Inheritance in
Man.22 PQL’s metadata appear to be created manually by
the system developers: Certainly, there is no other way to cre-
ate metadata about topics such as curation quality. This ap-
proach is interesting and valid. It is geared, however, to
discovering ways to answer loosely defined queries rather
than performing consistency checking on existing queries that
are well defined, which is the focus of our work.

System Design Objectives
The objectives underlying the creation of the QIS were as
follows:

d to integrate data sources within the HBP that use technolo-
gies and approaches not supported by commercial media-
tor systems, e.g., our own Entity-Attribute-Value, with
Classes and Relationships (EAV/CR) approach23,24 and
the ‘‘common data model for neuroscience’’25

d to devise a scalable approach that can work in a loosely
coupled database federation that explicitly addresses the is-
sue of schema evolution within the participating databases

d to devise robust mechanisms for metadata exchange
d to address the ‘‘federated query fragility problem’’ by devis-

ing mechanisms that use differences in metadata versions to
facilitate automatic detection of schema evolution and as-
sess their impact on existing stored queries and to use such
impact assessment, where possible, for partial or complete
recovery of stored queries when target schemas have altered

d to support interoperation with a straightforward separa-
tion between public and private data

d to facilitate recording of system semantics through an infra-
structure that integrates ontologies and detailed text anno-
tations with federation and allows sites to contribute
candidate concepts to an ontology development group in
a seamless fashion

d to devise a low-cost and lightweight system that requires
a relatively modest infrastructure that researchers with lim-
ited informatics skills can operate and that can eventually
be distributed as an open source

QIS addresses the following issues: data source connectivity,
heterogeneous schema mapping, common query formula-
tion, query adaptation, and data delivery. QIS also features
simplified deployment, easy maintenance, enforced security,
firewall independency, alert systems, and domain indepen-
dency.

System Description
QIS belongs to the class of mediator systems that limit them-
selves to metadata exchange. It uses a distributed architecture
that is composed of three main functional units: integrator
servers (ISs), data source servers (DSSs), and the ontology
server (OS). These units form the system’s middle tier, con-
necting ‘‘data consumers’’ (client applications requesting query
execution) with ‘‘data providers’’ (back-end data sources
containing the data) and knowledge sources (Ontologies)
(Fig. 1). All servers use a database management system
(DBMS) (currently Microsoft SQL Server) in addition to a
Web server (Microsoft Internet Information Server). The an-
notated schemas of each unit are described in Appendix 1
(available as an online data supplement at www.jamia.org).

DSSs provide access to various data sources within a single
group (or cooperating groups within an institution). In addi-
tion to traditional relational databases and EAV/CR data-
bases that are built on top of relational technology, they also
access XML files and flat files (spreadsheets, text). DSS ad-
ministrators add definitions of data sources to the DSS
through a Web interface.

Schema capture is the process of capturing metadata about
a database (e.g., its table, column, and relationship defini-
tions) into structured form. This process is partly automated
through connectivity technologies that query a database’s
system data dictionary, or an XML schema. However, the cap-
tured metadata need to be manually enriched by mapping
schema elements, where possible, to elements in ontologies
to assist automatic schema discovery and by detailed textual
annotations to provide semantic overview.

Each DSS itself is like a ‘‘metadatabase’’ that accesses one or
more individual databases at a site. The administrators of in-
dividual databases must define the subset of the data and
metadata within their own schema that is ‘‘public.’’ This is
done through a three-step process for each data source:

d A special account with restricted privileges is created for
the DSS. This account cannot alter data and can access only
a limited set of tables or views.

d For tables containing both public and private data, an extra
Boolean column is added to indicate whether the row
in question is publicly accessible, with a default of

525Journal of the American Medical Informatics Association Volume 11 Number 6 Nov / Dec 2004



‘‘No/False’’ so rows that are to be made public must be
manually set.

d The administrator creates views that define the subset of
public columns/tables. Where the views use tables with
both public and private data, the view must specify a filter
that the ‘‘public’’ flag must be ‘‘True.’’ The DSS account is
now given permission to these views.

For non–account-oriented data, such as XML or text files,
which must be accessed in their entirety, the DSS stores the
URL of the source.

ISs store ‘‘public’’ metadata from DSSs as well as queries that
access single or multiple data sources. They allow building of
queries against the DSSs through a graphical user interface.
QIS is primarily intended to allow other Web-based applica-
tions to execute predefined queries on the IS through Web-
service26 mechanisms. That is, the IS operates ‘‘behind the
scenes,’’ and the federation’s end users connect to such an ap-
plication rather than to the IS directly. IS administrators per-
form tasks such as registering new DSSs and registering
individuals with domain expertise who can design queries.

An OS maintains an integrated schema, plus content, of one
or more controlled vocabularies used within the federation.
Alternatively, it may provide a gateway to relate these vocab-
ularies to standardized content maintained elsewhere, or it
may replicate such content. Parts of the OS schema are re-
corded redundantly at the IS level.

The OS supports mapping of elements in individual data
sources to vocabulary elements by curators who specialize
in ontology development. More important, once this informa-

tion is replicated on the DSS, mappings at both the metadata
and data levels are also forwarded to the IS. The OS can now
act as an information source map (ISM).27 Such information
makes it possible to ask questions of varying granularity, such
as ‘‘which data sources contain information on neurons’’
(where mappings are likely to exist at the metadata level)
and ‘‘which data sources contain information on cerebellar
Purkinje cells’’ (where mappings will likely exist at the
data level). The mapping to specific schema elements in a data
source allows assisted query composition against that data
source that would actually return the desired data.

Data and metadata elements from DSSs that are candidates
for local concept creation are exported to the OS in a facilitated
fashion, as discussed later. Other potential services envisaged
for the OS are term translation and unit conversion. The OS
also lets ontology curators collaborate with DSS curators to
jointly define new ‘‘local’’ (federation-specific) concepts: This
is necessary when existing ontologies offer insufficient cover-
age. This infrastructure can also be used to submit new, cu-
rated concepts to a standard vocabulary for inclusion in
a new release.

Communication between the various QIS nodes is XML en-
coded and HTTP delivered to support communication
through network firewalls. Asynchronous processing is sup-
ported using customized queuing services. Other software
technologies used by the system are Microsoft Active Data
Objects for data and schema access, Extended Markup
Language Document Object Model, and SAX (Simple
Application Programming Interface for XML) for dataset ma-
nipulation, and Scalable Vector Graphics28 for standardized
entity relationship (ER) diagram generation.

System Features
Dealing with Schema Evolution
For robustness of the federated query infrastructure, changes
to the physical or conceptual schema at the individual data
sources must be propagated efficiently to the IS. The DSS per-
forms periodic automated schema extraction from its individ-
ual data sources and computes a schema version difference
by comparing the new schema with the old. This computation
uses the principle underlying the well-known diff algo-
rithm,29 the basis of source-code control systems.30 Diff is an
example of an algorithm that determines the ‘‘edit distance’’31

between two objects (text files, DNA sequences), where
change is defined as the series of additions, deletions, or re-
placements required to transform one object to the other. In
QIS, changes are computed first at the aggregate (class/ta-
ble/view) level and then at the atomic/column level.

Not all replacements can be inferred automatically. For exam-
ple, changes in data type, length, and precision of a column
are inferred reliably, but the less common renaming of a col-
umn/table appears as a combination of an addition and a de-
letion, and it is typically up to a curator to note that the two
differences can be merged into one: Algorithms that try to in-
fer replacements based on synonymy between old and new
names are not guaranteed to work reliably for tables or col-
umns whose names may be abbreviated or use characters
such as underscores. In the case of EAV/CR data sources, au-
tomatic schema evolution is facilitated due to the metadata
identification’s preservation regardless of element renaming.

F i g u r e 1. Query Integration System—architectural over-
view. The QIS architecture is based on three middle-tier
servers. The data source server (DSS) connects to disparate
supported data sources. The Integrator Server (IS) stores,
coordinates query execution, and returns query results to
Web applications. The Ontology Server (OS) maps data
sources’ metadata and data elements to concepts in stan-
dard vocabularies. EAV/CR = Entity-Attribute-Value, with
Classes and Relationships; RDBMS = Rational Database
Management System; XML = extended markup language;
UMLS = Unified Medical Language System.

526 MARENCO ET AL., QIS: Biomedical Database Federation



The DSS computes the ‘‘deltas’’ (differences) between the
old and new schemas. The discovery of deltas is used to no-
tify the responsible DSS curators. The deltas can then be an-
notated and/or curated to identify replacements. Figure 2
shows a screenshot of the curation/annotation interface.
Replacements result in a version increment of the affected
element; deletions result in a version change of the parent
element. In general, all ancestors’ versions are increased
by one for the changed elements, and deltas contain
information about the elements whose version differs. Ob-
solete metadata entries are moved to a metadata ‘‘history’’
table.

The curated deltas are sent from the DSS to the IS. At the IS,
they are used to update (synchronize) the metadata for that
data source. Although metadata updates are intended to be
largely automatic, periodic reports on the delta audit trail
can be the basis for a dialog between the IS curators and
DSS curators. This may happen if, for example, the annota-
tion of particular elements is insufficient for the IS curators’
understanding. Note that the deltas only identify structural
differences; attributing meaning to these changes in terms of
the domain is beyond their scope. That is why human anno-
tations are necessary. Automatic delta identification, how-
ever, is critically important because identifying differences

F i g u r e 2. The metadata maintenance toolset. In the rear window, the schema viewer shows the Membrane Properties
Resource metadata description in tabular form. This information can alternatively be shown as an Entity relationship diagram or
extended markup language. Selection of the ‘‘Receptor_properties’’ grid shows the detailed metadata annotation: description,
concept identification, and semantic relationship (only for columns). The administrator can preview the underlying data to clarify
the content. The front window shows the versioning update tool showing the differences (deltas) between previous and current
versions with controls to resolve them.

527Journal of the American Medical Informatics Association Volume 11 Number 6 Nov / Dec 2004



and presenting these to a human expert facilitate their com-
prehensive annotation.

Composing Queries: Preserving Integrity
of Federated Queries
The IS, as a query repository, provides a tool (Fig. 3) to sup-
port the creation, maintenance, storage, and execution of data
queries. To create federated queries, one first creates several
single data source queries and then combines them into
a query of queries by specifying intersection, union, or differ-
ence operations.

A QIS query description derives from SQL-like languages

but is represented in XML to facilitate syntax validation and

future feature extensibility. The query is basically decom-

posed (‘‘preparsed’’) into its constituent elements, repre-

sented in terms of their metadata repository ‘‘unique

identifiers.’’ Further, for atomic/column elements in a query,

the IS records whether the element is part of the output (i.e., to

be displayed), whether it is used in the equivalent of a ‘‘join’’

to bridge between two tables, and whether it is part of a query

criterion/filter (in SQL parlance, part of the WHERE clause).

F i g u r e 3. Query designer tool at the integrator server showing information about the ‘‘getReceptorGeneChromosomeProtein
_structure’’ query. This particular query extracts information from the ‘‘Receptor_properties’’ table in the Membrane Properties
Resource (MPR) database. The extracted information includes the following fields: subtype, gene chromosome, and structure.
This is a parameterized query that requires a specific text string pattern to fit the subtype field. Note that the tool refers to grid and
column rather than tables and fields that are specific to Rational Database. This tool interacts with the user in three different ways:
visual query by example (current), extended markup language, and entity-relationship graph. The query can be checked for
correctness, executed in preview mode, and saved. The Graphic User Interface is based on a drill-down metaphor in which users
pick one or more tables/sets from one or more data sources and then select columns/attributes from these. (When making
a selection, choices are dynamically presented as pull-down menus, as shown for item #c3). Constraints are then specified for
columns/attributes of interest.

528 MARENCO ET AL., QIS: Biomedical Database Federation



Further details of the query language are beyond the scope of
this paper but are available at http://ycmi.med.yale.edu/
qis/qis_main.htm#Query.

Because this information is stored and indexed by metadata
identifiers, delta computation determines which queries are
affected by a change in a particular element. The authors of
the affected queries are now alerted, so that the query may
be fixed manually. However, the severity of this impact can
also be determined automatically as described below. In
many cases, even before fixing, ‘‘self-repairing’’ mechanisms
can be activated dynamically so that the query can still run,
returning partial or complete results.

d Atomic elements (columns) used in joins will typically
break the query irreparably if they are missing in a new
schema version because the column’s omission would
cause a pathological Cartesian join.

d Changes in data type are tolerable if the join condition is
modified dynamically by a type-conversion function so as
to temporarily restore the old data type. Query perfor-
mance, however, may be impaired because this step can
be computationally expensive.

d Changes in length or precision of a column will not affect
a query.

d Atomic elements used in a query filter will, if removed,
make the query less selective. In the worst case, one may re-
turn an entire table instead of the desired rows: This is gen-
erally unacceptable. Data type changes in such elements can
be compensated temporarily by dynamic type conversion.

d Atomic elements that are only displayed have the least im-
pact. Such elements can simply be dropped from the query
and replaced with placeholders indicating that they are
now missing. Similarly, if the query is part of a union query
that reaches out to multiple data sources or even multiple
DSSs, data from other (unaltered) sources can still be re-
turned.

d If a table has changed by addition of new columns, queries
do not need to be altered. However, query authors using
that table are informed about the new columns, so that
these can be used if necessary. Queries on single data
sources that return all the columns in a table/view can
automatically take advantage of the new columns.

d Delta determination is ordinarily a batch process, and a user
may execute a federated query against a changed schema
before delta computation, and the query may fail. The
DSSs will, however, sense this failure through standard er-
ror detection mechanisms. The failure triggers delta com-
putation and subsequent metadata update. If possible,
the query will be automatically reissued, relying on the
self-repairing mechanisms described above to return par-
tial or complete results, albeit after some delay. (This sce-
nario is illustrated later.)

Pilot Implementation: Neuroscience and Genomics
The QIS components have been built on the Microsoft
Windows platform using a Web server (MS Internet In-
formation Server), the MS SQL server DBMS (although our
database access code is vendor neutral), and the Micro-
soft .NET platform. Communication between servers is
XML based. We have implemented a demonstration QIS-
Client Web site that displays the information provided
by one IS (at http://ycmi-hbp.med.yale.edu/QISClient-IIS/

M1506.asp). The site invokes sample queries stored in an IS
and displays code samples demonstrating how the system
can be used from other Web sites.

Neuroscience
These examples are ‘‘behind-the-scenes’’ queries used in pro-
duction SenseLab. (The SenseLab application acts as a ‘‘client’’
of QIS.)

The first query combines data from SenseLab’s CellPropDB,
which stores experimental data on neuronal cell properties,
and the membrane properties inventory resource (MPIR),
a standalone MS-Access database independently developed
and maintained by a Yale researcher, which stores different
information on neuronal membrane data. The CellPropDB
query extracts receptor and ion channels information for
a user-specified cell type, which is the parameter to this query.
The MPIR query extracts gene information associated with
a list of receptors and ion channels (the parameter to the
second query). The join yields to the genes expressed in a
particular cell. This example is in use by the production
version of SenseLab. For the thalamic relay neuron’s in-
formation, go to http://senselab.med.yale.edu/senselab/
CellPropDB/GeneData.asp?cellid=262.

The second query integrates data from CellPropDB and the
University of Southern California’s Brain Architecture Man-
agement System (BAMS)32 (http://brancusi.usc.edu/bkms),
to which we have restricted access as part of a collaboration.
A query of brain structure (such as the hippocampus) from
CellPropDB is augmented with neuroscience nomenclature
provided by BAMS. To view this query, go to http://senselab.
med.yale.edu/senselab/CellPropDB/cpdbRegions.asp?sr=1,
and follow the hyperlink under ‘‘hippocampus’’ in the third
column. Here, the program code uses the QIS application-
programming interface to execute a specific query (of BAMS),
and merge its results into a local (SenseLab) result set.

Genomics
The ‘‘Genomics-Microarray’’ query example from the demon-
stration QIS-Client Web site accesses three genomic data-
bases, maintained by different Yale groups:

d the Yale Microarray Database (YMD), a large repository of
institutionally generated experimental information

d a local gene annotation database (GAD) that contains
curated genomic data on approximately 70,000 genes from
the National Center for Biotechnology Information’s Locus
Link and Unigene datasets

d a Yale installation of the well-known Gene Ontology (GO)
database, which is curated by the Gene Ontology consor-
tium (http://www.geneontology.org/GO.doc.html)

The query is intended to get microarray experiment results
for any genes with cytokine activity. It takes about 2 minutes
to run and operates as follows. All gene ontology accession
numbers where the descriptions containing ‘‘cytokine’’ are
pulled from GO. GAD is then queried to fetch the GenInfo
ID, gene symbol, and gene name for these accession numbers.
YMD is finally queried to fetch summaries of microarray ex-
periments that were indexed by these GenInfo IDs.

Query Adaptation
This example is based on an actual case from the SenseLab
project. The membrane properties resource database records,

529Journal of the American Medical Informatics Association Volume 11 Number 6 Nov / Dec 2004



for each receptor molecule, the gene from which it is de-
rived and its chromosomal cytogenetic location. The latter
was originally expressed in the string form in which it
is typically recorded in the literature, e.g., ‘‘11q12-q13.’’
(The hyphen indicates a region of uncertainty within
two cytogenetic bands.) We decided to partition the loca-
tion information into its three components: chromosome,
upper (short-arm, p-terminal) location extent, and lower
(long-arm, q-terminal) location extent. In the above exam-
ple, the values of the three fields would be 11, q12,
and q13. The extents can be converted to numeric frac-
tions, which allow searching by location range as well as
generation of graphics (‘‘ideograms’’) showing uncertainty
regions.

Figure 4A shows the results for the query ‘‘show me the genes
and chromosomal location information for all muscarinic re-
ceptors’’ with the original database structure. Figure 4B
shows the query after the structure has been altered—the
query has failed—with an error message about the query
being out of date. As result, the DSS initiates an automated
metadata refresh: The system now realizes that the
‘‘ChromosomeLocation’’ field is missing and shows only
Gene information (Fig. 4C). (Note that partial results are still
returned rather than the query failing completely; these assist
troubleshooting by the query designer.)

Figure 4D and E shows the result of human intervention.
Figure 4D shows the result after preliminary exploration,
where the field ‘‘Chromosome’’ replaces ‘‘Chromosome Lo-
cation.’’ It can be seen that the results returned lack cyto-
genetic information. Figure 4E shows the result of a correct
query rewrite, where three fields replace the initial field.

OS Operation
The OS currently hosts a replicated copy of the National
Library of Medicine’s Unified Medical Language System
(UMLS). Approximately a third of the concepts (metadata 1

data) in SenseLab have been mapped to UMLS concepts in
batch mode using a tailored version of an algorithm origi-
nally described,33 with results manually verified.

The OS currently provides an important function for
SenseLab, which, although residing within a single physical
database, is divided into a number of ‘‘virtual’’ databases or
portals to provide direct access to data of interest to a variety
of neuroscience communities (e.g., neuronal modelers, olfac-
tory receptor researchers). Although this division is conve-
nient for the regular visitor of SenseLab, it is a barrier to the
new user who wants to directly access objects of interest with-
out first having to know in which virtual database they might
lie. Further, neuroscience has numerous synonyms (‘‘5-HT,’’
‘‘serotonin,’’ ‘‘5-hydroxytryptamine’’ are the same molecule,
as are ‘‘norepinephrine’’ and ‘‘noradrenaline’’). It is desirable
to use UMLS’s synonymy information to facilitate query ex-
pansion during searching.

We therefore allow search of UMLS terms based on partial
phrases that the user enters: UMLS terms matching the
query are returned; when the user selects the term of inter-
est, the details of the matching concept(s)s are returned
(note: some terms are ambiguous and map to more than
one concept). Any mapped objects in our local databases
are also returned. Associated hyperlinks lead the user to de-

tailed information on each object. In Figure 5, the user has
searched the UMLS for terms beginning with ‘‘pyramidal.’’
A list of matching terms is returned: Clicking on
‘‘Pyramidal Cells’’ shows details (taken from UMLS’s
MRDEF table) as well as local objects mapped to that con-
cept. The resulting page shows the pyramidal cell found in
two databases in the federation: the Cortical Neuron
Database (located at the Gardner Laboratory at Cornell
University) and SenseLab. Clicking on the hyperlink associ-
ated with the second row then takes the user to details of the
neocortical pyramidal neuron within SenseLab. Other fea-
tures of the OS include finding common concepts between
a pair of federated databases and vocabulary creation by
promoting concepts within those databases not available in
UMLS.

The OS is described in depth, with an online tutorial, at the
following URL: http://ycmi.med.yale.edu/QIS/components.
htm#OS/.

Current Status
Individual parts of the QIS framework are already being
used on a production basis in SenseLab, which receives an
average of 3,000 hits per day, excluding Web-bots. The DSS,
IS, and OS are currently all housed on a single CPU in sepa-
rate physical databases. Therefore, there is currently no need
for a protocol for the communication of deltas between the
different server units. In the geographically separated server
scenario ultimately envisaged, however, such a protocol will
be necessary.

d Query features: Some query aggregate functions and subque-
ries are allowed in some data sources that implicitly sup-
port them. Because many databases implement them
differently, we allow their use in a limited fashion, resem-
bling pass-through queries in ODBC.

d Client application interfacing: The system currently provides
XML-HTTP requests. We currently do not support the
Simple Object Access Protocol (SOAP) because QIS is still
in too early a stage to merit the creation of specific contrac-
tual interface names and parameters. Supporting evolution
of the underlying database schemas will require SOAP
meta-interfaces rather than interfaces that hard code the
current view of domain knowledge. To avoid burdening
the reader with these technical details, sample code and
documentation can be found at http://ycmi.med.yale.
edu/QIS/interfacing.htm/.

d Query optimization: Little to no optimization of multidata-
base queries is currently performed. The query designer
must specify the order of operations on individual data
sources, such as in the genomics example. Only multidata-
base queries in which the composite query is explicitly des-
ignated as a union operation can be optimized by having
each of the component queries run in parallel. Caching of
specific intermediate data sets, based on query usage statis-
tics, may also improve performance. QIS performance
depends on several factors: query execution, data trans-
ference, and multidata-source query processing. Query ex-
ecution can take from a few seconds to minutes. For this
reason, all processing is asynchronous, and the system’s
tracing mechanisms inform the client about elapsed events.

530 MARENCO ET AL., QIS: Biomedical Database Federation



As in all distributed queries, performance is influenced by
network bandwidth, CPU performance, data storage mech-
anisms, and RAM availability.

d Integrity and Security: To protect access to restricted func-
tions such as query authoring and metadata annotation,
both IS and DSS use log in–based access control. Client ap-
plications can be restricted with passwords or to specific

network addresses. For sensitive data, encryption is imple-
mented using secure socket layer and server certificates.

Discussion
Many mainstream DBMSs are excessively fragile even when
dealing with a single (nonfederated) database. A well-known

F i g u r e 4. Query adaptation: this query asks for genes and chromosome location information for all muscarinic membrane
receptors. (A) The query runs against the original schema of a particular data source server and returns intended results. (B) The
schema has changed; the result field ‘‘chromosome location’’ is partitioned into three fields (chromosome and upper and lower
chromosomal location extents). When the query runs again, it fails, triggering an automatic metadata refresh at the integrator
server. (C) Partial recovery: gene information is returned, but chromosome location is not. (D) Initial exploration and use of data
preview show that the ‘‘chromosome’’ field returns only the initial part of the location information. (E) Incorporating the
additional two fields returns the original information. Only a user with query-creation privileges sees the screens in B through D
(which allow troubleshooting and query repair). To users without such privileges, an error message would simply state that the
query is obsolete and that an administrator has been notified.

531Journal of the American Medical Informatics Association Volume 11 Number 6 Nov / Dec 2004



example is the Oracle DBMS: Adding a new column to a table
causes all views defined on that table (which use all of that
table’s columns) to be rendered invalid; any operations
accessing this view will fail. These views must be manually
‘‘recompiled,’’ a tedious process requiring identifying the
numerous views in the database that are bad and then fixing
these, typically by text editing. The use of such technology by
itself in a distributed database scenario requires considerable
augmentation. A more robust dependency model could facil-

itate consistency maintenance. The research contribution of
QIS is in the development of an explicit dependency model
in the context of federated schemas.

Issues of Scalability
We provide both theoretical reasons and benchmarks to ar-
gue that the QIS architecture, which is based on metadata
exchange between the three kinds of servers, is highly scal-
able.

F i g u r e 5. Using the ontology server. The user searches the Unified Medical Language System (UMLS) for terms beginning
with ‘‘pyramidal.’’ A list of matching terms is returned (EN in the figure indicates that the term is in English). Clicking on
Pyramidal Cells shows details (taken from UMLS’s MRDEF table) as well as local objects mapped to that concept. Clicking on the
hyperlink associated with the second row (o265 is the unique internal identification of the object) takes the user to details of the
neocortical pyramidal neuron within SenseLab. One may then inspect additional information on the neuron, such as the receptors
and currents associated with individual compartments in the neuron, by clicking on further hyperlinks (details not shown). This
query involves all three types of servers: the ontology server provides access to the UMLS and also replicates the mapping of
objects in local databases to UMLS concepts: the integrator server actually mediates the query that fetches information from
SenseLab (by making a request of SenseLab’s data source).

532 MARENCO ET AL., QIS: Biomedical Database Federation



d In any database, metadata are typically a small fraction of
data. Thus, a table may contain millions of rows, but its
metadata describe a fixed, small number of columns in that
table.

d Metadata are significantly less volatile than data; that is, al-
though changes in schema definition are common in a scien-
tific database, schema changes do not occur every day.

d Schema capture and delta computation are distributed over
several DSSs, each of which is concerned only with its reg-
istered data sources. Only the deltas propagate between the
servers. Based on a preliminary version of an XML-based
protocol that we are devising for delta propagation, we
have estimated that the encoding of a single column change
in a table should not take more than 300 bytes (including
the XML tags).

d Mapping of data/metadata elements in data sources to
controlled-vocabulary concepts is manually intensive.
This type of task is well known in clinical informatics
settings and is a critical part of system integration efforts.
The process is performed against local copies of standard
vocabularies (such as UMLS) and is not communication
bandwidth intensive. The time/bandwidth required to
transmit information about mapped concepts to an OS is
negligible in comparison.

Benchmarks
The schema capture/delta computation process takes less
than 2 seconds against all of SenseLab (76 classes modeled
in EAV/CR, 238 attributes across all classes). We have also
arranged for the Yale DSS to access, as a data source, the
BAMS database at the University of Southern California
(USC). This MySQL database, which uses a conventional re-
lational database structure, has a total of 22 tables and 144
columns. To prevent contention for resources with internal
users, BAMS deliberately ‘‘throttles’’ queries from non-
USC users (i.e., runs them with low priority). Live schema
capture/delta computation of BAMS from the Yale DSS
takes approximately 20 seconds using a dual Pentium
Xeon 2 GHz with 1 GB RAM that also hosts several other
databases.

Future Work
Local ontology development is currently in its infancy within
the HBP. We intend to provide extensive infrastructure sup-
port for the development and maintenance of local, domain-
specific vocabularies. We are also implementing ‘‘semantic
queries’’ in which a user can identify elements of interest in
the ontology, and the system can compose appropriate
queries against data sources in an automated or assisted fash-
ion. The specifications of such queries can be saved for reuse,
so that even if there are currently very few data of interest to
a specific query within the federation, the same query may re-
turn more results when rerun in future as the contents of the
federated databases expand.

We need to devise efficient protocols for delta transmission.
There are several kinds of deltas: metadata differences be-
tween DSS schema versions (transmitted between DSS and
IS), ontology version differences (between OS and IS), and
changes in ontological mappings at the metadata and data
levels (between DSS and OS).

We also plan to improve query responsiveness. Nonparame-
terized queries of relatively static data can be scheduled to
run periodically, and their results cached on ISs to avoid un-
necessary reprocessing. This solution is particularly useful to
automatically populate client tables containing information
from multiple data sources (genomic, ontological, or publica-
tion data).

Lessons Learned

d Optimizing the Use of Metadata: Metadata improve the un-
derstandability of a database’s contents. Current database
engines provide limited metadata annotation facilities.
Such limitations hinder the ability to formulate distributed
queries. For the DSS alone, these metadata are being used
to generate real-time data previews from a particular table
or column. Data preview minimizes the number of itera-
tions required for correct query formulation. The use of ex-
plicit relationships in data sources that implicitly do not
support them also improves the understanding of the data-
base structure.

d Ontology Mapping: The use of ontological annotations im-
proves on ordinary metadata descriptions, facilitating the
localization of data of interest. One contribution of this pa-
per is in integrating ontology-based approaches with feder-
ated query technology. We believe that National Library of
Medicine’s idea of the ‘‘Information Sources Map,’’ which
was emphasized during the early years of UMLS develop-
ment, is one that needs to be resurrected and fleshed out.
Rather than simply indicating that a particular database
contains information about a particular topic of interest,
the mapping of vocabulary terms to actual metaschema/
data elements goes a step further in fetching contextual in-
formation. The problem of ‘‘meaning’’ of data has often
been somewhat ignored in the computer science literature
on database federation, which has often discussed unrealis-
tic scenarios such as mapping elements in different data-
bases to each other based on their names. In the future,
ontological mappings could play a crucial role in mediated
ontological queries (queries based on ontologies that are
translated to structured queries in ontologically annotated
database schemas).

d Query Adaptation by Decomposition and Versioning: The sec-
ond contribution of this paper is the use of versioning ap-
proaches and decomposition of queries into their atomic
components to achieve the goals of metadata refresh and
the offline flagging of queries depending on altered meta-
data elements well before they are actually executed.
Schema synchronization and versioning allow rapid deter-
mination of which queries are affected by a change to a spe-
cific element and the extent to which automated recovery
mechanisms can operate successfully.
Current systems often break without any indication or rea-
son of their failure. More important, many mainstream
DBMSs are excessively fragile even when dealing with
a single (nonfederated) database. With a more robust de-
pendency model, consistency maintenance could be per-
formed automatically.

We are continuing to accumulate experience with QIS, and re-
leasing the framework through open-source mechanisms will

533Journal of the American Medical Informatics Association Volume 11 Number 6 Nov / Dec 2004



help us evolve it based on the needs of a variety of groups that
choose to experiment with it.

References j

1. Koslow S, Huerta M. Neuroinformatics: An Overview of the
Human Brain Project. Mahwah, NJ: Lawrence Erlbaum Associ-
ates, 1997.

2. Miller PL, Nadkarni P, Singer M, Marenco L, Hines M, Shepherd
G. Integration of multidisciplinary sensory data: a pilot model of
the human brain project approach. J Am Med Inform Assoc.
2001;8:34–48.

3. Shepherd GM, Healy MD, Singer MS, et al. Senselab: a project in
multidisciplinary, multilevel sensory integration. In: Koslow SH,
Huerta MF, editors. Neuroinformatics: An Overview of the Hu-
man Brain Project. Mahwah, NJ: Lawrence Erlbaum Associates,
1997, pp 21–56.

4. Kans JA, Ouellette BFF. Submitting DNA sequences to the data-
bases. In: Baxevanis AD, Ouellette BFF, editors. Bioinformatics:
A Practical Guide to the Analysis of Genes and Proteins. New
York: John Wiley & Sons, 1998.

5. Li P. BizTalk Server Developer’s Guide. New York: Osborne/
McGraw-Hill, 2002.

6. Genetic Exchange Inc. Exploiting the life science data explosion
to speed new drug discovery. Turn Massive Amounts of Data in-
to Gems of Knowledge Using discoveryHub. Available at:
http://www.geneticxchange.com/v3/product/whitepapers/
WPexplosion.pdf. Accessed Dec 17, 2002.

7. Hass LM, Schwarz PM, Kodali P, Kotlar E, Rice JE, Swope WC.
DiscoveryLink: A system for Integrated Access to Life Science
Data Sources. IBM Syst J. 2001;40:489.

8. Josifovski V, Risch T. Query decomposition for a distributed ob-
ject-oriented mediator system. Dist Parallel Databases. 2002;11:
307–36.

9. Chung SY, Wong L. Kleisli: a new tool for data integration in bi-
ology. Trends Biotechnol. 1999;17:351–5.

10. McBrien P, Poulovassilis A. Schema evolution in heterogeneous
database architectures, a schema transformation approach. In:
Pidduck AB, editor. 14th International Conference on Advanced
Information Systems Engineering (CAiSE 2002). Berlin: Springer-
Verlag, 2002, pp 484–99.

11. Ram S, Shankaranarayanan G. Dynamically Managing Schema
Changes in a HDE—Pitfalls and Possibilities. 2003. Available
at: http://smgnet.bu.edu/smgnet/css/staff/pub/GetFile.CFM/
Shankar,_G_11.pdf?did=229&Filename=Shankar,_G_11.pdf. Ac-
cessed Jan 25, 2004.

12. Li X, Tari Z. Class versioning for schema evolution. In: Proceed-
ings of the Australian Database Conference (ADC), Perth, Aus-
tralia, 1998, pp 117–28.

13. Kim W, Seo J. Classifying schematic and data heterogeneity in
multidatabase systems. IEEE Comput. 1991;24:12–8.

14. Sheth AP, Kashyap V. So far (schematically) yet so near (seman-
tically). In: Proceedings of the International Federation for Infor-
mation Processing (IFIP) Working Group on Database Semantics
Conference on Interoperable Database Systems (DS-5) 1992, pp
283–312.

15. Paton NW, Stevens R, Baker PG, Goble CA, Bechhofer S, Brass
A. Query processing in the TAMBIS Bioinformatics Source Inte-

gration System. In: Proceedings of the 11th International Confer-
ence on Scientific and Statistical Databases (SSDBM), 1999. Los
Alamitos, CA: IEEE Press, 1999, pp 138–47.

16. Stevens R, Baker P, Bechhofer S, et al. TAMBIS: Transparent ac-
cess to multiple bioinformatics information sources. Bioinfor-
matics. 2000;16:184–6.

17. Rector AL, Bechhofer S, Goble CA, Horrocks I, Nowlan WA, Sol-
omon WD. The GRAIL concept modeling language for medical
terminology. Artif Intell Med. 1997;9:139–71.

18. Wong LS. The Collection Programming Language. 1996. Avail-
able at: http://citeseer.ist.psu.edu/wong96collection.html/. Ac-
cessed Apr 20, 2004.

19. Lindberg DA, Humphreys BL, McCray AT. The Unified Medical
Language System. Methods Inf Med. 1993;32:281–91.

20. Mork P, Halevy A, Tarczy-Hornoch P. A model for data integra-
tion systems of biomedical data applied to online genetic data-
bases. AMIA Fall Symp. 2001:473–7.

21. Mork P, Shaker R, Halevy A, Tarczy-Hornoch P. PQL: a declara-
tive query language over dynamic biological schemata. AMIA
Fall Symp. 2002:533–7.

22. OMIM. Online Mendelian Inheritance in Man. 2002. Available
at: http://www.ncbi.nlm.nih.gov/omim/. Accessed Nov 10,
2002.

23. Nadkarni PM. Management of evolving map data: data struc-
tures and algorithms based on the framework map. Genomics.
1995;30:565–73.

24. Marenco L, Tosches N, Crasto C, Shepherd G, Miller PL, Nad-
karni PM. Achieving evolvable Web-database bioscience appli-
cations using the EAV/CR framework: recent advances. J Am
Med Inform Assoc. 2003;10:444–53.

25. Gardner D, Knuth KH, Abato M, et al. Common data model for
neuroscience data and data model exchange. J Am Med Inform
Assoc. 2001;8:17–33.

26. Kaye D. Loosely Coupled: The Missing Pieces of Web Services.
Kentfield, CA: RDS Press, 2003.

27. Masys D. An evaluation of the source selection elements of the
prototype UMLS Information Sources Map. In: Proceedings of
the Annual Symposium on Computer Applications in Medical
Care. 1992:295–8.

28. Andersson O, Armstrong P, Axelsson H, et al. Scalable Vector
Graphics (SVG) 1.1 Specification. 2003. Available at: http://
www.w3.org/TR/2003/REC-SVG11-20030114/. Accessed Jul 7,
2003.

29. Haertel M, Hayes D, Stallman R, Tower L, Eggert P. GNU DIFF.
In. 2.7 ed. Cambridge, MA: Free Software Foundation, 1992. Pro-
gram and documentation available at: ftp://prep.ai.mit.edu/
pub/gnu/diffutils-2.7.

30. Krinke J, Zeller A. Linux/Unix Programming Toolset: Version
Control, Construction, Testing, and Debugging. New York: John
Wiley & Sons, 2001.

31. Sankoff DE, Kruskal JB. Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison.
Reading, MA: Pearson Addison-Wesley, 1983.

32. Bota M, Dong HW, Swanson LW. From gene networks to brain
networks. Nat Neurosci. 2003;6(8):795–9.

33. Nadkarni PM, Chen RS, Brandt CA. UMLS concept indexing for
production databases: a feasibility study. J Am Med Inform As-
soc. 2001;8:80–91.

534 MARENCO ET AL., QIS: Biomedical Database Federation


	QIS: a framework for biomedical database federation
	Background
	Barriers to federation of bioscience databases
	Existing approaches for database federation
	Current research in schema evolution and database federation
	Previous efforts in bioinformatics

	System design objectives
	System description
	System features
	Dealing with schema evolution
	Composing queries: preserving integrity �of federated queries

	Pilot implementation: neuroscience and genomics
	Neuroscience
	Genomics
	Query adaptation
	OS operation

	Current status
	Discussion
	Issues of scalability
	Benchmarks

	Future work
	Lessons learned



