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The hair-growth cycle is an example of a cyclic process that is well
characterized morphologically but understood incompletely at the
molecular level. As an initial step in discovering regulators in
hair-follicle morphogenesis and cycling, we used DNA microarrays
to profile mRNA expression in mouse back skin from eight repre-
sentative time points. We developed a statistical algorithm to
identify the set of genes expressed within skin that are associated
specifically with the hair-growth cycle. The methodology takes
advantage of higher replicate variance during asynchronous hair
cycles in comparison with synchronous cycles. More than one-third
of genes with detectable skin expression showed hair-cycle-related
changes in expression, suggesting that many more genes may be
associated with the hair-growth cycle than have been identified in
the literature. By using a probabilistic clustering algorithm for
replicated measurements, these genes were grouped into 30 time-
course profile clusters, which fall into four major classes. Distinct
genetic pathways were characteristic for the different time-course
profile clusters, providing insights into the regulation of hair-
follicle cycling and suggesting that this approach is useful for
identifying hair follicle regulators. In addition to revealing known
hair-related genes, we identified genes that were not previously
known to be hair cycle-associated and confirmed their temporal
and spatial expression patterns during the hair-growth cycle by
quantitative real-time PCR and in situ hybridization. The same
computational approach should be generally useful for identifying
genes associated with cyclic processes from complex tissues.

Hair-follicle morphogenesis starts late in embryogenesis and
is completed on postnatal day (PN) �14 in mice (Fig. 1 A

and B). After this period of growth, which is referred to as
anagen, hair-follicle cycling is initiated with a regression phase
called catagen, in which the lower two-thirds of the hair follicle
undergoes apoptosis (1). Subsequently, the regressed follicle
enters a resting phase known as telogen. After this period of
quiescence, anagen is initiated with the start of a new hair-
growth cycle (2). Cyclical growth of hair persists throughout
postnatal life because of the regenerative capacity of hair-
follicular stem cells (3, 4), which are believed to reside in the
bulge region (Fig. 1 A) of the hair follicle. In mice, the first two
hair-growth cycles occur in synchronized waves moving in an
anterior-to-posterior direction. After the second cycle, synchro-
nous hair growth occurs only in small patches (1), creating a
mosaic pattern of hair follicles in different phases within the skin
(Fig. 1C); overall, hair follicles are unsynchronized after the
second cycle.

Although a snapshot of gene expression in hair-follicle stem
cells has been reported recently (5, 6), time-course profiling of
all components of the skin is needed for comprehensive char-
acterization of the complex molecular changes in hair-follicle
development and cycling, which involves the epithelial and
mesenchymal compartments. For example, similar to other
regenerative organs such as the limb bud, tooth, and feather, the
cycling hair follicle uses a combination of signaling systems, such
as Sonic hedgehog, Wnt, transforming growth factor � (TGF-�),

fibroblast growth factor (FGF), and Hox family members, which
are known to be important for epithelial–mesenchymal interac-
tions (1). For example, signaling by EDA�EDAR (ectodyspla-
sin�ectodysplasin receptor) is required for induction of primary
hair follicles, whereas proper activation of Wnt signaling path-
way, by means of �-catenin and Lef1, is required for the initiation
of hair-follicle morphogenesis and is sufficient to activate the
anagen phase of subsequent hair-growth cycles (7–9). Identifying
additional regulators in hair-follicle cycling is important because
aberrant regulation of hair cycle control genes is responsible for
several types of abnormal hair loss (10) and skin tumors (11–13).

To gain insights into hair-follicle morphogenesis and cycling,
we used DNA microarrays to profile mRNA expression in mouse
back skin over several time points when hair-follicle develop-
mental phases are synchronized and asynchronized. Such a study
is challenging because the skin is a complex tissue, in which
multiple biological processes occur simultaneously, potentially
masking each other at the level of gene expression. For example,
during the initial morphogenesis of the hair, the rapidly expand-
ing skin also undergoes noncyclic morphological changes, in-
cluding dramatic thinning of the epidermis. Direct time-course
profiling of gene expression data from whole skin and standard
analysis based on differential expression could falsely identify
many genes as being related to the hair-growth cycle. Therefore,
methods are needed for distinguishing gene-expression changes
that are associated specifically with the hair-growth cycle from
noncyclic expression changes occurring simultaneously in the
skin.

In this article, we describe computational approaches to
identifying and classifying genes showing hair-cycle-associated
changes in expression within the skin. We first identified hair-
cycle-related genes based on the statistical difference in replicate
variance between skin samples from synchronized and asynchro-
nized time points. These hair-cycle-related genes were then
classified into distinct time-course profile groups based on a
multivariate probabilistic clustering algorithm. By using these
approaches together, we identified pathways and genes that are
likely to play roles in hair-follicle morphogenesis and cycling.
These computational approaches should be generally applicable
to the study of cyclic biological processes occurring within a
complex tissue.

Materials and Methods
RNA Isolation and Microarray Experiments. Total RNA was isolated
by using the TRIzol method (Invitrogen) from excised CB6F1
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mouse back skin (2 � 2 cm), followed by purification, using
RNeasy columns (Qiagen, Valencia, CA). Care was taken to
remove skin from the same location in all mice to ensure that
replicate skin samples represented comparable phases of the
hair-growth cycle. Double-stranded cDNA was synthesized from
the total RNA, and an in vitro transcription reaction was then
performed on biotin-labeled RNA that was made from the
cDNA. Labeled RNA was hybridized with MG-U74Av2 chips
(Affymetrix, Santa Clara, CA) and washed according to the
manufacturer’s recommendations. The hybridized probe array
was then stained with streptavidin-conjugated phycoerythrin,
and each GeneChip was scanned twice in an HP GeneArray
confocal laser scanner at 570 nm with a laser resolution of 3 mm
by using MAS 5.0 Microarray Suite software (Affymetrix) to
produce a *.cel file for further data processing.

Transformation of Expression Data. We used a two-component
noise model (TCM) to transform the raw expression data,
resulting in uniform replicate variance and symmetric replicate
residuals across the range of expression values (14). A log
transformation of the intensities could be used if one assumed a
multiplicative noise model on the measured intensities. How-
ever, although this transformation is appropriate at high-
intensity values, it can amplify replicate variance artificially at
lower-intensity values (15, 16) (see Fig. 6A, which is published as
supporting information on the PNAS web site). In contrast, the
TCM assumes an additive error model at lower-intensity values,
a multiplicative error model at higher-intensity values, and a
gradual shift from one to another, resulting in the following:

z�y� � log��y � �� � ��y � ��2 � c� ,

where z is the transformed intensity and y is the original intensity.
We estimated the two parameters {�, c} for this variance-
stabilizing transformation by using the originally proposed al-
gorithm (14) as follows. We assumed that the top 5% of the data
have multiplicative noise and that the bottom 20% of the data
have additive noise. Thus, we obtained transformed values
characterized by nearly uniform replicate variance as a function
of intensity (see Fig. 6B).

Statistical Test of Replicate Variance. The F test was used to identify
genes with a significant difference in replicate variance between
the synchronous and asynchronous periods. The F test estimates
independently for each gene the probability of observing a
particular set of replicate residuals (i.e., differences between
individual replicates and the mean replicate value for a given
gene and time point) under the null hypothesis of equal replicate

variance in the synchronous and asynchronous periods:
{H0:�s

2 � �a
2}. The F statistic was calculated by using the

following equation:

Fi � �
t�6

8 �
r�1

Rt

�Yitr � Yit.�
2�df2��

t�1

5 �
r�1

Rt

�Yitr � Yit.�
2�df1,

where Yitr is the transformed expression level for gene i, time
point t, and replicate r; Yit. is the mean transformed intensity for
gene i and time point t; Rt is the number of replicates at time
point t; and df1 � 10 and df2 � 7 are the degrees of freedom in
the synchronous and asynchronous time periods (represented by
15 and 10 total replicates, respectively).

Probabilistic Clustering of Replicate Measurements. To determine
distinct expression patterns during the hair-growth cycle, we
clustered the profiles of selected genes into coherent groups. We
formed the profiles by normalizing transformed replicates for
each gene by subtracting the mean gene intensity and dividing by
the standard deviation of the mean expression intensities of the
gene. The model encodes the two key independent assumptions
that (i) different time points are independent given the cluster
variable, and (ii) different replicates are independent given the
cluster and the true gene expression intensity per gene per time
point. The likelihood of N independently and identically distrib-
uted observations under the proposed model with K components
can be written as follows:

P�Y��� � �
i�1

N �
k�1

K �
v

�
t�1

T �
r�1

Rij

P�Yitr��t , skt
2 �P��t�	kt , �kt

2 �P�k�d�,

where the cluster membership k and the true gene expression
level v are unobserved (latent) variables that must be inferred for
each gene. The complete set of model parameters � � {P(k), 	,
�, s} includes the component probabilities P(1). . . P(K), mean
expression within the clusters 	kt, intracluster variance �kt, and
replicate variance skt (unpublished data).

A similar model based on an infinite-mixture model was
proposed recently (17), treating the number of clusters as a
random variable and estimating the model parameters by using
Gibbs sampling. In contrast, here we assumed the number of
clusters K to be fixed, allowing for a more computationally
efficient and direct estimation procedure based on the expec-
tation–maximization algorithm (18).

Fig. 1. Design of microarray experiments on mouse skin. (A) Hair-follicle morphogenesis and cycling. Representative hair follicles for the embryonic
morphogenesis and each phase of the postnatal hair cycle are shown. Bu, bulge; DP, dermal papilla; M, matrix; SG, sebaceous gland. (B) Histological sections of
mouse back skin for the first five time points of the experiment, showing hair follicles at different phases of the hair-growth cycle. (C) Overview of experimental
design, showing the number of mice that were independently analyzed for each time point. The progression of anagen is indicated by different shades of green.
Catagen and telogen are indicated by red and blue, respectively. The back skins of 9-week-old, 5-month-old, and 1-year-old mice are asynchronously cycling,
containing mosaic patches of different phases of the hair-growth cycle. The rectangular box indicates the region of the back skin that was excised from all mice.
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Validation of Expression Data by Quantitative Real-Time PCR (qr-PCR).
As an independent experiment from the microarray studies, we
isolated RNAs from the back skin of C57BL�6 mice covering the
first two hair-growth cycles. RNA quality was checked by
Northern blot analysis, and RNA was diluted to a concentration
of 100 ng�	l before cDNA synthesis with the High-Capacity
cDNA archive kit (Applied Biosystems). By following standard
supplier protocol and thermal-cycler conditions, a 7900HT
platform (384-well plate, Applied Biosystems) was used to detect
the TaqMan Assays-on-Demand gene-expression products. Au-
tomatically detected threshold cycle (Ct) values were first nor-
malized relative to an endogenous control, Pgk1, and the fold
differences in expression were determined based on the cDNA
standard dilution curve for each gene of interest. To facilitate
comparison across time points for each gene, the lowest mean

expression value was normalized to one, and the fold increase in
expression of other time points was calculated relative to that
normalization.

In Situ Hybridization. Back skin of PN 3 CB6F1 mice were excised
and fixed in 4% paraformaldehyde at 4°C overnight before
following the embedding procedure described in ref. 19. All
procedures were performed according to the in situ hybridization
protocol for detection of mRNA with digoxigenin (DIG)-labeled
RNA probes (Roche Applied Science) with slight modifications
for optimization.

Results and Discussion
Replicate Variance Analysis Identified a Large Portion of Skin-
Expressed Genes as Hair Cycle-Associated. We used DNA microar-
rays to profile mRNA expression in mouse back skin from eight
time points. The first five time points correspond to distinct
phases of the first hair-growth cycle; the initial hair growth
(anagen) is represented by PN 1, 6, and 14, and the first catagen
and telogen by PN 17 and 23, respectively (Fig. 1B). The last
three time points were sampled after the second hair-growth
cycle (9-week-old, 5-month-old, and 1-year-old mice) (Fig. 1C).
We refer to the first five time points as the ‘‘synchronous period’’
and to the last three time points as the ‘‘asynchronous period’’
throughout this article. Samples of the back skin from three or
four littermates were used to generate replicated measurements
for each of the eight time points.

To identify genes showing expression changes related to the
hair-growth cycle, we took advantage of the shift from synchro-
nous hair growth over the entire mouse back skin during the first
two cycles to the asynchronous growth during the later cycles
(Fig. 2A). A key feature of this system is that the shift in
hair-cycling pattern results in an additional source of variation
that is present in the asynchronous replicates (tissue samples
taken from different littermates of the same age) only. Whereas
different replicates from the first hair-growth cycle represent the
same phase of the cycle, the tissue samples from the later
asynchronous time points are likely to contain varying propor-
tions of follicles in different phases. Hence, we hypothesized that
genes associated with the hair-growth cycle would have signif-

Fig. 2. Identification of hair-cycle-associated genes. (A) Overview of data
processing and results of profile clustering. (B) TCM-transformed replicate
variance for 10 representative genes known to be associated with the hair-
growth cycle. In comparison with the first five time points (synchronous), the
last three time points (asynchronous) have significantly higher TCM-
transformed replicate variances for all 10 genes (P � 0.0001). (C) Frequency
distribution of P values for F test comparing replicate variance during the
synchronous and asynchronous time points. The frequency distribution of
the P values is plotted by using a bin increment of 0.05. Dashed line indicates
the uniform distribution expected under the null hypothesis.

Fig. 3. Probabilistic approach to clustering data with replicated measurements
using mixture models. To incorporate input data in the form of replicated
observations per gene per time point (green circles), we extended the standard
mixture model by introducing an additional set of latent variables that encode
unobserved true expression levels for a given gene per time point (red line). The
resulting model allows decoupling of the intracluster variance and the replicate
variance into two separate terms. The generative process is as follows. For each
gene, sample its cluster k, and for each time point t, sample the unobserved true
gene expression level vit by using cluster mean value 	kt and intracluster variabil-
ity �kt

2 . Last, sample replicates by using the true gene-expression level vit, and
replicate variability skt

2 . All continuous-valued distributions are assumed to be
Gaussian, and discrete distributions are multinomials.
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icantly higher replicate variance during the asynchronous period
in comparison with the first hair-growth cycle. This hypothesis is
supported by a plot of the replicate variance of 10 representative
genes that are known to be associated with the hair-growth cycle
(Fig. 2B). Consequently, we decided to take advantage of this
feature to design computational approaches aimed at identifying
genes showing hair-cycle-related changes in gene expression.

First, we excluded genes that are not expressed in the back skin
by limiting the analysis to the 6,624 probe sets (corresponding to
5,654 unique genes) with either ‘‘present’’ or ‘‘marginally
present’’ calls (based on MAS 5.0) for all replicates in at least one
time point during the synchronous period (Fig. 2 A). TCM was
then used to transform the raw expression data in a manner that
results in uniform replicate variance and symmetric replicate
residuals across the range of expression values (14). Then, we
used the F test to identify genes with a significant increase in
replicate variance during the asynchronous period, compared
with replicate variance during the first synchronous hair cycle
(see Materials and Methods for details). The frequency distribu-
tion of P values for the F test shows a significant deviation from
the uniform distribution that was expected under the null
hypothesis (Fig. 2C).

We used the following two independent methods to assess
different P-value cutoffs for identifying a gene as hair-cycle-
associated: a literature-based validation (20) and a statistical
analysis of the false discovery rate (FDR) (21) in the multiple-
hypotheses testing scenario (in our case, 6,624 tests). For liter-
ature-based validation, we compiled a list of genes whose
expression patterns have been shown to be hair-cycle-dependent,
and we found that �80% of these genes have P � 0.05 (Table 1

and Fig. 7, which are published as supporting information on the
PNAS web site). Independently, a statistical analysis (22) al-
lowed us to estimate the FDR, which is the fraction of false
positives among all tests determined to be significant for a given
P-value cutoff. The analysis shows that the FDR associated with
a P-value cutoff of 0.05 is �10% (Fig. 8, which is published as
supporting information on the PNAS web site). Thus, a cutoff
value of 0.05 allows us to identify a large fraction of known hair
cycle-associated genes without including an excessive number of
false positives.

This cutoff P value of 0.05 identified 2,461 probe sets (cor-
responding to 2,289 unique genes, Fig. 2 A and C), suggesting
that many more genes may be associated, directly or indirectly,
with the hair-growth cycle than identified previously in the
literature. We identified genes expressed in all different com-
partments of the skin, which is consistent with the idea that
hair-cycle-related changes in gene expression are not limited to
the hair follicle proper. In addition to literature-based validation,
we used qr-PCR in independent experiments to validate the
expression pattern of selective genes covering both the first and
second hair-growth cycles of mice (see below). Together, the
literature-based and experimental validations support the ap-
proach of using statistical analysis of replicate variance between
synchronized and asynchronized time points to identify hair-
cycle-associated genes. The table of 2,289 hair-cycle-associated
genes can be prioritized by P value (Table 2, which is published
as supporting information on the PNAS web site); based on our
validations, there is a strong indication that, the lower the P
value, the more likely it is that a particular gene is associated with
the hair-growth cycle.

Fig. 4. Representative time-course profile clusters and selected genes of interest within the clusters. (A) Representative examples of profile clusters. Clusters
2, 6, and 7 display hair growth patterns that peak at early, middle, and late anagen, respectively. Cluster 9 also displays a hair growth pattern but shows a sharp
decline in expression level at catagen. Cluster 13 drops at catagen, whereas cluster 14 peaks at that phase of the hair-growth cycle. Clusters 16 and 22 display
anti-hair-growth patterns that rise sharply at catagen and decline during anagen, respectively. For each time point, the standard deviation and the minimum
and maximum values for each cluster are shown. Blue lines, expression profiles for individual genes. Yellow lines, mean expression profile for clusters. (B) Selective
genes of interest within different clusters. EASE (Expression Analysis Systematic Explorer, available at http://david.niaid.nih.gov/david/ease.htm) software was
used to identify overrepresented gene categories. *, EASE score of �0.05.
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Hair Cycle-Associated Genes Belong to Clusters with Distinct Time-
Course Profiles. To determine whether the 2,289 hair cycle-
associated genes display distinct expression patterns during the
hair-growth cycle, we clustered their profiles into coherent
groups (Fig. 2 A). Conventional clustering algorithms, such as k
means, agglomerative hierarchical, and model-based clustering
(23–25), are traditionally applied to the mean profiles obtained
by averaging the replicated measurements. However, the raw
replicate data provide information about natural biological
variation between similar tissues from different samples that is
lost when the data are converted to mean expression profiles.
Hence, we developed a probabilistic approach to cluster data
with replicated measurements based on latent variable models.
The proposed model captures intracluster variance and replicate
variance by means of two independent terms (Fig. 3, see
Materials and Methods for details), providing a more accurate
representation of the expression profiles compared with mod-
eling all variations with a single variance term (25). Based on two
widely used statistical scores, the Bayesian information criterion
score (26) and the cross-validated per-point log probability score
(27), we selected K � 30 clusters as an appropriate number for
characterizing this data set (Fig. 9, which is published as sup-
porting information on the PNAS web site).

Interestingly, three general profile patterns emerge: 12 clus-
ters (clusters 1–12) correlate with a hair growth pattern, three
clusters (clusters 13–15) display catagen-related expression pat-
terns, and nine clusters (clusters 16–24) follow an anti-hair-
growth pattern. In addition, six clusters (clusters 25–30) contain
genes whose expression profiles do not fit into any of the three
general profile patterns (representative clusters in Fig. 4A and all
clusters in Fig. 10, which is published as supporting information
on the PNAS web site). To validate the time-course profile
clustering, we used qr-PCR to examine the expression pattern
over the first two synchronous hair cycles of a number of genes
that were not previously known to be associated with the
hair-growth cycle but were identified by using the statistical
algorithms in our study (Car6, Crisp1, Elf5, Junb, Dab2, and
Fbln1). We also profiled the previously unexamined expression
pattern of Nmyc1 and Wnt11. Not only do the expression
patterns from the qr-PCR match very well with the microarray
data for the first hair-growth cycle (compare Fig. 5A with Table
3, which is published as supporting information on the PNAS
web site), but the expression patterns are well preserved in the
second cycle as well. However, it is crucial to note that there are
key differences between the first and second hair-growth cycles.
For example, epithelial–mesenchymal inductive processes
unique to hair-follicle morphogenesis are taking place during the
first hair-growth cycle. In addition, the adnexal structures of the
hair follicle, such as the bulge region and sebaceous gland, are
formed during the first cycle and become the permanent,
noncycling portion of the hair follicle.

Of special interest was the identification of Crisp1 and Car6,
which are two genes that were not previously known to be
associated with the hair follicle. Both genes showed �100-fold
changes in expression during the hair-growth cycle in the qr-PCR
analyses. As predicted from their cluster membership (cluster 5),
both genes were found by in situ hybridization to be expressed
within the hair follicle proper (Fig. 5B). In mice, the androgen-
regulated Crisp1 was detected mainly in the epididymis and, to
a lesser extent, in the salivary and lacrimal glands (28). The
Crisp1 protein is present on the sperm surface and mediates
cell–cell interactions in the fusion of the sperm and egg plasma
membranes (29). The hair-growth expression pattern and local-
ization of Crisp1 transcripts to the inner root sheath suggest its
possible involvement in cell–cell interactions during hair-follicle
cycling. Car6 transcripts have been detected in isolated gland
tissues as well as in mammalian saliva and milk, where it may
participate in the maintenance of pH homeostasis (30). A CHOP

(C�EBP homologous protein)-dependent, stress-inducible form
of Car6, which has been implicated in apoptosis, has been
identified (31). The expression of Car6 in the matrix and
differentiating zone of the hair shaft, with highest levels at the
beginning of catagen, suggests the possibility of its involvement
in hair-follicle apoptosis.

Genes Participating in Distinct Genetic Pathways Are Enriched in
Different Time-Course Profile Clusters. Having validated the pro-
filing clustering, we next examined gene annotations within
cluster groups to identify overrepresented gene categories (Fig.
4B). Clusters showing a hair-growth pattern can be classified
further into the following four groups: genes whose expression
profiles peak at early (clusters 1–4), middle (clusters 5 and 6), or
late (clusters 7 and 8) anagen, as well as genes displaying a sharp
decline in expression at catagen (clusters 9 –12). Cell-
proliferation-related genes such as Kit, Nras, and Ris2 are
strikingly overrepresented in clusters peaking at early anagen. In
contrast, genes encoding structural proteins, such as hair kera-
tins and keratin-associated proteins, are found in clusters that
peak at middle to late anagen (Fig. 4B). These findings are

Fig. 5. Experimental validation of statistical algorithms for identifying
hair-cycle-associated genes from skin microarray data. (A) qr-PCR results of
gene expression for time points covering the first two synchronous hair cycles.
Representative time points for the first hair-growth cycle: PN 1, 5, 8, 12, and
15 (anagen); 17 and 19 (catagen); and 23 (telogen). Representative time points
for the second hair-growth cycle: PN 25, 29, 31, and 34 (anagen); 37 and 41
(catagen); and 44 (telogen). Standard deviations and mean fold differences in
expression for each time point were calculated by using three replicates. (B) In
situ hybridization localizing 4631426H08Rik (homolog of a type I keratin
expressed in the inner root sheath), Crisp1, and Car6 in PN 3 mouse back skin.
IRS, inner root sheath; M, matrix; PC, precortex.
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consistent with the idea that most active proliferative activities
in the hair follicle occur before completion of the hair structure.
A disproportionate number of genes involved in protein biosyn-
thesis and metabolism are found in clusters that show a precip-
itous drop at catagen, indicating that these genes are crucial for
cell proliferation and may be sensitive markers for apoptosis.

Clusters following an anti-hair-growth pattern can be divided
into three groups: genes whose expression level rises sharply at
catagen (clusters 16–18), rises slowly at catagen (clusters 19–21),
or declines during anagen (clusters 22–24). As expected from the
prevalent apoptosis during the catagen phase, a number of genes
that display a sharp increase in expression at catagen are
involved in the process of programmed cell death (particularly in
cluster 16, Fig. 4B). Apoptosis-associated genes, such as genes
responding to DNA damage stimuli, are found also in clusters
showing a specific peak in expression at catagen (clusters 14 and
15). An inverse pattern, with a specific drop in expression at
catagen, is found in cluster 13, which contains an overrepresen-
tation of genes required for oxidative phosphorylation (e.g.,
ATP synthases and NADH dehydrogenases). In response to
apoptotic events, genes that are responsible for proper immune
responses must be precisely activated to maintain homeostasis
(1), and we have identified many of these genes in anti-hair-
growth clusters with a slow rise in expression at catagen (mostly
in cluster 21). We found several genes encoding negative growth
regulators in clusters with expression declining throughout ana-
gen but increasing from catagen to telogen, suggesting that
prevention of uncontrolled hair growth is an important function
in hair-follicle cycling. In these clusters, we also found an
overrepresented number of genes involved in cell adhesion and
morphogenesis, suggesting the importance of these processes
during hair-follicle regression and stabilization of surrounding
connective tissues.

Clustering of genes associated with the hair-growth cycle is
important because membership in distinct time-course profile
clusters suggest potential biological roles. For example, many

transcriptional regulators that have been genetically shown to be
critical for hair-shaft formation (e.g., Catnb, Cutl1, Dlx2, Dlx3,
Foxn1, Gata3, Gli, Lef1, Msx1, and Msx2) belong to the hair-
growth clusters (Fig. 4B). Therefore, it is likely that other
transcriptional regulators in the same clusters are also important
for hair-follicle morphogenesis. These transcriptional regulators
include the Ets factor Elf5, the homeodomain factor Hod, and
the zinc finger factor Egr2, as well as its interacting protein Nab2.
A list of all transcriptional regulators (178 probe sets and 167
unique genes) in our profile clusters is given in Table 4, which
is published as supporting information on the PNAS web site.

In summary, we have developed a computational approach to
identify hair cycle-associated genes successfully from a microar-
ray data set of whole back-skin tissue samples. Genomic tran-
scriptional profiling has been used recently to study the hair-
growth cycle and other cyclic processes, including the circadian
rhythm and cycles in the female reproductive system such as
mammary gland regulation (32–37). We believe that our ap-
proach can be applied to time-course gene expression studies
such as these to identify clusters of genes associated with a cyclic
process of interest occurring in the context of a complex tissue.
Furthermore, it is important to note that this time-course
microarray data set, which is freely accessible at the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (www.ncbi.nlm.nih.gov�geo), may be useful for studies
of other biological processes within the skin.
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