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There is a continuing growth in the demand for
data bandwidth, and the multiplexing of multiple
independent data streams has the potential to
provide the needed data capacity. One technique
uses the spatial domain of an electromagnetic
(EM) wave, and space division multiplexing (SDM)
has become increasingly important for increased
transmission capacity and spectral efficiency of a
communication system. A subset of SDM is mode
division multiplexing (MDM), in which multiple
orthogonal beams each on a different mode can
be multiplexed. A potential modal basis set to
achieve MDM is to use orbital angular momentum
(OAM) of EM waves. In such a system, multiple
OAM beams each carrying an independent data
stream are multiplexed at the transmitter, propagate
through a common medium and are demultiplexed
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at the receiver. As a result, the total capacity and spectral efficiency of the communication
system can be multiplied by a factor equal to the number of transmitted OAM modes. Over
the past few years, progress has been made in understanding the advantages and limitations of
using multiplexed OAM beams for communication systems. In this review paper, we highlight
recent advances in the use of OAM multiplexing for high-capacity free-space optical and
millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric
turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.
This article is part of the themed issue ‘Optical orbital angular momentum’.

1. Introduction

Free-space communication links are important in many data transfer applications, and they can
use either optical or radio-frequency (RF) waves [1,2]. However, as the demand for data increases,
there is a keen interest in increasing the data capacity of such communication systems [3]. In
the past, the capacity of a communication system can be dramatically increased by multiplexing
and simultaneously transmitting multiple independent data streams [4,5]. This can be achieved
by using various properties of the electromagnetic (EM) wave, including time, wavelength and
polarization, such that multiple data streams can be efficiently multiplexed and demultiplexed
using appropriate device technologies [3,6,7]. Meeting future bandwidth demands may require
new forms of data channel multiplexing [8-10].

One approach that has recently attracted wide interest is to use the spatial property of an
EM wave, such that different spatial waves are multiplexed (i.e. space division multiplexing
(SDM)) [9]. A special case of SDM is the utilization of orthogonal spatially overlapping and co-
propagating spatial modes, known as mode-division multiplexing [8]. In such a system, multiple
data channels each identified by a different spatial mode can be efficiently multiplexed at the
transmitter and separated at the receiver. Consequently, the system transmission capacity and
spectral efficiency (i.e. bits per second per hertz) could be increased by a factor equal to the
number of transmitted spatial modes [11,12].

One orthogonal spatial modal basis set that could be used for SDM is orbital angular
momentum (OAM) [13,14]. An EM wave carrying OAM has a helical transverse phase of the
form exp(i¢d), where @ is the azimuthal angle and ¢, the OAM charge, is an unbounded integer
(with either negative or positive signs) that represents the number of 27 phase changes in the
azimuthal direction [15]. Owing to the helical phase structure, an OAM beam has a ring-shaped
intensity profile with a central null, and its wavefront twists along the propagation direction
with a twisting rate depending on ¢ [16]. OAM beams with different ¢ values are mutually
orthogonal [16], so that beams carrying different OAMs can act as independent channel carriers
for efficiently (de-)multiplexing multiple information-bearing signals [11]. Moreover, owing to
the fact that the OAM spatial domain is independent of other properties of an EM wave,
OAM multiplexing is in principle compatible with other existing multiplexing techniques, such
as frequency or wavelength division multiplexing (FDM or WDM), and polarization division
multiplexing (PDM) [17,18]. Specifically, beams with the same wavelength and polarization can
be re-used by applying different OAM chargers to each of the many beams, enabling a potentially
significant increase in the system transmission capacity.

Applying OAM to enhance classical communication systems has been quite interesting, and
it is especially exciting given that this is the 25th anniversary of the renowned paper by Allen,
working with Han Woerdman and colleagues at Leiden University in The Netherlands [13].
Using OAM for communications was pioneered to a large extent over a decade ago by the
groups of Padgett [9] and Zeilinger [14], and the community of researchers pursuing this area
has grown significantly over the past few years. There has been progress in recent years in SDM
communication using OAM multiplexing, pushing it towards achieving a higher transmission
capacity, longer link distance, link robustness and system design guidelines. In this paper, we
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describe these advances in both OAM-based free-space optical (FSO) and RF communications.
We also discuss the technical challenges associated with these OAM-based SDM systems and
potential mitigation techniques for improving system performance.

2. Space division multiplexing communications using orbital anqular
momentum beams

In general, any orthogonal spatial modal set that can allow for efficient generation,
(de-)multiplexing and detection can be used for SDM [19]. For an SDM system using OAM beams,
each channel is identified by an OAM mode with a different £ value [20]. As depicted in figure 14,
multiple independent data channels, each on a different OAM beam, are spatially combined and
the resulting multiplexed OAM beams are then transmitted through a single aperture towards the
receiver. After coaxially propagating through the same free-space medium, the arriving beams are
collected at the receiver by another aperture, and subsequently demultiplexed and detected for
data recovery. It should be noted that an OAM beam diverges approximately as the square root of
|¢] and high-order modes diverge more during propagation [21,22]. Since OAM, as a fundamental
property, can be carried by any helical-phased EM waves, including light and radio waves, OAM
multiplexing can be thus used in all frequency ranges [23]. As shown in figure 1b, the use of OAM
multiplexing might have potential applications in scenarios such as data centres and back-haul
connections.

Given that OAM multiplexing employs the orthogonality among OAM beams to enable
efficient (de)multiplexing, it requires coaxial propagation and reception of the transmitted
modes [12]. This suggests that OAM-multiplexed links may require a more precise system
alignment than non-OAM, single-beam communication links [24]. To date, most of the OAM-
based free-space SDM systems rely on line-of-sight (LOS) connection between the transmitter and
receiver [25,26]. We describe below OAM-multiplexed LOS systems at two different frequency
ranges: optics and radio waves.

(a) Orbital angular momentum-multiplexed free-space optical communications

In general, one major concern for an FSO system is its link reliability and robustness stemming
from harsh time-varying channel conditions, such as fog, rain and atmospheric turbulence [27,28].
In addition to power loss, these channel conditions may distort the transmitted beam, resulting in
significant system performance degradations and even link outage. Moreover, these effects may
fluctuate over time with wide dynamic ranges in magnitude [29].

Among these conditions, atmospheric turbulence is generally considered a major factor that
limits the system performance [29,30]. It is known that inhomogeneity in the temperature
and pressure of the atmosphere lead to random variations in the refractive index along the
transmission path, and can easily distort the phase front of a light beam [28]. For FSO links
using phase-front-sensitive OAM beams, the effects of atmospheric turbulence become more
challenging due to the fact that the proper demultiplexing of the received OAM beams depends
on their helical phase-front structures [31,32]. Atmospheric turbulence may lead to fluctuations in
the power of received OAM channels and inter-modal crosstalk between channels with different
OAM values [33]. Under a dynamic turbulent atmosphere, these degradations are slowly time-
varying processes with a time scale of the order of milliseconds (generally much longer than the
signalling period) [28,34].

(b) Orbital angular momentum-multiplexed radio-frequency communications

LOS RF communications with fixed transmitter and receiver locations is of increasing importance
due to its potential in many applications [35,36]. Conventional LOS RF links can use the
well-established multiple-input multiple-output technique with multiple spatially separated
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Figure 1. Free-space SDM communication system using 0OAM beams. (a) Multiple 0AM beams each carrying an independent
data stream can be multiplexed at the transmitter, propagate through free space and be demultiplexed at the receiver.
(b) Potential application scenarios might include data centres and back-haul connections that require high-capacity data
transmission. (Copyright © AAAS 2012 and Macmillan Publishers Ltd 2014.)

aperture elements at the transmitter and receiver for parallel data channel transmission [37]. This
technique, called multi-antenna SDM (MA-SDM) systems thereafter, could provide capacity gains
relative to the traditional single-aperture systems. In such a system, each data-carrying beam is
received by multiple receivers, and signal processing is critical for reducing the crosstalk among
channels and thus allow data recovery [38].

LOS RF links can also employ OAM multiplexing for the simultaneous transmission of
multiple data channels. An OAM-multiplexed link in the RF regime has a similar concept
to that at optical frequencies by multiplexing and transmitting multiple radio OAM waves
through a single aperture [11,39]. This approach is different from conventional MA-SDM system:s,
because it employs OAM beam orthogonality to minimize inter-channel crosstalk and achieve
efficient demultiplexing, thus reducing the need for multi-channel signal processing to mitigate
channel interferences. Compared with an optical beam, the much longer wavelength of a radio
carrier wave suggests less sensitivity to various channel conditions and more divergence upon
propagation [21]. Consequently, atmospheric turbulence is not likely to pose severe limitations
for this frequency range. On the other hand, the significantly increased divergence of radio
OAM waves might impose constraints on the achievable link distance for OAM-multiplexed RF
communications.

3. Orbital angular momentum-multiplexed free-space optical communications

The idea of using OAM modes for FSO communications was first proposed and demonstrated
by Gibson ef al. in 2004 [9]. It was shown that OAM modes can be used for data encoding by
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Figure 2. Experimental results of 16-QAM signals over four polarization (Pol.) multiplexed (MUXed) OAM beams [10]. (a)
Intensity profiles of the four generated OAM beams with £ = +-4, +8, —8 and +16 and their superposition; (b) measured
interferograms corresponding to OAM beams with £ = +4, 48, —8 and +16; (c) measured spectra of each channel
after demultiplexing; (d) constellations of received 16-QAM signals for channels £ = +4 on x-polarization and £ = —8 on
y-polarization. (Copyright © Macmillan Publishers Ltd 2014.)

sequentially transmitting a different OAM beam, each representing a data symbol, within each
time slot. Researchers later realized that each beam can also act as a channel carrier and a group of
orthogonal OAM beams can be used to spatially multiplex multiple data streams [18,19]. Recently,
high-capacity system transmission results using OAM beams performed under laboratory and
field environments or in the field have been reported [10,17,18,40]. Meanwhile, significant efforts
have also been made to meet the challenges that hinder its future implementations, pushing
towards a high-capacity, long-distance OAM-based FSO link affected by practical atmospheric
turbulence conditions [41,42].

(a) High-capacity orbital angular momentum-multiplexed transmission

Initial demonstrations were carried out in the laboratory, including the transmission of two
multiplexed beams with each carrying an on-off keying signal [19,20]. Later experiments further
showed the possibility of multiplexing and transmitting more OAM modes. In 2011, Wang
et al. [43] first reported a terabit per second free-space link by combining OAM multiplexing
with polarization multiplexing. Four OAM beams on each of two orthogonal polarizations were
spatially combined and the resulting multiplexed eight OAM modes then co-axially propagated
over approximately 1m in free space. The received OAM beams were de-multiplexed at the
receiver and sequentially detected to recover the data streams. Each of the beams was encoded
with a 42.8 GBd 16-quadrature amplitude modulation (16-QAM) signal, allowing a total capacity
of approximately 1.4 (42.8 x 4 x 4 x 2) Tbits~!. All eight OAM data channels were located on the
same wavelength, providing a spectral efficiency of 25.6 bit s~ 1Hz1[10]. Figure 2 presents some
of the experimental results.

The above experiment was expanded by adding the wavelength dimension, simultaneously
using OAM, polarization and wavelength for multiplexing. A total of 1008 data channels were
carried by 12 OAM values, two polarizations and 42 wavelengths [17]. Each channel was encoded
with 50 GBd quadrature phase-shift keying, providing an aggregate capacity of 100.8 Tbit s71
(12 x 2 x 42 x 50 x 2 Gbits™1). Another study [18] further pushed the link capacity beyond
petabits per second by multiplexing more OAM channels and using higher order modulation
formats.

These free-space OAM system demonstrations attempted to approximate an OAM-carrying
Laguerre-Gaussian (LG) beam and used OAM beams with different £. As an LG beam has two
indices (i.e. an azimuthal index £ related to OAM and a radial index p related to the radial nodes),
LG modes can form an orthogonal and complete modal set. OAM does exist for LG modes with
higher values of p and OAM beams with higher p indices can also be included for multiplexing,
as has been shown in various reports [44,45].
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Figure 3. (a) The normalized average power in detected modes as a function of turbulence strength D/ry for an input mode
£ =2, and (b) measured OAM power spectrum when an OAM beam with £ = +-3 propagating through the emulated
weak and strong turbulence [34]. The Rytov variance o7 and D/ry of the emulated turbulence are also provided. (Copyright
© 05SA2013.)

(b) Atmospheric turbulence effects and turbulence mitigations for orbital anqular
momentum beams

(i) Atmospheric turbulence effects

As described in §2a, atmospheric turbulence presents a critical challenge to OAM-based FSO
links by giving rise to fluctuations in power and inter-model crosstalk among the received OAM
channels [46]. Theoretical works performed by Paterson [31] and Tyler & Boyd [32] provided the
quantitative analysis on the effects of atmospheric turbulence on OAM beams, considering the
typical Kolmogorov spectrum statistics model. It was revealed that the amount of power of the
transmitted OAM modes that leaked into neighbouring modes is proportional to the strength of
turbulence D/rg, where D is the beam width and r( is the atmospheric coherence length [28].
Specifically, the ensemble average of the normalized power on the OAM mode ¢ =¢ i (Pj), when
transmitting the OAM mode ¢; can be approximated by [32]:

D\5/3
1—1.01(—) for A=0

p
(Pj) = ’ (3.1)

r'(A-5/6) (D\*® .
142—— | — th
0 I +11/6) <r0> otherwise,

where A =i —j| and I'(-) is the gamma function. This expression predicts that, as the turbulence
strength increases, the power of the transmitted OAM mode starts to leak to neighbouring modes
and tends to be equally distributed among modes for strong turbulence. This power leakage
behaviour was also experimentally verified in [47] by emulating turbulence with controllable
strength in the laboratory. As an example, figure 3 shows the measured OAM power spectrum
of the received beam when transmitting the OAM ¢ =43 beam under different turbulence
strengths [34]. One can see that the received power is better confined to the transmitted OAM
mode under weak turbulence, but it spreads to neighbouring modes as the turbulence strength
increases.

Furthermore, the influence of atmospheric turbulence on OAM beams was experimentally
investigated from a system perspective by evaluating the system power penalty [34]. In this study,
atmospheric turbulence was created by a thin-phase screen plate placed in the middle of the link
path. The thin plate had a phase distribution obeying Kolmogorov spectrum statistics with a
specific rp, and was mounted on a rotation stage to simulate the turbulence dynamic nature. The
strength of the emulated turbulence could be varied by using a plate with a different ry or by
adjusting the size of the beam that was incident on the plate. It was found that the power penalty
may exceed 10dB under a weak-to-medium turbulence condition and link outage may occur
under strong turbulence.

s Ey si  Bosndore



adapuve optics compensator

((l) atmospheric (b) ____________ -
turbulence ' ‘beam 1 separator ‘|
0
& -® o wavefront | |
ST < N - m— ; | oo [e— .
'® 0 1mmm———— I adaptive optics » e 2 I correcte
+ -0 . I beam H P P 1 1OAM beams
‘@ @ ! separator compensdtlon ] 1
¥ 19;@; LR ’ v system q 1 | wavefront feedback | 1
‘ . ol @@ ------- \ Il corrector controller] !
e 0 i . i
1 1
—————————————————————————————— ! wavefront| !
1 1 1
| W) OAM beams - Gaussian beam 1 \ sensor ’
______________________________ ! ~ -,

corrected
Gaussian beam
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system [47,48]. It mainly consists of a wavefront measurement unit (e.g. Shack—Hartmann wavefront sensor), two wavefront
correctors and a feedback controller. (Copyright © 0SA 2014 and 2015.)

(ii) Mitigating turbulence effects

Given the performance degradations described above, it would be desirable to have techniques
to mitigate the turbulence effects [48]. Currently, the reported turbulence mitigation approaches
can be generally divided into two categories: (i) adaptive optics (AO) system compensation that
can help optically correct the distorted wavefronts of received OAM beams [49-51] and (ii) signal
processing-based mitigation that employs algorithms in the electrical domain at the receiver to
reduce the signal degradation effects [52-54].

AO compensation. In general, an AO compensation system operates in a closed-loop
configuration and its one typical working iteration includes: (i) measuring the wavefront of the
distorted beams, (ii) calculating the correction patterns based on the wavefront measurement
results, and (iii) applying the correction patterns onto the beams to undo the distortions. As
for an FSO system using helical phased OAM beams, it is challenging to directly measure
an OAM beam’s wavefront using conventional wavefront sensors due to its inherent phase
singularity [55]. Moreover, it is required that the receiver’s AO system should be able to
simultaneously compensate multiple coaxially propagating OAM beams.

An AO system that uses a separate Gaussian beam to probe turbulence-induced wavefront
distortions was recently proposed to overcome these problems [49]. As depicted in figure 44, a
Gaussian beam coaxially propagates with the OAM beams through the turbulent atmosphere.
At the receiver, this Gaussian beam is separated from the distorted OAM beams for wavefront
measurements, based on which the required phase correction patterns can be derived to undo
the distortions of all the received OAM beams. The detailed implementation of the AO system
is shown in figure 4b. Figure 5 shows the measured intensity profiles of OAM beams and bit
error rate (BER) curves before and after compensation. For the convenience of beam separation,
the Gaussian beam was orthogonally polarized with respect to the other OAM beams. One can
clearly observe that the distorted OAM beams up to £ =49 were partially corrected, and the
power penalty decreased due to the crosstalk reduction by compensation.

Although this Gaussian probe can also carry an independent data channel, its occupation of
one polarization sacrifices the polarization degree of freedom for multiplexing. This issue could
be avoided by putting the Gaussian probe on a separate wavelength for turbulence sensing, as
described in [50]. It was found that the compensation performance degraded slowly with the
increase in the beacon’s wavelength offset, in the 1520-1590 nm band, from the OAM beams.

Signal processing-based mitigation. Signal processing algorithms in the receiver can also be
used to help combat turbulence effects on OAM-based FSO systems. This type of mitigation
approach can shift the complexity of the optical subsystem to the electrical domain, providing
a complementary approach to AO-based compensation. In [52], a multi-channel equalization
algorithm was implemented in the receiver digital signal processing (DSP) to reduce the
crosstalk effects caused by weak turbulence and recover all the data channels in a four-OAM-
mode multiplexed link. This approach has been previously used in few-mode and multi-mode
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fibre-based mode division multiplexed systems to mitigate the mode coupling effects [8].
Experimental results showed that this DSP-based multi-channel equalization can improve the
BERSs of the received channels and reduce system power penalties.

However, multi-channel equalization is not universally useful for all channel conditions
[52,56]. Particularly, outage may occur under strong turbulence distortions when the crosstalk
among OAM channels exceeds a certain threshold or one of the channels is barely detectable
due to severe power fading [56]. A modified scheme was reported to relieve this concern,
through the incorporation of additional OAM transmitters/receivers to create redundancy [53].
By exploiting the spatial diversity provided by the multiple-aperture architecture, both weak and
strong turbulence can be potentially mitigated using multi-channel equalization combined with
a diversity reception strategy.

Other signal processing approaches that have been shown to help mitigate turbulence effects
in OAM-based FSO links, include the Gerchberg—Saxton algorithm [57], artificial neural network-
based recognition [54] and the stochastic parallel gradient descent algorithm [58].

(c) Orbital angular momentum-based free-space optical links beyond laboratory distances

The laboratory demonstrations of OAM-multiplexed FSO links were generally limited to a metre-
scale short distance. The expansion of an OAM link over a much longer distance might give rise
to several issues, including divergences of OAM beams with different orders, system pointing
and misalignment, and atmospheric turbulence effects [40,59]. The transmission of OAM beams
over a 3km link across the city of Vienna was reported by Zeilinger’s group in Austria [54]. In
this experiment, the data bits were sequentially transmitted at a rate of a few bits per second on
one of 16 different OAM superposition states (¢ ==+0, £1, ... £15). An artificial neural network
algorithm was used to distinguish the received mode-intensity patterns, thus recovering the
encoded bit information. This experimental scheme was recently extended to a link distance of
143 km between the two Canary Islands of La Palma and Tenerife [60]. Figure 6 shows the link
layout and set-up. The received mode superpositions can be identified with an accuracy of more
than 80% up to the third mode order and the decoded message had an error rate of 8.33%. These
two long-range experiments indicate the feasibility of kilometre-scale long-distance OAM mode
transmission through the atmosphere.

Additionally, the transmission of multiplexed high-speed data-carrying OAM beams was
experimentally demonstrated outside the laboratory [40,61]. Ren et al. [40] reported a 400 Gbits ™!
data link over 120m by multiplexing four OAM beams with £=-3, —1, +1 and +3. As
shown in figure 7, the transmitter and receiver were located at the same site on the roof of
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Figure7. (a) Link layout on the building roof and (b) transmitter (Tx) and receiver (Rx) geometry. (c) Measured BER and system
power penalty under various beam displacements for OAM £ = +3 channel [40]. (Copyright © 0SA 2016.)

a building. The transmitted OAM beams were reflected twice by two flat mirrors placed 30 m
away, achieving a 120 m propagation path. The influence of beam wander (i.e. tip/tilt abreactions)
of the link was measured and characterized. Experimental results showed that beam wander
significantly degrades the link performance and power penalties increase rapidly when the lateral
displacement increases.

(d) Link parameter design for orbital angular momentum-based free-space optical
systems

In general, a long-distance FSO system requires a careful design of link parameters. When
involving OAM beams, the parameter design of a long-distance link becomes complicated due
to their unique intensity and phase profiles [24]. As described in §2, the divergence of OAM beam
scales approximately with the square root of |¢|, indicating that high-order modes have a much
larger beam size at the receiver. In addition, OAM multiplexing requires coaxial propagation
and reception of the transmitted modes. Unlike the case of using a single Gaussian beam, any
misalignment between transmitter and receiver apertures or only partially collecting the OAM
beams at the receiver would result not only in power loss but, more severely, in inter-channel
crosstalk, as presented in figure 8a. Figure 8b illustrates two types of misalignment: namely lateral
misalignment and receiver angular error. These factors need to be carefully considered in the
choice of the link parameters of an FSO system using OAM multiplexing.

A simulation model was established in [24] to investigate signal power and crosstalk effects
for received OAM channels over pure free-space propagation. The trade-offs between the OAM
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and receiver: (b(i)) lateral displacement and (b(ii)) receiver angular error.
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Figure 9. (a) Crosstalk to OAM beam ¢ = +-4 as a function of lateral displacement and receiver angular error for different
transmission distances z and transmitted beam sizes Dt when only 0AM beam £ = +3 is transmitted. XT-1: relative crosstalk to
the adjacent mode 0AM beam £ = 4. (b) Simulated system power penalty as a function of lateral displacement and receiver
angular error when different sets of OAM beams are transmitted over a 100 m link. The transmitted beam size is 3 cm and the
receiver aperture size is 4.5 cm. Mode spacing = 1: 0AM beams £ = +1, 4-2, +3 and +4 transmitted. Mode spacing = 2:
OAM beams ¢ = +1, 43, +5and +7 transmitted. Mode spacing = 3: 0AM beams ¢ = +1, +4, 47 and +10 transmitted.
(Reproduced from [24] © 0SA 2015.)

modes chosen for transmission, system misalignment tolerance, transmitted beam sizes, aperture
sizes and link distance were explored. Based on these trade-offs, design considerations and
general guidelines were provided. As an example, figure 92 shows misalignment effects on the
crosstalk of the adjacent channel ¢ = +4 under different link distances and transmitted beam sizes
when only OAM beam ¢ =43 is transmitted. As can be seen from the figure, a larger beam size
at the receiver will result in two opposing effects in the cases of lateral misalignment and receiver
angular error: (i) a smaller lateral-displacement-induced crosstalk (because the differential phase
change per unit area is smaller) and (ii) a larger tilt-phase-error-induced crosstalk (because
the phase error scales with a larger optical path delay). Figure 9b shows the power penalty
analysis for a four-OAM-mode multiplexed link under various lateral displacements and receiver
angular errors. It can be found that a system with smaller mode spacing shows a lower system
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power penalty under a small lateral displacement or receiver angular error, whereas larger mode
spacing shows a lower power penalty when the lateral displacement or receiver angular error
is large.

4. Line-of-sight radio-frequency communications using orbital anqular
momentum beams

OAM can be carried by any EM wave with a helical wavefront, and this does not depend on the
carrier-wave frequency. Therefore, OAM multiplexing for communications can be applied to the
RF regime. The feasibility of using OAM beams to increase system capacity and spectral efficiency
of LOS RF communications is being actively investigated [62,63]. Progress in high-capacity system
demonstrations, and in device and component technologies for radio OAM beams, has been also
reported [64-67].

(a) High-capacity radio-frequency transmission using orbital angular momentum beams

Although radio OAM waves were first discussed in the late 1990s [68], the use of OAM beams for
RF communications has remained relatively unexplored until a few years ago when Tamburini
et al. [63] reported a data transmission link using OAM beams as data carriers. In this experiment,
a Gaussian beam and an OAM beam with £ = +1 at approximately 2.4 GHz were each transmitted
by a Yagi-Uda antenna and a spiral parabolic antenna, respectively, which were placed in parallel.
These two beams were distinguished by the differential output of a pair of antennas at the
receiver side. In a later experiment, the number of channels was increased to three (carried
on OAM beams with {=—1, 0 and +1) using a similar apparatus to send an approximately
11 Mbits~! signal on an approximately 17 GHz carrier [63]. However, different OAM beams in
these demonstrations propagate along different spatial axes and were not transmitted through
the same aperture. Intensive investigations on OAM-multiplexed RF LOS communications to
fully exploit the advantages of OAM modes were performed later, particularly at millimetre-wave
(mm-wave) frequencies [64,65].

The proof-of-concept experiment of OAM multiplexing in the RF regime was first
demonstrated by Yan ef al. [11] in a laboratory environment, showing a 32 Gbit s~ mm-wave
link at a carrier frequency of 28 GHz. Four different OAM beams with ¢=-3, —1, +1 and
+3 on each of two polarizations were generated using spiral phase plates (SPPs) made out of
high-density polyethylene. Figure 102 presents the observed intensity profile for each of the
beams and their interferograms with a Gaussian beam. After spatial combining using specially
designed beamsplitters, the resulting eight multiplexed OAM beams propagated over 2.5m and
were then separated at the receiver. All eight OAM channels, each carrying a 1GBd 16-QAM
signal, were sequentially recovered, achieving a capacity of 32 Gbits™! and a spectral efficiency
of approximately 16bits™! Hz~! at 28GHz. As an example, figure 10b,c shows the recovered
16-QAM constellations and measured BER curves for the two polarized £ = 43 channels.

Later works explored OAM-multiplexed RF communications at other carrier frequencies or
using specially designed radio OAM devices [64,65,69]. For example, Li et al. [65] reported a
1Gbits™! data link at 8.3 GHz by multiplexing two OAM beams with ¢ = +1 and 42, in which
two stacked patch antenna arrays were designed and fabricated, and functioned as the OAM
transmitter and receiver, respectively. The effects of other channel conditions beyond pure LOS
free-space propagation were also investigated recently. Initial studies on the effects of multi-path
and object obstructions have been performed [70,71]. As shown in [71], a specular reflection-
induced multi-path distorts received OAM beams and causes intra-channel and inter-channel
crosstalk, resulting in significant system performance degradations.

Additionally, a similar link design model, as described in §3c¢, has been applied for mm-wave
OAM links to design link parameters and explore potential system limitations [24]. Owing to
its much longer wavelength compared with an optical beam, a mm-wave OAM beam diverges
more, which would limit the achievable link distance given a fixed-size aperture. Moreover, for
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Figure 10. A 32 Gbit s~ data transmission at a 28 GHz carrier frequency by multiplexing eight OAM modes [11]. (a) Measured
intensity profiles of generated OAM beams and their interferograms. (b(i)), (b(ii)) Recovered constellations of 4 Ghit s~ 16-QAM
signals and (c(i))—(c(ii)) measured BER curves for £ = 3 channels on each of the two polarizations. SNR, signal-to-noise ratio.
(Copyright © Macmillan Publishers Ltd. 2014.)

the same reason, OAM devices at RF generally have larger physical dimensions than those at
optical frequencies. These issues together with other features that are specifically related to RF
systems, such as the gain and shape of an antenna, should be particularly considered.

(b) Generation and detection of radio orbital angular momentum beams

Various approaches have been put forward to generate, (de-)multiplex and detect radio OAM
beams. Turnbull et al. [68] first showed the generation of OAM beams at 90 GHz using SPPs made
of Teflon. By making use of existing RF components and technologies, other techniques based
on different antenna structures have been reported. For example, a helicoidal parabolic antenna
was proposed to generate OAM beams with antenna gain [62,63]. Additionally, conventional
phase array antennas that have been widely used in RF MA-SDM systems were used for OAM
generation by configuring each antenna element with an appropriate phase delay [67]. It was
further shown that this approach could also be used for the simultaneous generation and steering
of an OAM beam [72,73]. Figure 11a presents the concept. By including additional phase delays
in the desired steering direction on the eight antenna elements, the generated OAM beam can
be steered by up to 30°. As an example, figure 11b shows that the measured intensity profiles of
steered OAM beam ¢ = +1 with steering angles of 0°, 5° and 10°.

The generation and multiplexing of multiple OAM beams by a single component has also
been investigated [65,69]. By extending the circular patch antenna array approach into a stacked
fashion, two multiplexed OAM beams with £ =41 and +2 were generated in a single device
fabricated using printed circuit board technology [65]. Moreover, a travelling-wave slot antenna
based on a ring cavity resonator and a feeding network was fabricated to produce two co-axially
propagating OAM beams with £ = —3 and +3 at approximately 94 GHz [64].
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(c) Orbital angular momentum multiplexing and multi-antenna space division
multiplexing systems

Although OAM multiplexing and the well-established MA-SDM systems represent different
implementations, they exploit the spatial degree of freedom for the simultaneous transmission of
multiple data channels. There have been intensive discussions as to the fundamental relationship
between these two types of spatial multiplexing [74,75]. It was later shown that multi-antenna
techniques can be used to generate OAM through suitably structured antenna arrays [67,76].
However, it is also possible to use several spatially separated apertures, each of which contains
multiple OAM beams to distribute the spatial degree of freedom, in an arrangement that could
be interpreted as combining MA-SDM with OAM multiplexing [77]. It should be noted that a
fixed volume that is available for placing transmitter or receiver apertures provides certain spatial
degrees of freedom for both multiplexing techniques [78]. An initial experimental demonstration
of this concept was reported, in which a 2 x 2mm-wave MA-SDM link at 28 GHz with each
transmitter containing two OAM beams was implemented [79]. Each of the four OAM channels
was encoded with a 1 GBd 16-QAM signal, achieving a total capacity of 16 Gbit s71. A4 x 4 multi-
channel signal processing at the receiver was used to mitigate interferences and recover all four
data channels [80].

5. Discussion and perspective

Recent years have seen progress in the use of OAM multiplexing for LOS free-space
communications in both the optical and RF regimes. There is no doubt that OAM multiplexing,
as one SDM approach, can multiply system capacity and spectral efficiency, potentially helping
address the capacity demands in many applications. However, there still exists a rich set of issues
to further explore for its potential implementation in the future. The following points are worth
mentioning:

1. This paper describes using OAM for potentially enhancing capacity in SDM
communication systems. There are several issues relating to the OAM modes as well as
to other modal groups:

(a) Aslong as orthogonality can be maintained among different modes, there exist other
modal groups that can also be used for mode multiplexing, e.g. Hermite—-Gaussian
modes and vector modes [81,82].
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(b) As opposed to several other types of modal groups, OAM has circular symmetry.
This characteristic makes the beams conveniently matched to many optical
components and subsystems for ease of implementation.

(c) OAM beams in this paper can be considered LG modes. In general, LG modes
represent a complete two-dimensional modal basis set and can be described by two
indices (i.e. an azimuthal index ¢ and a radial index p), and OAM can exist for LG
modes with different values of p. If only p =0 is used for multiple beams of different
£ values, then this can be considered a subset of the fuller two-dimensional set of LG
modes [83]. However, as OAM can exist for p#0 as well, then the use of different
values of p and different ¢ values can produce a fuller set of modes and theoretically
a higher system capacity over a given spatial area [44,45].

2. The use of OAM multiplexing under more complicated and harsher channel conditions
than described in this paper (e.g. rain, fog and obstructions) remains challenging. It
would be important to investigate the system performance under these conditions and
develop potential techniques to combat the degradation effects [70].

3. The future of OAM deployment relies heavily on the development of an ecosystem for
OAM generation and multiplexing. Currently, most of the reported systems with OAM
multiplexing use bulky and expensive components that are not necessarily optimized
for OAM operation. The advances in enabling devices, components and subsystems
have become critically important [84]. Following the historic trends for many previous
advances in communications, it would be essential for the OAM ecosystem to provide
reductions in cost and size, and offer compatibility with existing technologies.
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