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Abstract The CRISPR/Cas9 genome editing tool

has increased the efficiency of creating genetically

modified pigs for use as biomedical or agricultural

models. The objectives were to determine if DNA

editing resulted in a delay in development to the

blastocyst stage or in a skewing of the sex ratio. Six

DNA templates (gBlocks) that were designed to

express guide RNAs that target the transmembrane

protease, serine S1, member 2 (TMPRSS2) gene were

in vitro transcribed. Pairs of CRISPR guide RNAs that

flanked the start codon and polyadenylated Cas9 were

co-injected into the cytoplasm of zygotes and cultured

in vitro to the blastocyst stage. Blastocysts were

collected as they formed on days 5, 6 or 7. PCR was

performed to determine genotype and sex of each

embryo. Separately, embryos were surgically trans-

ferred into recipient gilts on day 4 of estrus. The rate of

blastocyst development was not significantly different

between CRISPR injection embryos or the non-

injected controls at day 5, 6 or 7 (p = 0.36, 0.09,

0.63, respectively). Injection of three CRISPR sets of

guides resulted in a detectable INDEL in 92–100 % of

the embryos analyzed. There was not a difference in

the number of edits or sex ratio of male to female

embryos when compared between days 5, 6 and 7 to

the controls (p[ 0.22,[0.85). There were 12 result-

ing piglets and all 12 had biallelic edits of TMRPSS2.

Zygote injection with CRISPR/Cas9 continues to be a

highly efficient tool to genetically modify pig

embryos.

Keywords CRISPR/Cas9 � Zygote injection � DNA
editing � gBlock

Introduction

Pigs continue to provide the scientific community with

an excellent biomedical model that is both similar in

size and physiology to humans (Jensen et al. 2010;

Renner et al. 2010; Rogers et al. 2008; Ross et al.
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2012; Tsang et al. 2016). Genetically modified and

DNA edited pigs are also powerful tools for agricul-

tural (Lillico et al. 2016; Prather et al. 2013;

Whitworth et al. 2014, 2016) as well as for xenotrans-

plantation research (Kolber-Simonds et al. 2004; Lai

et al. 2002; Zeyland et al. 2014; Niemann and Petersen

2016). Using the CRISPR/Cas9 system as a genome

editing tool (Cong et al. 2013; Cong and Zhang 2015)

has greatly increased the efficiency for providing

scientific models to study basic biology. In species like

pigs that lack authentic embryonic stem cell lines, this

technology has revolutionized the ability to create

DNA edited and genetically modified animals.

In the past 3 years there have been numerous reports

of production of modified pig embryos either by direct

zygote injection of CRISPR/Cas9 RNA or by somatic

cell nuclear transfer with CRISPR/Cas9 modified

cells. For example, the CRISPR/Cas9 systemwas used

to create pigs with the human albumin cDNA replac-

ing the pig locus resulting in pigs with human serum

albumin that could be used to alleviate the shortage

and risks associated with human blood (Peng et al.

2015). CRISPR/Cas9 was also used to target the von

Willebrand factor (vWF) gene in pig zygotes to model

the human von Willebrand disease (vWD) (Hai et al.

2014). Additionally, the CRISPR/Cas9 system was

used to efficiently manipulate a cell line for a

xenotransplantation model. Three genes, GGTA1,

CMAH and putative iGb3S were all edited in a cell

line that was used for somatic cell nuclear transfer and

resulted in live edited piglets (Li et al. 2015). DNA

editing by CRISPR/Cas9 recently made a significant

impact on the swine industry when the CD163 gene

was edited to create a line of pigs that are resistant to

the devastating porcine reproductive and respiratory

syndrome virus (PRRSV) (Whitworth et al. 2016).

In our laboratory, zygotes for CRISPR/Cas9 RNA

injection are produced by in vitro maturation of

oocytes and subsequent in vitro fertilization and

embryo culture until embryo transfer into the recipient

gilt. Several studies have shown that CRISPR/Cas9

RNA injection had very little effect on overall

blastocyst formation when compared to water injected

controls (Hai et al. 2014; Wang et al. 2015). In a

previous study, CRISPR/Cas9 RNA injection of pig

zygotes resulted in 100 % of the piglets having

biallelic DNA edits of the targeted CD163 or CD1D

gene (Whitworth et al. 2014). Interestingly, 7 of the 8

offspring from this study were male. There is very

little information published about whether DNA

editing by CRISPR/Cas9 affects embryo development

and/or the sex of the resulting offspring. The objec-

tives of this study were to measure the effects of

CRISPR/Cas9 guide RNA injection on the rate of

embryo development and to determine if CRISPR/

Cas9 RNA injection altered the sex ratio of the

resulting blastocyst-stage embryos. The secondary

objective of this experiment was to create pigs with a

DNA edit in the TMPRSS2 gene for use as a

biomedical model of pigs that may be resistant to

certain types of influenza viruses (Hatesuer et al. 2013;

Sakai et al. 2014; Tarnow et al. 2014).

Materials and methods

Chemical and reagents

Unless otherwise stated, all of the chemicals used in

this study were purchased from Sigma, St. Louis, MO.

Animal and recombinant DNA usage

The use of animals was approved by University of

Missouri Animal Care and Use Committee. The use of

recombinant DNA was approved by the Institutional

Biosafety Committee.

Design of gRNAs to build specific CRISPRs

Guide RNAs were designed to be used in pairs to

remove the start codon from exon 2 of the TMPRSS2

gene. Six 18–20 bp guides were designed to target

sequence located adjacent to an S. pyogenes (Spy)

protospacer adjacentmotif (PAM) (Ranet al. 2015).The

targets were selected by the following method. Repeat

Masker (Smit and Green 1996) (‘‘Pig’’ repeat library)

was used to identify any repetitive elements in the

TMPRSS2 genomic sequence and these areas were not

used as potential targets. Specificity of each potential

guide was then confirmed by searching for similar

porcine sequences in GenBank. If guides and the

adjacent PAM sequence had similarity to other areas

of the genome, they were removed from subsequent

analysis. Lastly, structural analysis of the 20 bp guide

with the CRISPR RNA (crRNA) and the trans-activat-

ing crRNA (tracrRNA) (Hsu et al. 2013) was evaluated

for potential disruption of gRNA structure by mFold
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(http://unafold.rna.albany.edu/). If potential guides

were predicted to form an appropriate ‘‘handle’’ to

interact with Cas9 andwere not predicted to form a tight

hairpin that could potentially prevent interaction with

the genome, then they were added to the finalized list of

potential guides. Six guides were chosen for the exper-

iment based on the criteria listed above. Three guides

were located upstream of the start codon in exon 2, and

three guideswere located downstreamof the start codon

in exon 2 (Fig. 1). The six guides and the PAM (bold)

include TMPRSS2 Guide 1, AGACTGTAAAATTTC-

CATACCGG, TMPRSS2 Guide 2, ATCAGGTACAG

GTAAGTATTTGG, TMPRSS2 Guide 3, CCCTCAC

CCAGAGAGCCTTCTGG, TMPRSS2 Guide 4, GG

CTTTAAACTCAGTAGGTGG, TMPRSS2 Guide 5,

GTTAATTATTACCTCCCTGG, TMPRSS2 Guide 6,

GTGCCTTCTGTTAGTTCCAGCGG. The distances

between the guides in each pair were 39 bp between

2 ? 4, 127 bp between 1 ? 5 and 222 bp between

3 ? 6 when measured from N to N in the NGG PAM

sequence. Proximity to the start codon are shown in

Fig. 1.

In vitro transcription of single guide RNAs

for the CRISPR/Cas9 system

Template guide DNA was first synthesized by Inte-

grated DNA Technologies in the form of a gBlock

(Supplemental Table 1). A T7 promoter sequence was

added upstream of the guide for in vitro transcription.

Each gBlock was diluted to final concentration 0.1 ng/

ll and PCR amplified with a gBlock F (ACTGG-

CACCTATGCGGGACGAC) and a gBlock R primer

(AAAAGCACCGACTCGGTGCCAC) with Q5

(New England Biolabs, Ipswich, MA) following

standard protocol. PCR conditions consisted of an

initial denaturation of 98 �C for 1 min followed by 35

cycles of 98 �C (10 s), 68 �C (30 s) and 72 �C (30 s).

Each PCR amplified gBlock was purified by using a

QIAGEN (Valencia, CA) PCR purification kit fol-

lowing standard protocol. Purified gBlock amplicons

were then used as template for in vitro transcription by

standard protocol with the MEGAshortscript (Am-

bion, Thermofisher, Grand Island, NY). Quality of the

synthesized RNAs were visualized on a 2.0 % RNA-

free agarose gel and concentrations 260:280 ratios

were determined via Nanodrop spectrophotometry.

Capped and polyadenylated Cas9 mRNA was pur-

chased from Sigma (St. Louis, MO). Single guide

RNA (sgRNA) and Cas9 mRNA were diluted in

nuclease-free water and combined at a final concen-

tration of 20 and 20 ng/ll, respectively. sgRNA

guides 1 and 5, sgRNA guides 2 and 4 and sgRNA

guides 3 and 6 were each mixed together with Cas9.

RNA aliquots were stored at -80 �C until zygote

injection.

Fig. 1 a Genomic locus of targeted exon 2. b Location of

guides flanking exon 2 of the TMPRSS2 gene.?1 represents the

A in the start codon ATG. Guides 1 ? 5, 2 ? 4 and 3 ? 6 were

mixed and coinjected. A designed deletion would result in the

removal of exon 2 and the start codon
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In vitro fertilization (IVF)

For IVF, ovaries from pre-pubertal gilts were obtained

from an abattoir (Smithfield-Farmland., Milan, MO).

Immature oocytes were aspirated from medium size

(3–6 mm) follicles by using an 18-gauge hypodermic

needle attached to a 10 ml syringe. Oocytes with

evenly dark cytoplasm and intact surrounding cumulus

cells were then selected for maturation. Between 200

and 250 cumulus oocyte complexes were placed in a

35 mM petri dish (BD 35-1008) containing 2.0 ml of

maturation medium, TCM 199 (Invitrogen, Grand

Island, NY) with 3.05 mM glucose, 0.91 mM sodium

pyruvate, 0.57 mM cysteine, 10 ng/ml epidermal

growth factor (EGF), 0.5 lg/ml luteinizing hormone

(LH), 0.5 lg/ml follicle stimulating hormone (FSH),

10 ng/ml gentamicin (APP Pharm, Schaumburg, IL),

and 0.1 % polyvinyl alcohol (PVA) for 42–44 h at

38.5 �C, 5 % CO2, in humidified air. At the end of the

maturation, the surrounding cumulus cells were

removed from the oocytes by vortexing for 3 min in

the presence of 0.1 % hyaluronidase. Then in vitro

matured oocytes were placed in 50 ll droplets of IVF
medium (modified Tris-buffered medium with

113.1 mM NaCl, 3 mM KCl, 7.5 mM CaCl2,

11 mM glucose, 20 mM Tris, 2 mM caffeine, 5 mM

sodium pyruvate, and 2 mg/ml BSA) in groups of

25–30 oocytes. One 100 ll frozen semen pellet was

thawed in 3 ml of DPBS supplemented with 0.1 %

BSA. Either frozen wild type was washed in 45 %

percoll for 20 min at 5509g and in MTBM for 10 min

by centrifugation. The semen pellet was then re-

suspended with IVF medium to 0.5 9 106 cells/ml.

Fifty microliter of the semen suspension was intro-

duced into the droplets with oocytes. The gametes

were co-incubated for 5 h at 38.5 �C in an atmosphere

of 5 % CO2 in air. After fertilization, the embryos

were incubated in MU2 (Bauer et al. 2010; Yoshioka

et al. 2002) at 38.5 �C, 5 % CO2 in air atmosphere.

Zygote injections

Guide pair mixes 1 ? 5, 2 ? 4 and 3 ? 6 and Cas9

RNA (Sigma, St. Louis, MO) were co-injected as

individual treatments into the cytoplasm of presump-

tive zygotes at 14 h post-fertilization (presumptive

zygotes) by using a FemtoJet microinjector (Eppen-

dorf; Hamburg, Germany). Glass pipettes with an

outer diameter (OD) of 1.0 mm and an inner diameter

of 0.78 mm were pulled to a fine point of\1.0

microns (Sutter Instrument, Navato, CA, USA).

Microinjection was performed in manipulation med-

ium (TCM199 with 0.6 mMNaHCO3, 2.9 mMHepes,

30 mM NaCl, 10 ng/ml gentamicin, and 3 mg/ml

[BSA; and osmolarity of 305) on the heated stage of a

Nikon inverted microscope (Nikon Corporation;

Tokyo, Japan) with an injection pressure ranging from

150 to 200 hPa. Injected zygotes were then transferred

into the MU1 with 5 ng/ml PS48 for culture to the

blastocyst stage. There were three replicates of zygote

injections performed for each experiment.

Blastocyst collection on days 5, 6 or 7

Culture plates were monitored daily for blastocyst

formation. On days 5, 6 or 7, embryos that formed

blastocysts were collected for subsequent sex deter-

mination and evaluation for DNA editing. The zona

pellucidae were removed by treatment with a physi-

ological saline at pH 1.79 and rinsed in DEPC treated

PBS. An absent zona pellucida will prevent the wild

type genome from attached sperm from interfering

with genotyping assays. Individual embryos were

transferred to 0.5 ml microcentrifuge tubes and snap

frozen.

Embryo transfer

Embryos generated to produce TMPRSS2 edited pigs

(RRID:NSRRC:0060) were surgically transferred into

surrogate gilts on day 4 after standing estrus. Zygotes

were cultured in MU2 (MU1 supplemented with the

phosphopeptide mimetic that triggers PDK1 phospho-

rylation, PS48 (5 ng/ml) (Stemgent, Inc, Cambridge,

MA) until embryo transfer. MU1 and MU2 have been

described previously (Redel et al. 2015; Spate et al.

2015). The embryos, 60 into one recipient and 75 into

a second recipient, were surgically transferred into the

ampullary-isthmic junction of the oviduct of the

surrogate (Lee et al. 2013).

PCR screening for INDELS

Three assays were designed to assess the presence of

INDELS in the resulting embryos and offspring

including a small deletions assay with an amplicon

size of 544 bp, a medium range assay with an

amplicon size of 2181 and a long range assay with
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an amplicon size of 4013. Primer sequences are listed

in Supplemental Table 2.

Small INDELAssay: Small INDELswere determined

by PCR amplification of the TMPRSS2 gene in a region

flanking the projected cutting site introduced by the

CRISPR/Cas9 system with primers TMPRSS2 F1 and

TMPRSS2 R2. PCR conditions of the small INDELs

assays consisted of an initial denaturation of 95 �C for

2 min followedby35 cycles of 94 �C(30 s), 56 �C(30 s)

and 72 �C (1 min). Insertions and deletions (INDELs)

were identified by separating PCR amplicons by agarose

gel electrophoresis. The resulting PCRproductswere also

Sanger DNA sequenced with primer TMPRSS2 F1 at the

University ofMissouri DNACore. Chromatographswere

analyzed for thepresence of INDELS inFinchTV(Perkin

Elmer Waltham, Massachusetts).

Medium Range Assay: Medium sized INDELs

were evaluated by PCR amplification of the TMPRSS2

gene with primers TMPRSS2 2156F and TMPRSS2

6149 R. PCR conditions of the medium INDEL assays

consisted of an initial denaturation of 94 �C for 1 min

followed by 35 cycles of 94 �C (30 s), 50 �C (30 s)

and 68 �C (5 min). Insertions and deletions (INDELs)

were identified by separating PCR amplicons by

agarose gel electrophoresis. The medium range assay

was not further evaluated by Sanger Sequencing.

Long Range Assay: Large INDELs were evaluated

by PCR amplification of TMPRSS2 gene with primers

TMPRSS2 3968 F and TMPRSS2 6149 R. PCR

conditions of the large INDEL assays consisted of an

initial denaturation of 94 �C for 2 min followed by 35

cycles of 94 �C (30 s), 50 �C (30 s) and 68 �C
(5 min). INDELs were identified by separating PCR

amplicons by agarose gel electrophoresis. The result-

ing PCR products were also Sanger DNA sequenced

with primer TMPRSS2 3968F at the University of

Missouri DNA Core. Chromatographs were analyzed

for the presence of INDELS in Finch TV.

Genotyping of TMPRSS2 edited offspring

PCR amplicons from each piglet from the small INDEL

assay and the long range assaywere TOPO cloned using

the TOPO TA and TOPO XL kit, respectively (Thermo

Scientific) by following standard protocol. Clones were

propagated on Luria–Bertani (LB) agarose plates con-

taining 50 lg/ml kanamycin and resistant recombinants

were selected. Plasmids containing the TMPRSS2

amplicon were identified by either EcoRI or EagI

digestion, and subsequent DNA agarose gel elec-

trophoresis. Plasmids that contained a TMPRSS2 ampli-

conwereDNA sequenced by theUniversity ofMissouri

DNA core by using the TMPRSS2 F1 or TMPRSS2

3968F oligonucleotide, respectively. Sequences were

aligned to the wild type (WT) TMPRSS2 gene in ApE

(http://biologylabs.utah.edu/jorgensen/wayned/ape/)

and INDELS were examined.

Breeding of TMPRSS2 edited pigs to create F1

offspring

One founder boar (37-1) was bred to three founder

females (3-2, 3-4 and 37-5) by artificial insemination.

PCR screening for sex determination

DNA lysate (1 ll) from each blastocyst stage embryo

was used to determine the sex by using a PCR based

assay described previously (Hao et al. 2006;Whitworth

et al. 2010). Briefly, PCR was performed by using

GoTaq Green Master Mix (Promega, Madison, WI)

with primers specific for sex determining regionY (SRY,

GenBank NM_214452, Y chromosome-specific) and

nuclear receptor subfamily 0, group B, member 1

(NR0B1, GenBank AF035816, X-chromosome-speci-

fic) loci. Oligonucleotides were purchased from Inte-

grated DNATechnologies (IDT, Coralville, IA) and the

reaction conditions were 94 �C for 5 min followed by

35 cycles of 94 �C (30 s), 58 �C (30 s), 72 �C (30 s)

with a final elongation step at 72 �C for 3 min. Female

blastocysts had a single NR0B1 band at 179 bp while

male blastocysts had both the SRY (131 bp) and NR0B1

bands. Genomic DNA from a known male and female

pig was used as positive controls for sexing and water

was used as the nontemplate control.

Statistical analysis

Differences in blastocyst development at days 5, 6 or 7

were determined by using PROC GLM of SAS 9.4

(Cary, NC) with a p value of\0.05 being significantly

different. Embryos that developed to the blastocyst

stage were classified as 1 and embryos that did not

reach the blastocyst stage were classified as 0. Data are

presented as mean percent to blastocyst stage ± SEM.

Significant differences in sex ratios and modified

versus non modified blastocyst stage embryos were

determined by Chi square using PROC FREQ.
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Results

Blastocyst rates

The overall blastocyst rates for CRISPR guide pairs

1 ? 5, 2 ? 4, 3 ? 6 injected embryos and the controls

were 15.9, 19.2, 15.9 and 23.9 %, respectively. There

was no significant difference in development between

any of the injected CRISPR pairs and the non-injected

controls (p[ 0.34). The rate of blastocyst develop-

ment between CRISPR injected embryos and non-

injected controls was also not significantly different at

day 5 or 6, butwas approaching significance by day 7 of

embryo culture (p = 0.35, 0.08, 0.06, n = 566, 863,

859, 3 replicates, respectively).

Comparison of the modification rates

between the injected CRISPR pairs

Genotypes were determined on 62.5 % of single

embryos collected (90/144 embryos). Any embryo

that did not result in an amplicon by PCRwas removed

from the analysis and not sequenced. Injection of

CRISPR guides 1 ? 5, 2 ? 4 and 3 ? 6 resulted in a

detectable INDEL by either DNA gel electrophoresis

or Sanger Sequencing in 92, 100 and 97.1 % of the

embryos analyzed (Table 1). There was no significant

difference between modification rate between the

CRISPR pairs. All three pairs had a significantly

higher rate of modification than the non-injected

controls which were all not modified (0 %,

p\ 0.0001). The rate of biallelic versus monoallelic

modification was not evaluated for embryos.

Comparison of modification rates at days 5, 6 or 7

of culture

There was not a significant difference in the number of

modifications when compared between days 5, 6 and 7

(p[ 0.21) with a 100, 98.2 and 88.9 %, respectively

(Table 2).

Comparison of sex ratio between modified

and unmodified embryos at days 5, 6 and 7

of embryos culture

Gender was successfully determined in 56.3 % of the

embryos (81/144 embryos). Again, any embryo that

did not result in an amplicon by PCR was removed

from the analysis and gender was not determined. The

sex ratio of male and female embryos was not

significantly different at the blastocyst stage between

day 5, 6 and 7 of development in CRISPR injected

embryos or the controls (p[ 0.84) (Table 3).

Birth of live piglets

Both of the recipient gilts became pregnant and farrowed

healthy piglets. There were 5 piglets in the first litter

(litter 37) and 7 piglets in the second litter (litter 3). Litter

37 had 4 male piglets and 1 female piglet. Litter 3 had 6

female piglets and 1male piglet resulting in a sex ratio of

41.6 %males and58.3 % female between the two litters.

All 12 piglets were biallelically edited and the details of

the edits are listed in Table 4. The corresponding DNA

gel electrophoresis for the small deletions assay and the

long range assay are shown in Fig. 2a, b. The rate of

mosaicismwasnotdetermined in theembryo studies, but

5 of the 12 (41.7 %) piglets were mosaic.

Birth of TMPRSS2 edited F1 offspring

All three gilts became pregnant and had normal

gestations resulting in three litters of F1 offspring. Pigs

3-2, 3-4 and 37-5 had litter sizes of 11, 4 and 9

respectively. All of the piglets inherited an edited

TMPRSS2 allele from the founder resulting in a

healthy knock-out phenotype.

Table 1 Comparison of the DNA editing rates between the injected CRISPR pairs 1 ? 5, 2 ? 4 and 3 ? 6

CRISPR guide pairs Edited embryos Total number of embryos (n) Percent

1 ? 5 23 25 92.0a

2 ? 4 31 31 100.0a

3 ? 6 34 35 97.1a

Control 0 11 0.0b

a,b Corresponds to significant differences in frequency as determined by chi square
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Discussion

The objectives of this study was to determine if

CRISPR/Cas9 edited embryos developed at the same

rate as non-modified embryos and to determine if sex

ratios were affected. The authors had observed a

tendency for male offspring in a previous experiment

that utilized CRISPR/Cas9 zygote injection and

Table 2 Comparison of DNA editing rates at days 5, 6 or 7 of culture

Day of culture Edited embryos Total number of embryos (n) Percent

5 6 6 100.0a

6 54 55 98.2a

7 16 18 88.9a

a,b Corresponds to significant differences in frequency as determined by chi square

Table 3 Sex Ratio of blastocyst-stage embryos at days 5, 6 and 7 of culture

Day of Culture Male blastocyst stage embryos Female blastocyst stage embryos Total Percent male Percent female

5 5 4 9 55.6a 44.4a

6 25 26 51 49.0a 51.0a

7 9 12 21 42.9a 57.1a

a,b Corresponds to significant differences in frequency as determined by chi square

Table 4 Genotypes of TMPRSS2 edited piglets

Piglet

ID

Sex Edit type Allele 1 Allele 2 Description-allele 1 Description-allele 2

37-1 Male Biallelic/

Mosaic

875 bp deletion 23 bp deletion Edit removes exon 2 and all

CRISPR binding sites

Intronic edit in CRISPR

6

37-2 Male Biallelic/

Mosaic

1 bp addition 6 bp deletion Intronic edit in CRISPR 6 Intronic edit in CRISPR

6

37-3 Male Biallelic 4 bp deletion 1 bp deletion Intronic edit in CRISPR 4 Intronic edit in CRISPR

4

37-4 Male Biallelic 4 bp deletion 3 bp deletion Intronic edit in CRISPR 4 Intronic edit in CRISPR

4

37-5 Female Biallelic 131 bp deletion 3 bp deletion Exon 2 deleted between

CRISPR 1 and 5

Intronic edit in CRISPR

5

3-1 Female Biallelic/

Mosaic

207 bp deletion 18 bp insertion Exon2 deleted between

CRISPR 3 and 6

Intronic edit in CRISPR

6

3-2 Female Biallelic 1739 bp

deletion ? 7 bp

19 bp deletion Edit removes exon 2 and all

CRISPR binding sites

Intronic edit in CRISPR

5

3-3 Female Biallelic/

Mosaic

3 bp deletion 1 bp addition Intronic edit in CRISPR 5 Intronic edit in CRISPR

5

3-4 Female Biallelic 211 bp

deletion ? 11 bp

210 bp

deletion ? 17 bp

Exon2 deleted between

CRISPR 3 and 6

Exon2 deleted between

CRISPR 3 and 6

3-5 Female Biallelic 1 bp addition 3 bp deletion Intronic edit in CRISPR 4 Intronic edit in CRISPR

4

3-6 Female Biallelic 3 bp deletion 118 bp deletion Intronic edit in CRISPR 4 Exon 2 upstream of

CRISPR 4

3-7 Male Biallelic/

Mosaic

1 bp deletion 14 bp addition Intronic edit in CRISPR 4 Intronic edit 59 bp

downstream of

CRISPR 4
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wanted to confirm that female embryos were not more

sensitive to potential adverse effects of modification

by this technique (Whitworth et al. 2014). In this set of

experiments, there was no significant effect of zygote

injection of CRISPR/Cas9 RNA on rate of develop-

ment to blastocyst stage. Additionally the sex ratio

was not different in edited zygotes on day 5, 6 or 7 of

embryo culture. DNA editing by CRISPR/Cas9 is a

highly embryo culture dependent technique and

despite this necessity, very little research has been

done to determine how modification of the DNA by

this method affects the resulting embryos. It has been

shown previously that overall blastocyst rates are not

adversely affected by injection (Hai et al. 2014; Wang

Fig. 2 Genotyping results for the small deletions assay and long range assay for TMPRSS2 DNA edited piglets in litter 3 (a, c) and 37
(b, d). e An example of a zygote being injected with CRISPR/Cas9 RNA. f Healthy TMPRSS2 DNA edited pig
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et al. 2015). One group did utilized the CRISPR/Cas9

system to knock out the pluripotency marker POU5F1

and showed that early blastocyst formation was not

affected, but POUF1 was necessary for proper inner

cell mass formation (Kwon et al. 2015). The lack of

measurable effect on the rate of embryo development

and sex ratio further validates that this technique does

not have a toxic effect on the resulting embryos. The

authors acknowledge that the sample size was some-

what low and this set of RNA guides were particularly

efficient in creating INDELS.

A skewing of the sex ratio at the blastocyst stagewas

not observed in this series of experiments, but it has

been shown previously that male and female embryos

do respond differently to in vitro culture. Male and

female bovine embryos have different metabolic

requirements and male embryos have been shown to

reach first-cleavage stages earlier than female embryos

(Lonergan et al. 1999). In vitro cultured human male

embryos also have higher cell numbers at day 6 when

compared to their female counterparts (Ray et al.

1995). In the mouse, in vitro cultured male embryos

have increased cell numbers by day 3 of culture when

compared to female embryos. Interestingly the same

study showed that in vivo derived female mouse

embryos compact earlier than male embryos, further

illustrating the differential effect of culture on the sex

ratios of embryos (Peippo and Bredbacka 1995).

In the pig, embryos that cleaved before 30 h tended

to be males while later cleaving embryo shifted to

female in a NCSU23mediummodified to be pyruvate-

lactase based (Petters and Wells 1993; Torner et al.

2013). The embryos used in this experiment were

cultured in an arginine optimized pyruvate, lactate,

glutamine based PZM3 medium, MU1 (Redel et al.

2015; Yoshioka et al. 2002) and cultured in MU2

(Spate et al. 2015). Embryos that formed morula and

blastocysts on day 5 of culture were transferred to the

recipient gilts. The first litter resulted in 4 males and 1

female. The subsequent litter resulted in 6 females and

1 male with an overall percent of male offspring being

41.7 %. In the previous study, 87.5 % of the resulting

piglets were male in two litters (Whitworth et al.

2014). Importantly, both the CRISPR guide RNAs and

the source of Cas9 were different between the two

experiments and therefore not directly comparable,

but the overall sex ratio of blastocysts in the present

experiment paralleled what was observed in the

resulting offspring.

Zygote injection with CRISPR/Cas9 guide RNA

was used to efficiently (100 %) create pigs with a

biallelic edit of the TMPRSS2 gene for use as a

biomedical model (Fig. 2e, f). In 6 of the pigs, exon 2

was successfully deleted on at least one allele and

would be expected to have a knock-out phenotype. It

appeared that CRISPR guides 4, 5 and 6 were very

efficient in producing INDELS by non-homologous

end join repair (NHEJ) (Table 4), but these guides

were located in the intron preceding the targeted exon

2. If RNA splicing was not disrupted by these edits, the

pigs would be expected to have normal expression of

TMPRSS2 and no phenotype. As detailed in Fig. 1, the

RNA guide pairs were spaced at 3 different distances

from each other, 39 bp between 2 ? 4, 127 bp

between 1 ? 5 and 222 bp between 3 ? 6. The

experiment was originally designed to test the effi-

ciency of designed deletions with CRISPR guides at 3

different proximal locations. RNA guides 4, 5 and 6

clearly functioned at a higher efficiency as most

INDELs were located in proximity to these guides. A

comparison of distance between guides could not be

systematically evaluated unless all of the guides

functioned at the same efficiency. However, of the

four observed designed deletions, pair 3 ? 6 (222 bp)

was most effective and resulted in 3 designed

deletions.

A TMPRSS2 biallelic knock-out model was suc-

cessfully produced by this method. The offspring will

be an important tool to address the role of the swine

TMPRSS2 protease in swine influenza pathogenesis.

Since cleavage of the influenza hemagglutinin by host

proteases is essential for the infectivity of influenza

viruses (Hatesuer et al. 2013; Tarnow et al. 2014), a

TMPRSS2 biallelic knock-out pig should be resistant

to various influenza viruses. As observed so far, the

knock-out pigs do not show a distinct phenotype,

suggesting functional redundancy in the pig. The

production of swine resistant to swine influenza

viruses (SIVs) would not only benefit the pork industry

which suffers significant economic losses associated

with SIV infections, but also public health, since many

SIVs have zoonotic potential and swine are considered

the ‘‘mixing vessel’’ for the making of novel reassor-

tant influenza viruses (Ma et al. 2009). In addition,

since TMPRSS2 plays a role in the activation of the

fusion proteins of influenza B viruses, parainfluenza

viruses, human metapneumoviruses, and coron-

aviruses (Tarnow et al. 2014), a TMPRSS2 knock-
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out pig might be a useful model to study the role of

host proteases in the pathogenesis of these respiratory

infections.

In summary, edited embryos in this set of exper-

iments reached the blastocyst stage at day 5, 6 or 7 of

culture at the same rate as non-edited control embryos.

The sex ratio measured in the resulting blastocysts and

piglets was not significantly affected by in vitro

culture or CRISPR/Cas9 RNA injection. The results of

this study further illustrate the effectiveness of DNA

editing by CRISPR/Cas9 system with no measurable

adverse effects on embryo development.
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