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Heterotrimeric G protein signaling is regulated by signaling mod-
ules composed of heterotrimeric G proteins, active G protein-
coupled receptors (Rs), which activate G proteins, and GTPase-
activating proteins (GAPs), which deactivate G proteins. We term
these modules GTPase-cycle modules. The local concentrations of
these proteins are spatially regulated between plasma membrane
microdomains and between the plasma membrane and cytosol, but
no data or models are available that quantitatively explain the
effect of such regulation on signaling. We present a computational
model of the GTPase-cycle module that predicts that the interplay
of local G protein, R, and GAP concentrations gives rise to 16
distinct signaling regimes and numerous intermediate signaling
phenomena. The regimes suggest alternative modes of the GTPase-
cycle module that occur based on defined local concentrations of
the component proteins. In one mode, signaling occurs while G
protein and receptor are unclustered and GAP eliminates signaling;
in another, G protein and receptor are clustered and GAP can
rapidly modulate signaling but does not eliminate it. Experimental
data from multiple GTPase-cycle modules is interpreted in light of
these predictions. The latter mode explains previously paradoxical
data in which GAP does not alter maximal current amplitude of G
protein-activated ion channels, but hastens signaling. The predic-
tions indicate how variations in local concentrations of the com-
ponent proteins create GTPase-cycle modules with distinctive phe-
notypes. They provide a quantitative framework for investigating
how regulation of local concentrations of components of the
GTPase-cycle module affects signaling.

The timing and amplitude of signaling in cellular signaling
networks depends on the local concentrations and kinetics of

component proteins. The complexity of these networks has
precluded comprehensive quantitative analysis of signaling.
However, the networks can be divided into discrete signaling
modules that can be quantitatively modeled and analyzed inde-
pendently (1–5). Later, such models of modules can be experi-
mentally verified and then reconnected to build larger signaling
networks.

G protein-mediated signaling networks (6) are ideal for such
quantitative analysis. A key signaling module in these networks
is the GTPase-cycle module, which controls signaling by regu-
lating G protein activity. This module consists of a heterotri-
meric G protein, a guanine nucleotide exchange factor (GEF)
such as agonist-bound and active G protein-coupled receptor, a
GTPase-activating protein (GAP) such as regulator of G protein
signaling (RGS) protein or phospholipase C-�, GTP, GDP, and
Pi. The extent of G protein activation reflects the balance
between the rates of GDP�GTP exchange, which activates the G
protein, and GTP hydrolysis, which deactivates it (7–9). GEFs
facilitate GDP�GTP exchange (9), and GAPs accelerate GTP
hydrolysis (10, 11). Additional roles of GEFs (12) and GAPs (10,
11, 13, 14) are not included in this module. At present, we lack
quantitative understanding of how local concentrations and
kinetics of G proteins, receptors, and GAPs regulate G protein
activity in cells.

Local concentrations of G proteins, receptors, and GAPs are
spatially regulated by movement between membrane microdo-
mains (15–19), translocation of G proteins and GAPs between
the plasma membrane and cytosol (14, 20), desensitization and
internalization of receptors (12, 21), and perhaps by receptor
oligomerization (22). For example, �2-adrenergic receptors
leave caveolin-rich membrane fractions upon agonist stimulation
(18, 19), and the �-opioid receptor, G�i3, and the RGS protein
GAIP are concentrated at the neck of clathrin-coated pits (17).
No quantitative data are available on the local concentration of
receptors, G proteins or GAPs.

Furthermore, it is unclear how receptors and GAPs coordi-
nately regulate the amplitude and timing of G protein activity.
GAPs are expected to decrease amplitude and hasten G protein
deactivation upon removal of active receptor. However, RGS
proteins do not affect the amplitude of G protein-induced
changes in K� channel current, but do accelerate the timing of
both current onset upon agonist addition and current desensi-
tization upon agonist removal (23–26).

To address the aforementioned issues, we developed a com-
putational model of the kinetics of the GTPase-cycle module.
The model is distinct from previous models (27–33) in that (i) it
includes GAP, which many previous models have excluded; (ii)
it is based on a general mechanism that allows several modes of
coupling of G proteins with active receptors and GAPs, includ-
ing a ternary complex of receptor, G protein, and GAP; and (iii)
it is based on data pertaining to a single mammalian GTPase
cycle module; i.e., the m1 muscarinic acetylcholine receptor (m1
MAchR), Gq, and RGS4 (34–37). The predictions of the model
elucidate how changes in concentrations of molecules can result
in a variety of G protein signaling properties, both in terms of
dynamics as well as steady-state behavior, and how these prop-
erties are governed by the kinetics of the GTPase-cycle module.

Methods
Our model contains three parts: (i) a biochemical reaction
scheme of the GTPase-cycle module (Fig. 1), (ii) the mathe-
matical formulation of the scheme, and (iii) the computational
implementation of the mathematical equations.

Biochemical Reaction Scheme. We devised a reaction scheme based
on experimental data that is depicted in Fig. 1. The scheme
includes the following simplifications: (i) two multistep reac-
tions, GTP binding and G protein activation, and (ii) GTP
hydrolysis, Pi dissociation, and G protein deactivation (38) are
considered single-step reactions; all receptors are considered
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active. Increasing concentration of the active G protein-coupled
receptor (R) mimics increasing fractional binding of agonist by
a fixed cellular concentration of receptor; G�� subunits, which
modulate interaction of G� with nucleotides, receptors, and
GAPs, are not included.

Mathematical Formulation. The biochemical reaction scheme was
mathematically formulated in accordance with mass action
kinetics as 17 ordinary differential equations, one for each
chemical species, with 48 reaction-rate parameters. For example,
the equation for d[G]�dt is

d�G]�dt � [GA]*A�1 � �G*T]*T�1 � �RG�*R�1

� [GD]*D�1 � �G]*[A�*A�1 � [G]*[T]*T�1

� [G]*[R]*R�1 � [G]*[D�*D�1.

Rate constants such as A�1 are for association and A�1 are for
dissociation; they correspond to the reaction labeled A1 in Fig.
1. Reaction rates are given in Table 1. All equations are available
from us. The equations were solved simultaneously at each time
step of a simulation to track changes in the concentration of each
chemical species over time.

Computational Implementation. Reaction-rate parameters. Parame-
ters used in the equations were based on data from an experi-
mental system in which purified m1 MAchR, Gq, and RGS4
were reconstituted into large, unilamellar phospholipid vesicles
(34–37). Direct measurements were not available for several
parameters. These measurements were constrained between
upper and lower bounds evident from experimental data and
either optimized (39) to fit other experimental data or calculated
to satisfy constraints of the second law of thermodynamics.
Details of the parameters are available in Tables 3 and 4, Figs.
6 and 7, and Supporting Text, which are published as supporting
information on the PNAS web site.
Software. The equations were programmed and solved by using
GEPASI 3.30 (40) and MATLAB (Mathworks, Natick, MA) software.
Output of computation. The computational model output is the
concentration of all chemical species at any time or steady state.
From these data, we calculated Z, the fractional activity of G
proteins, and v, the GTP hydrolytic rate:

Z � ��G*T� � �RG*T� � �RG*AT� � �G*AT����G]total.

v � �P�4*�RG*AT� � P�2*�G*AT� � P�3*�RG*T�

� P�1*�G*T����G]total.

Simulation of vesicle experiments. The concentrations of molecules
derived from the vesicle experiments were used in the computer
simulation of these experiments, unless otherwise noted; details
of this conversion can be found in Supporting Text. Measure-
ments of steady-state GTPase rate and G protein fractional
activity from vesicle experiments were simulated by using the
steady-state values of the functions v and Z. Km (GTP), EC50
(GAP), and EC50 (R) were derived from plots of steady-state Z
and v versus the initial concentration of GTP, GAP, or R,
respectively. In GEPASI simulations, steady state occurred when
the concentration of each chemical species changed by �10�18

M�s; in MATLAB simulations, it was assumed at 1,000 s.
Computational characterization of the GTPase cycle. We simulated the
effect of large variations in R, G protein, GAP, GTP, GDP, and
Pi concentrations on Z and v. In many simulations, average
cellular concentrations of GTP (468 �M), GDP (149 �M), and
Pi (4.4 mM) were used (41).

Results and Discussion
Parameters of the Model. Our model contains 48 reaction-rate
parameters (Table 1). Several were not directly measured but
were rigorously optimized or calculated within constraints of all
available data, as described in Methods. That procedure resulted
in 16 similar parameter sets that fit the available data (Com-
parison of these parameter sets can be seen in Supporting Text).
These in essence represent 16 competing versions of the com-
putational model. Predictions made by these parameter sets were
similar, and in the remainder of this paper figures and discussion
are based on the parameter set (Table 1) that best fits all
available experimental data.

Validation of the Model Against Vesicle Experiments. Simulations
agreed well with data from the m1 MAchR-Gq-RGS4 vesicle
system, reproducing steady-state GTPase rates that span 4
orders of magnitude, as well as Km (GTP) and EC50 (GAP) (Fig.
2). Simulations also agreed with fractional activity of Gq in the
presence of carbamoylcholine-stimulated m1 MAchR with and

Fig. 1. Biochemical reaction scheme of the GTPase cycle. The GTPase reaction
is described as GTP (T) binding to G protein (G) to form the Michaelis complex
G*T, followed by hydrolysis of bound GTP to form the G protein–GDP complex
(GD) and subsequent dissociation of GDP (D). Each G species can bind agonist-
bound receptor (R), GAP (A), or both at each stage of the GTPase reaction. All
reactions are reversible. The asterisk denotes activation of G protein by GTP.
Free GTP, GDP, and Pi are not shown in the reaction scheme for simplicity.
Reaction rates are listed in Table 1.

Table 1. Reaction-rate parameters (labeled per Fig. 1)

Reaction Kd, nM k�, M�1�s�1 k�, s�1

A1 911 8.78 � 106 8.00
A2 106 3.86 � 105 0.0408
A3 1.48 � 104 6.41 � 104 0.950
A4 77.0 7.43 � 104 0.00572
A5 75.8 6.30 � 106 0.478
A6 5.28 � 104 1.30 � 104 0.685
R1 0.0282 6.36 � 108 0.0179
R2 9.74 1.32 � 108 1.28
R3 0.0239 9.47 � 107 0.00227
R4 0.00238 2.28 � 107 0.0000543
R5 6.99 6.20 � 106 0.0433
R6 0.0853 4.94 � 107 0.00421
T1 0.0158 5.29 � 105 8.38 � 10�6

T2 0.00184 4.47 � 104 8.32 � 10�8

T3 5.48 8.53 � 105 0.00468
T4 5.40 1.62 � 106 0.00875
P1 3.34 � 109 9.03 � 10�7 0.0130
P2 2.38 � 107 0.244 25.0
P3 1.36 � 1012 2.22 � 10�9 0.0130
P4 1.95 � 109 0.00297 25.0
D1 1,600 62.3 0.000100
D2 2.61 � 104 3.83 0.000100
D3 1,360 1.47 � 106 2.00
D4 9.35 � 105 2,940 2.75

k�, association rates; k�, dissociation rates.
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without GAP (i.e., 0.62 and 0.12, respectively, in ref. 28; 0.53 and
0.12, respectively, in our simulations. Details of this simulation
can be found in Supporting Text). Additionally, simulations fit an
important experimental result that was not used in the optimi-
zation, namely that GAP increases EC50 (agonist) (Fig. 8, which
is published as supporting information on the PNAS web site;
additional details can be found in Supporting Text). Furthermore,
the Kd values of the reaction scheme reproduced the known free
energy of GTP hydrolysis (42) and maintained material equi-
librium in accordance with the second law of thermodynamics.
Finally, we verified that the simulations reached the same steady
state from any initial conditions with identical total R, G, GAP,
GTP, GDP, and Pi concentrations (unpublished data). The
model agrees well with diverse experimental data, and, in the
next sections, we describe its predictions.

Variations in Active Receptor and GAP Concentrations Lead to Diverse
Signaling Behavior, Bounded by Four Limiting Signaling Regimes
(LSRs). Cells spatially regulate the concentrations of components
of the GTPase-cycle module to regulate G protein activity, but
little is known about how specific changes in these concentra-
tions affect G protein activity. We used the model to examine the
effect of changes in R and GAP concentrations on G protein
activity. The simulations show that variations in R and GAP
concentrations lead to a wide range of steady-state Z and v (Fig.
3). There are four signaling regimes that are stable to changes in
R and GAP concentrations (plateaus in Fig. 3) that we term
LSRs. The LSRs represent the physiological cases of G protein
activity in the: (i) absence of R and GAP (G), (ii) presence of
saturating R but absence of GAP (RG), (iii) presence of
saturating R and GAP (RGA), and (iv) presence of saturating
GAP but absence of R (GA), respectively. Along the transitions
between the LSRs, a large variety of G protein signaling behavior
occurs. Overall, the four LSRs and transitions between them
provide a quantitative framework for understanding how local R
and GAP concentrations affect G protein activity.

The LSRs Arise from the Kinetics of the GTPase Cycle Module. Each
LSR arises from the reactions along one of the four horizontal
edges of the biochemical reaction scheme (Fig. 1). These extreme
paths have distinct kinetics, distinct values of Z and v, and are the
mechanisms underlying the LSRs (Fig. 3C). Path G keeps Z and
v low in LSR G by slow GDP�GTP exchange. Path RG keeps Z
high by fast GDP�GTP exchange and slow GTP hydrolysis,

resulting in moderate v in LSR RG. Path RGA has substantial
Z and high v by coupling fast GTP hydrolysis and GDP�GTP
exchange rates, as shown in LSR RGA. Path GA maintains low
Z and v in LSR GA by fast GTP hydrolysis with slow GDP�GTP
exchange. In cells, changes in local R and GAP concentrations
lead to changes in the proportion of G proteins following any one
extreme path, resulting in the large range of G protein signaling
activity predicted in Fig. 3 and observed in biological systems.

All GTPase-cycle modules obey the mechanism in Fig. 1 and
thus have the four extreme paths. We therefore expect the four
LSRs and transitions between them to be a feature of all
GTPase-cycle modules, not only the m1 MAchR, Gq, and RGS4
module that we have modeled. However, the kinetics of GTPase-
cycle modules differ, and, hence, we expect that among GTPase-
cycle modules, Z and v of each LSR, and the changes in
concentration for transitions between LSRs will differ. These
differences determine specialized GTPase-cycle modules with
unique properties of signal amplitude and timing that regulate
diverse cellular signaling pathways in cells.

The GTPase-Cycle Module Responds Rapidly to Changes in R and GAP
Concentrations. Fig. 3 shows Z and v for a range of R and GAP
concentrations at steady state; however, regulation of R and
GAP concentrations in vivo is dynamic, and, hence, the
GTPase-cycle module might not occur at steady state in vivo.
We simulated the time of return to steady state after a change
in R or GAP concentrations. The simulations (Fig. 4) predict
that if large amounts of R or GAP are present, the GTPase-
cycle module reaches steady state in �1 s, regardless of the
change in R or GAP concentration, and that the fastest return
to steady state (t1/2 	 0.03 s) requires saturating GAP.
However, several minutes (t1/2 	 50–60 s) are needed to relax
to basal G protein activity after removal of both R and GAP.
These predictions show that it is sufficient to study only
steady-state activity of the GTPase-cycle module because the
presteady state is short-lived. Moreover, they show that satu-
rating GAP is required for the fastest return to steady state and

Fig. 2. Comparison of steady-state GTPase activities derived from simula-
tions with those from vesicle experiments. Simulations of the best parameter
set are shown by lines and experimental data (35) by circles. Notably, some
data in A and B that were measured under the same experimental conditions
differ in GTPase rate, an error probably due to variability of protein distribu-
tions in the membrane preparations and�or variability in the proportion of G
proteins that coupled to R in the membrane preparations. To compensate, we
allowed the concentration of receptor used in simulations (Rsim) to vary
slightly from that used in vesicle experiments (Rexp). (A) Dependence on GAP
concentration in the presence of 10 �M GTP; Rexp 	 3 nM and Rsim 	 5.4 nM.
(B) Dependence on GTP concentration in the presence of 4 �M GAP (simula-
tion and experiment; Rexp 	 3 nM and Rsim 	 2.2 nM. (C) Dependence on GTP
concentration in the absence of a GAP; Rexp 	 3 nM and Rsim 	 3 nM. In
experiments and simulations, [G] 	 10 nM. In experiments, 1 mM (saturating)
carbamoylcholine agonist was used.

Fig. 3. The concentrations of active receptor (R) and GAP determine steady-
state fractional G protein activation and GTPase activity. Three-dimensional
logarithmic plots show the output of simulations of Z (A) and v (B) at various
concentrations of R and GAP, with 10 nM G protein and cellular concentrations
of GTP, GDP, and Pi. The labeled plateaus (G, RG, RGA, and GA) show the four
LSRs of the GTPase cycle and indicate the proteins contributing to regulation
of G protein activity in each limit. Among the LSRs, a large range of interme-
diate signaling behavior occurs, and to transition between LSRs changes in R
or GAP concentration of 
50- to 1,000-fold are required. (C) The four extreme
paths and their values of Z and v.
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therefore suggest that GAP is required for the fastest signal
modulation during cellular signaling.

G Protein Concentration Determines the Effect of R or GAP by
Selecting Between Mass Action Regimes (MARs) and Stoichiometric
Regimes (SRs). In the previous sections, we reported the effect of
changes in R and GAP concentration on Z and v, whereas G
protein concentration was constant. In this section, we report the
effect of changes in G protein concentration on Z and v for
specified R and GAP concentrations. To provide a deeper
understanding of the main results, we introduce the MAR, which
occurs at relatively low G protein concentrations, and the SR,
which occurs at relatively high G protein concentrations. These
are epiphenomena of the model and in each of them R and GAP
have different capacities to regulate Z and v. In the MAR, R
increases Z and v if the association rate of R with G–GDP
(reaction R�3, pseudo-first-order rate 	 
108 M�1�s�1 � [R])
exceeds the rate of GDP dissociation from G-GDP (reaction D�1
	 0.0001 s�1). However, R can no longer increase Z and v when
the association rate of R with G-GDP exceeds the rate of
R-stimulated GDP dissociation (reaction D�3 	 2 s�1). Thus, R
influences Z and v over the range of concentrations, 
1 pM ��

10 nM (Fig. 3). Alternatively, if the concentration of G protein
nears or exceeds the concentration of R that results in saturation
of the R–G–GDP complex in the MAR, excess G proteins have

no access to free R. Under these circumstances, the concentra-
tion of R must increase to approximately that of the concentra-
tion of G protein to be maximally effective. This equimolar
stoichiometry between G and R characterizes the SR. Similar
principles govern the MAR and SR for G–R interactions in the
presence of saturating GAP (D�2, R�6 and D�4 in Fig. 1), and
for G–GAP interactions in the absence of R (P�3, A�5 and P�4)
or presence of saturating R (P�1, A�2, and P�2). Transitions
between MAR and SR occur at one G protein concentration for
G–R interactions and yet another for G-GAP interactions,
because the relevant reaction rates differ. Thus, as G protein
concentration increases, a trough or peak in Z may form (Fig.
5A). The trough is used to illustrate the phenomenon of MAR
and SR in Fig. 5B.

The significance of MAR and SR is that, together, they
provide a mechanism whereby the local G protein concentration
determines what effect the local R or GAP concentrations have
on G protein activity. As G protein concentration is increased
from MAR to SR, the concentrations of R and GAP needed to
regulate G protein activity also increase, as shown quantitatively
in Fig. 5 C and D. Furthermore, the potency of GAP to
deactivate G proteins is increased 
10-fold in the SR (Fig. 5C),
which suggests that signaling in the SR is more rapidly modulated
compared with the MAR. The MAR and SR add new detail to
the four LSRs described above, and because each LSR can occur
when G–GAP interactions are in the MAR or SR and when G–R
interactions are in the MAR or SR, there are in essence 16
distinct signaling regimes of the GTPase-cycle module, with
infinite gradations between them.

We predict that MAR and SR are general characteristics of
GTPase-cycle modules. Whether particular GTPase-cycle mod-
ules operate in the MAR, SR, or both must be tested experi-
mentally. In the next section, we use available data and simu-
lations from the model to discuss the conditions under which the
MAR and SR occur in vivo.

Little is known about the range of local concentrations of G
proteins, G protein-coupled receptors, and GAPs in vivo, so it is
difficult to determine whether the MAR or SR is active in vivo.
The whole-cell ratio of G protein to receptor (G:R, where R
includes active and inactive receptors) is 	10 for many G
protein-receptor pairs (16) (measurements of GAP are unavail-
able, to our knowledge). As shown in Table 2, this ratio is
insufficient to significantly activate G proteins in all cases except
when GAP is absent in either the SR or the transition between
the MAR and SR. In the other cases, which include the MAR
with and without GAP and the SR with GAP, local R concen-
tration must increase substantially for any signaling to occur. A
similar pattern exists for GAP–G interactions, although rela-
tively less GAP is required for the IC50 effect. These predictions
suggest that signaling can occur by means of two alternative

Fig. 4. The GTPase cycle responds rapidly to changes in R or GAP concen-
tration and saturating GAP is required for the fastest response. Shown is the
t1/2 for steady-state approach after perturbing the steady state of one LSR by
adding or removing concentrations of R or GAP that mediate transitions
between LSRs (Fig. 3). Only the curves for addition of R or GAP are shown;
curves for removal are often similar and were removed for clarity. On the
transition from the LSR G to RG, the t1/2 to steady state decreases with
increasing R concentration to 0.5 s. Addition of GAP, the transition from LSR
RG to LSR RGA, then decreases the t1/2 further to 0.03 s with saturating GAP.
If R or GAP is removed, the t1/2 to steady state remains rapid, at 
1 s or less.
However, if both R and GAP are removed, or if R is removed from LSR RG or
GAP is removed from LSR GA, the t1/2 to steady state takes up to 60 s. In all
simulations, [G] 	 10 nM, and GTP, GDP, and Pi are at cellular concentrations.

Table 2. Ratio of G:R (and G:GAP) required for activation (or deactivation) of G proteins in MAR and SR as
predicted by simulations

Ratio G:R Ratio G:GAP

�GAP �GAP �R �R

EC50 MAX EC50 MAX IC50 MAX IC50 MAX

MAR �6 �0.06 �0.8 �0.08 �28 �0.5 �2.3 �0.23
Transition 6 to 50 0.06 to 1 0.8 to 2 0.08 to 0.5 28 to 280 0.5 to 2 2.3 to 3 0.23 to 1
SR 
50 
1 
2 
0.67 
333 
2 
3 
1

When GAP or R is added (�GAP or �R), it is saturating. Ratios are shown for half-maximal activation (EC50) or deactivation (IC50) of
G proteins, and for maximal (MAX) activation or deactivation. The transition is considered as �5-fold about the transition point between
the MAR and SR (6 nM for G–R interactions and 7 �M for G–GAP interactions); the MAR contains all G protein concentrations below the
transition, and the SR contains all G protein concentrations above the transition. In data for the MAR, � is used because the number of
G proteins can decrease to 0 in this regime, but the EC50 and MAX do not change.
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mechanisms, one in which G proteins, Rs, and GAPs are
unclustered, and another in which they are clustered.

The classical view of G protein signaling invokes the collision-
coupling model in which receptors are unclustered and agonist
binds to and activates receptors, which then interact with and
activate many more G proteins to amplify the original ligand
signal (28, 43–45). Interpreted in the light of our computational
model’s predictions, this type of G protein signaling occurs only
in the absence of GAP in either the SR or at the transition from
MAR to SR.

An alternative view of G protein signaling is that Rs, and
perhaps GAPs and effectors, are clustered or complexed to-
gether with G proteins. This view is supported by evidence from
several GTPase-cycle modules. For instance, rhodopsin occurs
at extremely high concentrations in the visual pathway and in

10-fold excess of transducin, the G protein it activates (46).
Many receptors are known to dimerize and possibly oligomerize
(22), thereby increasing their local concentrations. �-Opioid
receptor Gi3 and the RGS protein GAIP colocalize upon agonist
challenge in human embryonic kidney 293 cells (17). The GAPs
RGS2 and RGS4 can bind m1 and other MAchRs in a two-way
physical scaffolding complex, increasing the concentration of

both with respect to the G protein (ref. 47; also see ref. 48). Also,
steady-state GTPase rates of the GAPs RGS4 and phospho-
lipase C-�1 in reconstituted vesicles with m1 MAchRs and Gq
support a mechanism in which GAP-catalyzed GTP hydrolysis
out-competes R–G*T dissociation, thus maintaining receptor–G
complexes by kinetic scaffolding (34).

A hypothesis called spatial focusing that resulted from another
computational model suggests how clustering may regulate
signaling (31). It posits a signaling region of R, G protein, and
GAP that allows limited G protein activity, and a nonsignaling
region enriched in GAP relative to R. We suggest that in some
cases the signaling region may exclude GAP for higher G protein
activity.

Our computational model schematizes the aforementioned
types of clustering and predicts quantitatively the concentration
regimes under which each type is required. Clustering of R and
GAP is represented by path RGA (Fig. 3), clustering of R by path
RG, and clustering of GAP by path GA. Clustering of R and
GAP is required for signaling in the MAR and in the SR in the
presence of saturating GAP (Table 2). In the absence of GAP,
clustering of R is required for signaling in the MAR. In the
absence of R, clustering of GAP to inhibit signaling is more
important in the MAR than in the SR. Notably, the predictions
do not specify whether clustering occurs before or after agonist
binding to receptor.

The computational model also predicts that clustering of R, G,
and GAP may be characterized by fast-signal modulation. For
instance, the fastest response to changes in local R and GAP
concentrations occurs when R or GAP or both are saturating
(Fig. 4), and the potency of GAP is enhanced in the SR (Fig. 5C).
Furthermore, substantial G protein activity (Z 
 10%) is
maintained even in the presence of saturating GAP in extreme
path RGA (Fig. 3). Physiological conditions that may require this
type of G protein signaling include regulation of some ion
channels and the phototransduction pathway (49, 50).

We examined whether the computational model explains
experimental data on ion-channel activation. Ion-channel data
come from the m2 MAchR, Gi, RGS4, and G protein-gated
inward rectifier K� ion channel in oocytes (23), which is closely
related to the m1 MAchR-Gq-RGS4 system we have modeled.
As mentioned in the Introduction, these data appear paradoxical
because RGS proteins do not necessarily alter G protein-
stimulated ion-channel current amplitude but do accelerate the
onset and desensitization of current (23–26). In our simulations,
we cannot directly assess the activation of ion channels; however,
we predict that Z decreases from 0.98 (path RG) to 0.096 (path
RGA) in the presence of RGS4 and speculate that Z 	 0.096 is
sufficient to saturate ion channels. For signal timing, RGS4
decreased the t1/2 for signal activation in the oocyte system from

1.5 to 
0.6 s and the t1/2 for signal deactivation (upon removal
of agonist) from 
20 to 
4 s; our simulations predict 0.5 to 0.03 s
and 
50 to 0.03 s, respectively. Qualitatively, the experimental
data and our simulations agree. Quantitative differences may
arise from (i) Gi–ion-channel interactions and R desensitization,
which are ignored by the model, (ii) differences in the kinetics
of the two GTPase-cycle modules, or (iii) differences in com-
ponent concentrations between oocytes and simulations. Addi-
tionally, data on signaling kinetics in the phototransduction
cascade with and without RGS9 (51) resemble the K� channel
data. Thus, the computational model also explains the photo-
transduction data, even though important proteins such as G�5,
cGMP phosphodiesterase, and cGMP-gated ion channels (50)
are not included. These examples quantitatively validate extreme
path RGA and the hypothesis that R and GAP are clustered
together with G proteins. Furthermore, they demonstrate that
the model, by using reaction-rate parameters from a specific
GTPase-cycle module, captures features of related GTPase-
cycle modules.

Fig. 5. The G protein concentration determines whether the MAR or SR is
active and influences the effect of R and GAP on G protein activity. (A)
Increasing G protein concentration leads to a trough and peak in Z. (B) Z for
the trough is shown with the concentrations of free R and GAP and the
divisions between the MAR and SR to demonstrate how interplay between
the MAR and SR causes the trough. As G protein concentration increases from
the MAR to the SR (transition at 
6 nM), R is increasingly bound to G proteins,
causing the concentration of free R to decrease (Rtotal 	 0.1 nM); thus, R cannot
access all G proteins and Z decreases. A similar process occurs for GAP–G
interactions (transition at 
7 �M; [GAP]total 	 500 nM), and in the SR GAP
cannot access all G proteins so Z increases. Alternatively, in A, the peak forms
because free GAP ([GAP]total 	 500 nM) is depleted at lower G protein
concentrations than free R ([R]total 	 10 �M), allowing R to act on G proteins
in the absence of GAP. (C and D) In the SR, higher concentrations of R and GAP
are needed to regulate G protein activity. Each image (the Z is shown in C and
the v is shown in D) contains two plots: the hairline plot has 1 nM G protein
(MAR) and the thick line plot has 100 �M G protein (SR). In both images,
significantly more R and GAP are required to affect transitions between LSRs
in the SR than in the MAR. However, the values of Z and v in the LSRs are
unchanged. Additionally, the potency of GAP to affect a change from LSR RG
to RGA is greatly enhanced in the SR, as seen by the steeper downward slope:
an x-fold change in [GAP] leads to only a 0.3-fold change in Z in the MAR, but
to an 
3-fold change in the SR. In all simulations GTP, GDP, and Pi are at
cellular concentrations.
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The model has demonstrated how the concentrations of
receptor, GAP, and G protein govern the activation of G
proteins. However, the question of whether there is a threshold
local concentration of active G proteins at which downstream
pathways are significantly activated remains unanswered and
merits further investigation.

Conclusion. In a paradigm systems biology approach involving
biochemical, mathematical, and computational modeling, we
examine quantitatively how the interplay between concentra-
tions and reaction parameters regulate the biochemical events of
G protein activity. Our model provides mechanistic insights into
the regimes under which distinct GTPase-cycle modules function
and yield a wide range of biochemical phenotypes. These regimes
provide the quantitative framework for experimental investiga-
tions of GTPase-cycle modules. Furthermore, the mechanisms
implied in these regimes provide a molecular picture of two

varieties of GTPase-cycle module function, one where the active
receptor is intimately coupled to the G protein and perhaps its
regulatory partner, and the other variety, in which the coupling
is through kinetic processes. In addition to explaining currently
available data, the predictions put forth here pave the way for a
large number of future experiments.
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